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Abstract

Local thresholding methods for uneven lighting image segmentation always have the limitations that they are very
sensitive to noise injection and that the performance relies largely upon the choice of the initial window size. This
paper proposes a novel algorithm for segmenting uneven lighting images with strong noise injection based on
non-local spatial information and intuitionistic fuzzy theory. We regard an image as a gray wave in three-dimensional
space, which is composed of many peaks and troughs, and these peaks and troughs can divide the image into many
local sub-regions in different directions. Our algorithm computes the relative characteristic of each pixel located in the
corresponding sub-region based on fuzzy membership function and uses it to replace its absolute characteristic (its
gray level) to reduce the influence of uneven light on image segmentation. At the same time, the non-local adaptive
spatial constraints of pixels are introduced to avoid noise interference with the search of local sub-regions and the
computation of local characteristics. Moreover, edge information is also taken into account to avoid false peak and
trough labeling. Finally, a global method based on intuitionistic fuzzy entropy is employed on the wave transformation
image to obtain the segmented result. Experiments on several test images show that the proposed method has
excellent capability of decreasing the influence of uneven illumination on images and noise injection and behaves
more robustly than several classical global and local thresholding methods.
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1 Introduction

Image segmentation, which is the extraction of an object
from the background in an image, is one of the essential
techniques in areas of image processing and computer
vision [1, 2]. However, in some cases, some undesired
disturbances in the thresholding segmentation process
may generate a false segmentation result. Uneven light-
ing is one of the leading disturbance sources that can
affect the segmentation result, which often is produced
in the capturing of an image. The primary causes for the
disturbance of uneven illumination are (a) the scene
cannot be isolated from the shadows of other objects op-
tically, (b) the light may be unstable in some cases, and
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(c) the object is very large, and thus it creates an uneven
light distribution [3].

Thresholding is a direct and effective technique for
image segmentation. The thresholding techniques per-
formed on gray-level images can be divided into two cat-
egories, namely, bilevel and multilevel thresholding. In
bilevel thresholding, pixels are classified into two different
brightness regions as background and object. Multi-level
thresholding is applied to more complex images, which
contain several classes with different gray-level ranges.

Moreover, the current bilevel thresholding (binarization)
techniques are usually divided into two classes, global and
local thresholding. The global algorithms generally com-
pute a threshold for an image. Most of the global methods
originated in the twentieth century, ie., the 1970s, which
can be classified into several main categories. The first cat-
egory is based on the shape of the histogram, such as

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-017-0509-5&domain=pdf
mailto:yuhaiyan2010@126.com
http://creativecommons.org/licenses/by/4.0/

Yu and Fan EURASIP Journal on Advances in Signal Processing (2017) 2017:74

valley-seeking method [4] and histogram approximation
method [5]. The second category is based on clustering al-
gorithm, such as Otsu’s method and the fuzzy clustering
method. The Otsu’s method [6] is one of the most clas-
sical clustering methods, which segments an image by
maximizing the between-class variance of the thresholded
image. The fuzzy clustering [7] method is another classical
global method that computes the fuzzy membership be-
tween the pixel and the mean value of two classes and
finds groups by applying cluster analysis. Entropy-based
methods are the third category of global methods, such as
the Shannon entropy-based method [8], the Tsallis
entropy-based method [9], the Renyi entropy-based
method [10, 11], and the fuzzy entropy-based method
[12]. To improve the robustness to noise, the spatial infor-
mation is taken into account and many modified versions
of the Otsu method [13], the fuzzy entropy-based method
[14, 15], the fuzzy clustering method [16-18], and the
Renyi entropy-based method [19, 20] have emerged.
Meanwhile, a local method usually computes a different
threshold for the neighbor of each pixel or for each
appointed block in the image. Local thresholding algo-
rithms are superior to global ones for segmenting uneven
lighting images because they can select adaptive threshold
values according to the local area information [21].
Neighbor-based and block-based methods are two major
styles of local adaption methods. The neighbor-based
methods compute a threshold for each pixel based on the
statistics of the arrangement, i.e., the variance of its neigh-
borhood region. For example, Bernsen [22] selects the
threshold by a function of the highest and lowest grayscale
values. In Niblack’s method [23], a pixel-wise threshold is
calculated based on the standard deviation and the local
mean of all pixels in the moving window over the gray
image. Sauvola et al. [24, 25] first classify each window by
content into text, picture, and background and then apply
different segmentation rules to the various types of win-
dow. Kim [26] modifies Sauvola’s algorithm by introducing
more than one window size for the type of text. Moreover,
in order to improve the above approaches for the deter-
mination of the local threshold, several special features
that are extracted in the pixel neighborhood are also taken
into account, such as character stroke width [27] and gra-
dient information [28]. In addition, Bradley and Roth [29]
introduce spatial variations in lighting and propose a real-
time adaptive thresholding technique which has strong
robustness to lighting changes in the image by using the
integral image of the input. Kim et al. [30] introduce a
water flow model for document image binarization. In this
model, an image surface is considered as a three-
dimensional terrain which is composed of valleys and
mountains. Then, they find the local characteristic of the
original terrain by pouring some water onto the terrain
and computing the filled water. Lastly, they apply a global
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thresholding algorithm to find the text regions. Moreover,
M. Valizadeh and E. Kabir in [31] improve the water flow
model and propose an adaptive method to segment
degraded document images.

Block-based methods are another category of local
thresholding algorithms, which divide the image into dif-
ferent sub-blocks. The sub-blocks are regarded as separate
images and segmented by some principles. For example,
Taxt [32] obtains the local threshold for each sub-block
based on EM algorithm. Eikvil et al. [33] propose a fast
text binarization method by segmenting the sub-blocks
based on the Otsu method. Park et al. [34] improve Eik-
vil's method by segmenting the object sub-blocks with the
Otsu method and the background sub-blocks based on
their mean value. Huang et al. [3] propose a method that
adaptively selects the block size. Chou et al. [35] discrim-
inate the classification of the sub-blocks based on support
vector machine (SVM) and segment the different sub-
block types with different strategies.

However, there are still several problems in these local
thresholding methods. First, the segmentation accuracies
of these window merging methods greatly depend on
the reasonable selection of the initial window size. Sec-
ond, partitioning the image into several sub-blocks usu-
ally leads to incoherent segmentation results between
adjacent sub-blocks. Lastly, the existence of high noise
level in the image may cause adjacent pixels of a pixel to
contain abnormal features, thus leading to unsatisfactory
segmentation results.

A wave transformation model, which is introduced by
Wei et al, is a prospective idea for uneven lighting
image segmentation [36]. They consider an image sur-
face as a three-dimensional terrain that is composed of
mountains and valleys, corresponding to peaks and
troughs, respectively, and partition the sub-regions with
the local peaks and troughs in multi-directions. Then, a
wave transformation is performed on the grayscale
waves in the local sub-region, and a matrix of multi-
dimensional vectors is obtained. Lastly, the vectors are
compressed to one dimension using the principal com-
ponent analysis (PCA) method, and an Otsu global
method is employed to find an optimal wave threshold
for segmenting the matrix. This algorithm does not re-
quire image partitioning and can yield good segmenta-
tion results for uneven light images. However, there are
two serious drawbacks of the method. First, it is very
sensitive to noise since it does not take into consider-
ation the spatial information in the wave transformation.
Second, when the variation of light intensity in the back-
ground is too large, it may lead to misclassification of
some pixels.

On the other hand, since Zadeh [37] introduced the
fuzzy set (FS) theory, it has been used to solve image
segmentation problems regarding vague images. Pal and
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King [38] first introduce the fuzzy membership function
and apply it in grayscale image processing. Then, many
image segmentation algorithms based on the fuzzy the-
ory are widely studied and are considered as efficient
ways because they can describe the fuzzy uncertainty of
images excellently [39]. Atanassov [40] proposes a novel
concept of higher order FSs, i.e., intuitionistic fuzzy sets
(IFSs), which provides a flexible mathematical frame to
address the hesitancy derived from imprecise informa-
tion. He describes the IFSs by two characteristic func-
tions that express the degree of membership and the
degree of non-membership, representing the degree of
belongingness and non-belongingness, respectively, of
elements to the IFS.

In this paper, we propose a novel local thresholding al-
gorithm for segmenting uneven lighting images with noise
injection. In particular, we introduce the idea of the wave
transformation in Wei’s method and partition the image
into sub-regions based on the local peaks and troughs in
many straight lines extracted by rows and columns. Then,
we perform the transformation of grayscale waves using
fuzzy membership so that the relative characteristic (the
local membership value) of each pixel substitutes its abso-
lute characteristic (its gray level) to reduce the influence
of uneven background light. Simultaneously, non-local
spatial constraint and edge information obtained by the
Sobel operator [41] are taken into account in order to
avoid false peak and trough labeling caused by noise injec-
tion and large variation of light intensity. Lastly, we model
the wave transformation image with the intuitionistic
fuzzy theory and use a global intuitionistic fuzzy measure
to segment the transformed image.

The rest of this paper is organized as follows. Section
2 introduces the wave transformation for images and
intuitionistic fuzzy set theory. Section 3 describes our
segmentation method. Section 4 presents the experimen-
tal results and comparison with several well-known seg-
mentation algorithms. Section 5 gives the conclusions.

2 Preliminaries

2.1 Wave transformation for computing the local
characteristics of an image

In this section, we give a brief introduction to the wave
transformation model proposed by Wei et al. [36], which
is used to reduce the influence of uneven light on the
segmentation of images.

There are many images where the background lighting
is noticeably uneven. For these images, it is unreasonable
to classify them into objects and backgrounds only based
on the absoluteness of the gray levels. However, the rela-
tivity of the gray levels in local sub-regions can reflect
the difference between the objects and the background.
Therefore, in order to reduce the impact of uneven light
on the segmented results, the grayscale wave model is
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proposed by Wei et al. [36] to obtain the local character-
istic of a pixel to replace its original gray level. Figure 1c
shows the grayscale wave model. The idea of the wave
transformation is as follows. First, the image can be
treated as a gray wave in three-dimensional space com-
posed of many local sub-regions. These sub-regions are
obtained by finding the local peaks and troughs in a set
of grayscale wave curves, which are extracted in turn
from the image in several given directions. Suppose that
in a sub-region, the pixels close by the peak correspond
to the object, and the pixels close to the trough corres-
pond to the background. The closeness degree of a pixel
to the local peak or trough represents its relative charac-
teristic and is used to substitute its absolute characteris-
tic (its gray level) for segmenting the image. The
closeness degree can be reflected by a membership de-
gree and obtained by the wave transformation as follows.
Given a direction x, a membership degree is assigned to
a pixel according to its location in the local sub-region
between two neighboring peak and trough. Especially,
the membership degree of the pixel located at the peak
is 1, while the membership degree of the pixel located at
the trough is 0. Moreover, we can extract grayscale wave
curves in several directions and perform the same wave
transformation on the curves. Therefore, a pixel has n
transformation values corresponding to n different direc-
tions. Lastly, these values are pulled together for each
pixel according to a principle, and a multi-direction
wave transformation can be obtained for an image.
Intuitively speaking, the image can be viewed as waves
of the gray pixels. For an individual pixel, its local char-
acteristic is immediately concerned with the location in
the corresponding wave. The pixel located at the peak of
the wave has a relatively higher level, while the pixel lo-
cated at the trough of the wave has a relatively lower
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Fig. 1 The illustration of the grayscale wave model in the vertical

and horizontal directions
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level. The location of the pixel in the local wave, namely,
the wave transformation value that reflects the relative
characteristic of a pixel in the local sub-region, can be used
to replace its original gray level for segmenting images [36].

Definition 1. Extract a straight line f; in a given direc-
tion d, which consists of K pixels. Let g(k) ={0,1, ---, L - 1}
represent the gray level of the line f;, where k=1,2,...,K.
Suppose that there are m local peaks, which are located at
Py, Py, -+, and m+ 1 local troughs, which are located at
T, T -+, where Ty <Pyj<Ty<--<P,<T,.1. Given a
threshold a € [0, L - 1], if g(P;) — g(T;_1) > a, g(P;) - g(T}) >
a, and i=1,2, ---, m, the transformation value (member-
ship degree) w of the pixel Q(x, i) is [36]:

W(xk»yk) = {

where H(k; T; _ 1, P;) = (g(k) — g(T; - 1))/ (g(P;) - &(T; - 1)), u
is a monotonous increasing function, and (xy, yx)repre-
sents the original coordinate of the kth pixel in the local
sub-region ¢,,=[T,, T,,1]. The transformation values
of pixels in other local sub-regions are obtained in the
same way. Then, we obtain the transformation wave vec-
tor G = {w¢1, Wepyones w¢m} of the line f;. The transform-
ation process is called one-dimentional (1D) gray scale
wave transformation.

Definition 2. Suppose the image has M straight lines
in direction d. Let f; ; represent the i th straight line in
direction d, where d=d,,d>,...,d,, and i=1,2, -, M.
Let F;;=y(f;;) denote the 1D grayscale wave trans-
formation of the straight line f; ;. w,; represents the gray-
scale wave vector of a pixel Q(x,) in f; ; in direction d
and is described by [36]:

Wd(xay) = Fd,,-(x,y), Q(x,y)efd,i' (2)

Therefore, there are n wave vectors wg,, wq,, ..., wa, for
a pixel Q(x,y). The multi-direction grayscale wave trans-
Sformation ¥(f) of the image fin all directions d;,d>, ...,
d, is composed by:

() ={w(fa,) v(fs), - w(fs,)} (3)

Next, we state the reason the grayscale wave trans-
formation can reduce the impact of uneven lighting.
Suppose there are two sub-regions, ¢ = [T, P;] and ¢,
= [T, Py], i.e., the yellow shadows in Fig. 2, with different
lighting strengths in the wave curve g(k).

According to Eq. (1), the grayscale wave vectors of the
two troughs and peaks are:

M(H(k, Ti—la Pl))
M(H(k, Ti, P,))

kE[Ti,l,Pi)

/(E[Pl', Tl) ’ (1)

wr, = M(O), Wp, = u(l)v wr, = M(O)a Wp, = u(l)
(4)

Therefore, the pixels located at the two peaks have the
same wave transformation values, namely, w, = w,,, no
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Fig. 2 The illustration of the 1D grayscale wave transformation. a The
original grayscale wave curve g(k). b The wave transformation value
G(k) of the curve g(k)

matter how large their original gray levels are. Likewise,
wy, = wy, for the pixels at the two troughs. Suppose two
pixels are located at ki, ky with g(k;) < g(k,) in local sub-
regions ¢y, ¢o, i.e., the yellow shadows in Fig. 2, respect-
ively. If H(ky; Ty, Py) > H(ky; To, Py), their transformation
values satisty u(H(ky; Ty, P1)) > u(H(ky; T, P,)) because u
is a monotonous increasing function, which indicates
that the wave transformation values, located in the green
shadows in Fig. 2, depend on the relative characteristics
of the pixels rather than their absolute gray levels,
thereby reducing the impact of uneven lighting [36].

2.2 Intuitionistic fuzzy sets and intuitionistic fuzzy
entropy
In this section, we present the basic elements of intuitio-
nistic fuzzy set theory and two fuzzy membership func-
tions, which will be used in the wave transformation
model and image segmentation.

Definition 3. A fuzzy set (FS) A is defined on a uni-
verse X and can be described as follows [37]:

A ={<xu;(x) > |reX}, (5)

where 4 (x)€[0,1] is the membership function of AeF
(X) and represents the degree of element x belonging to

A.
For fuzzy sets A and B, Vx e X, the membership func-
tions of AnB and AUB are defined as y;,5(x) = min

(14 () 1)) and ug50) = max (g o) () - A° s
used to express the complement of A, that is, p;¢(x) = ¢
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(13 (%))
function.

Definition 4. An intuitionistic fuzzy set (IFS) A
defined on a universe X is expressed by [40]:

and VxeX, where ¢ is a complementary

A = {< 2, 1y(x), val) > IweX)} (6)

where p4(x) €[0,1] and v4(x) € [0, 1] represent respect-
ively the degree of membership and non-membership
of an element x belonging to A based on the condition
0 < palx) + va(x) < [0, 1]. Atanassov and Stoeva [37] have
introduced an intuitionistic index 4(x) of an element
x€ X in A for an intuitionistic fuzzy set (IFS) A in X as
follows:

A (%) = 1=py (%) -va(x). (7)

74(x) is considered as a hesitancy degree of x to A.
Moreover, an FS A defined on X can also be represented

using the notation of IFSs as follows: A=
{<x,py(x), 1-p,4(x) > |xeX} with mmu(x) =0 for all x e X.

In addition, an axiom definition of intuitionistic fuzzy
entropy measures is also introduced by Burillo and Bus-
tince [41] to measure the fuzziness of an intuitionistic
fuzzy set.

Definition 5. Intuitionistic fuzzy entropy is a function
E: F(X) > R'(R"=[0, +)) and satisfies the following
conditions: IFS1: E(A) = 0 iff A is an FS. IFS2: E(A) = Car-
dinal(X) =n iff pa(x;)2valx;)=0 for all x;€X. IFS3:
E(A) = E(B) iff ASB, i.e., pa(x;) < up(x;) and va(x;) < vp(x;),
for all x; € X. IFS4: E(A) = E(A°).

In addition, they also introduce an intuitionistic en-
tropy measure based on the above requirements,
expressed by [42]:

E(A) = Zrl]:ﬂA (%1)- (8)

To obtain good segmentation, one must select the mem-
bership function that can best interpret the image. This sec-
tion introduces two membership functions which will be
utilized in this paper. The first one is an S-function [43]:

0; 0<l < a
Stiabe=] O /(ea)b-a), a<ish
I 1m0t (ca)(e-b)), b<isc

1, [>c

(©)

where [ is the observed variable and the parameters a, b, ¢
determine the shape of the S-function. The second one is
an exponential function defined by Chaira and Ray [44]:

Page 5 of 22

exp (= ([1-mp1) / (Emax—&min) ) )iflst
ue(l;t) = . ,
exp (= (11-31) / (Zmax—Gmin) )If 1 > ¢

(10)

where  mp = ( f:glh(l))/ Sioh())  and  my
= ( lL;tlﬂlh({))/ ~,__t1+1h(l)3 are the average values
of two parts D and B; gpax and g, are the maximum
and minimum grayscale values of the image, respect-
ively; and ¢ is a threshold that separates the objects from
the background.

3 The proposed method
3.1 Overview of the approach
As mentioned in Section 2.1, the wave transformation in
Wei's method can reduce the bad influence of uneven light
on the image segmentation by obtaining the local charac-
teristic of each pixel. It is accomplished by dividing the
image into a number of local sub-regions and computing
the local characteristic value of each pixel based on its lo-
cation in its corresponding region. Specially, the sub-
regions are obtained by searching for local peaks and
troughs based on the grayscale levels of pixels within a
straight line extracted from the image in a given direction.
However, when the image is heavily corrupted by
noise, the local characteristics including high-frequency
signal with large amplitude have a strong influence on
the search of peaks and troughs, namely, the establish-
ment of the local sub-regions and the calculation of the
local characteristics of pixels. Therefore, noise injection
is one of the greatest challenges of the wave transform-
ation. It is known that the non-local mean-filtered image
[45] of the noisy image can retain more information
than the median-filtered image and mean-filtered image.
In this paper, we propose a novel wave transformation
model by introducing fuzzy membership and adding
non-local space information and edge information, in
order to reduce the influence of uneven light and noise
injection on image segmentation. The structure of our
algorithm is shown in Fig. 3, which contains mainly the
following steps.

Step 1. We first obtain the non-local mean-filtered
image of a gray-level image in order to improve the
noise resistance ability.

Step 2. Then, we apply the wave transformation on the
filtered image to eliminate uneven light of the image,
namely, computing the local membership value of each
pixel by a fuzzy membership function. This procedure
is completed by mainly four steps. (1) First, we need to
find the local sub-regions that each pixel is located in.
More concretely, all straight lines of the image in two
given directions (namely, the horizontal and the vertical
directions) are extracted. The significant local peaks
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1. Filter the noisy image with non

local means algorithm.

v

2. Apply wave transformation on the

filtered image by computing the local
membership of each pixel in order to
eliminate uneven light.

v

and

3. Model the
transformed (matrix) image in the

segment

intuitionistic fuzzy theory.

Fig. 3 The framework of our method

(D Partition the image into many local
sub-regions by finding significant peaks and
troughs by rows and columns.

v

@ Compute the local membership degrees
of each pixel in the two directions using

fuzzy membership function.

(@ Revise the local membership degrees of|
each pixel in the two directions using its

edge information.

@ Obtain the final membership of each
pixel by merging its two local memberships
with the non local weight matrix.

and troughs in each line are searched for, and two
neighboring troughs and peaks constitute a local sub-
region. (2) Then, the local membership degrees of each
pixel located in the two corresponding sub-regions
(respectively in the horizontal and vertical directions)
are computed by a fuzzy membership function. (3)
Moreover, the local membership degree of each pixel is
further revised by combining with its edge information,
in order to avoid false peak and trough labeling caused
by the large variation of light intensity. (4) Lastly, the
local membership degrees in the horizontal and vertical
directions for each pixel are integrated with its non-local
weight matrix, thus obtaining the final local membership
values of all pixels and constituting the wave transformation
matrix for the image.

Step 3. The final membership matrix is used to
replace the grayscale matrix of the image; then,

it is modeled and segmented with the intuitionistic
fuzzy theory.

3.2 Wave transformation of an image using non-local
spatial information and fuzzy membership

3.2.1 Non-local filter of the image

For every pixel Q(x, y;) in an image f, where (xy, yi) represents
the original coordinate of the kth pixel, the estimated value Q

(xk, ,yk) with its spatial information is computed as [45]:

a(xkayk): Z V(kﬂj)Q(xlvyj)a (11)

(597)<v;

where V) represents a search window with radius 7
which is centered at the pixel (x, ) in the noisy
image. The weight v(k, ), (jeV,’() between two pixels

(% y) and (x;,y;) relies on their similarity and is de-
fined by:
) 2
v(koj) = (exp(-INe-Nj[l3,. /7)) /2. (12)
Here, 4 is the filtering degree parameter, Ny is a

zxz square neighborhood centered at the pixel
Q(x%, y1), ala>0) is the standard deviation of the

(Iweesl, ) 2

a normalized constant [45]. The weight v(k,j) de-

pends on the similarity between the neighborhood

configurations of the pixel (xt,y:) and the pixel (x;

¥;), which satisfies 0<v(k,j)<1 and Z,Evr v(k,j) =1.
k

Gaussian kernel, and Z(k) =)

VT
TV

is

For the pixel (xg, i), the spatial information v(k,))
will be used for the integration of fuzzy member-
ships in the next section.

Theorem 1. Suppose the gray level of a pixel (x,y) in
the uneven lighting image fs is constituted by fs(x,y) =
fx,y) + 6(x, y), where fix,y) is the original intensity of (x,
y) in the image with even light and 5(x,y) is the intensity
of the uneven light in (x,y). Given that 6(x,y) remains
approximately constant in the local region, the estimated
value Qg(x,y) of each pixel (x,y) in the uneven lighting
image fs by the non-local filter is equal to the estimated
value Q(x,y) of (x,y) in the original image f plus the un-
even light intensity of (x,y), namely, Qg(x,y) = Q(x,y)
+5(x, ).

Theorem 1 indicates that the non-local filter does not
change the light intensities of an image and removes the
noise under the premise that the light intensity d(x,y)
remains approximately unchanged in the local region,
which is prepared for the follow-up process, i.e., wave
transformation.
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3.2.2 Wave transformation with fuzzy membership theory
and non-local spatial information

3.2.2.1 Divide the filtered image into local sub-
regions by searching for local peaks and troughs in
straight lines After obtaining the non-local mean-filter
image, the filtered image will be divided into local sub-
regions by searching for local peaks and troughs in
straight lines which are extracted from the image by
rows and columns. Specifically, the straight lines in the
image are searched for in two directions, namely, the
horizontal direction d;; and the vertical direction d,. Let
the lines g(k) =f; ;, which are selected in the horizontal
direction dy, be the original 1D gray wave curve, where
k (k=1,---,K) represents the kth pixel in the ith line.
The peaks P ={Py, Py, ..., P,,} and troughs T ={T}, T, ...,
T, .1} in the curve g(k) with Ty <Py < To< -+ <P, < T,
+1 are found if they satisfy the following conditions:

8(Pi)-g(Ti1) > a, g(Pi)-g(Ti) > a, (13)

where the parameter « is a preset threshold, which is
used to control the sensitivity to the wave with little
amplitude caused by noise [36]. In addition, how the
value of «a is selected is related to the difference of gray
levels of pixels in the background and the objects. If « is
larger than the least difference of gray levels of pixels in
the background and the objects, the objects cannot be
extracted. If a is too small, the noise will be classified to
the objects.

3.2.2.2 Compute the wave transformation value
(local membership value) of each pixel in the
horizontal and vertical directions using fuzzy
membership After finding all the sub-regions consti-
tuted by peaks {P;, P,, ..., Pz} and troughs {7}, T5, ..., T's}
in the gray wave curve g(k), the wave transformation can
be applied on the pixels in g(k). Suppose there are sev-
eral local sub-regions ¢y, ¢, -+, @, -+ in g(k). Let a local
sub-region ¢ =[T,,T;, ] consist of a peak P and two
troughs T; and T, where T;<P;<T;,;. Let ¢
= [t;,,p,] be the rising edge interval and ¢, =
[P, , Tsi1] be the training edge interval. The local mem-
bership degree G(k) of each pixel k in the region ¢,
= [T, , Ps] can be determined as follows.

Let the local sub-region ¢, have L gray levels f,
({a}) = {e(T,).g(Ts + 1), -, g(Ps)}
space X = g((psl), where g = g(k) is the gray level of the
pixel k located at (xy,yx), where ke [Ty, Py]. Let the sub-
region ¢ be composed of two parts, namely, the back-
ground D and the foreground (the objects) B. In the
sub-region, the pixels close by the peak correspond to
the object and the pixels close by the trough correspond
to the background. The closeness degree of a pixel to

and the sample

Page 7 of 22

the local peak or trough represents its relative character-
istic and can be obtained by a membership value as fol-
lows. The membership value 4, (¢(k)) = #, (q) indicates
the degree of the pixel k with the gray level g = g(k) be-
longing to the peak p; in a local interval ¢ = [T, Py].
Based on the S-function in Eq. (9), 4, (g(k)) is deter-
mined by:

0T ) o(Ty) +g(P)
2<g<1’s)g(Ts>) e(To)sg(k)s == 5

)

< g(k)sg(Py)

2
1o &K)=e@s) | &(Ts) +g(Ps)
g(Ps)_g(Ts> 2

(14)
where the values g(T;), g(P;) determine the shape of the
S-function with g(T;) < g(Ps). The interval [g(T}), g(Py)] is
called the fuzzy region. Likewise, the membership degree
of the pixel k in the training region ¢, = [Ps, Ts;1] can
be obtained in the same way. Then, the transformed

value G(k) of a pixel k in the local interval ¢ = [T, T; . 1]
in the direction dy is as follows:

r’"dﬁ(g(k);g(Ts)vg(Ps)) ke[TuPs]
/’th(g(k);g(Ts+l)7g(PS)) ke[PsaTs+1]
(15)

G )= {

Theorem 2. Suppose the gray level of a pixel (x,y) in
the uneven lighting image fs is constituted by fs(x,y) =
flx,y) + 8(x, y), where fix,y) is the original intensity of (x,
y) in the image with even light and 5(x,y) is the intensity
of the uneven light in (x,y). Given that 8(x,y) remains
approximately constant in a local sub-region, the wave
transformation matrix by the S-function Y(f) of the ori-
ginal image f is approximately equal to the wave trans-
formation matrix V(fs) of the uneven lighting image fs.

Theorem 2 indicates that the wave transformation of
an image using the fuzzy membership function (S-func-
tion) can reduce the light intensity difference between
neighborhood sub-regions, thus markedly decreasing the
influence of uneven light on the image segmentation.

3.2.2.3 Revise the wave transformation values of
each pixel using its edge information However, when
the premise that the intensity of uneven light remains
approximately unchanged in local sub-regions cannot be
satisfied, the local membership by the wave transform-
ation should be modified. That is, when the variation of
the light intensity in a pure background is so large that
it is bigger than the threshold « in Eq. (13), a false sub-
region composed by a peak and a trough must be ex-
tracted, thus easily leading to misclassification. This is
because in a sub-region, the pixels close to the peak cor-
respond to the object, and the pixels close to the trough
correspond to the background according to Wave
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transformation for computing the local characteristics of
an image. Therefore, the pixels in the pure background
will be classified into two classes, i.e., the object and the
background, by the segmentation of the wave transform-
ation matrix, which actually leads to the misclassification
of some pixels to object.

Taking the mouse image, for example, as shown in
Fig. 4a, uneven light is very serious in the background
regions. When the parameter is set as a = 60, four
sub-regions are extracted in the 160th row, namely,
(T, P1), (P1,T5), (Ty,Py) and (P,,T3), as shown in
the blue curve in Fig. 4c. The two sub-regions (77,
P;) and (P,,T5) are extracted due to the large vari-
ation of light intensity in the original wave curve.
The pixels in the two sub-regions actually belong to
the background. However, part of these pixels will be
misclassified to objects. Figure 4b shows the edge in-
formation of the mouse image. The red curve in
Fig. 4c is the edge information in the 160th row of
the mouse image. Let us take a closer look at the two
curves in Fig. 4c. We can see that there is an obvious
difference between the pure background sub-regions
(T1,P;) and (P,,T3) and the mixed sub-regions (P,
T,) and (T,, P»). There is no edge information in the
pure background sub-region (73,P;) since the gray
levels of the pixels in the region vary gradually due
to the intensity variation of the uneven light. How-
ever, there is edge information in the region (P, T5),
where some gray levels vary dramatically since there
are pixels that belong to two different classes. There-
fore, in this paper, we take into consideration the
edge information to revise the wave transformation
value further.

To preserve more global (larger) edges and ignore
those locally fluctuated (smaller) edges, we use two
improved 5 X 5 Sobel  operators [46],

=[2,3,0,-3,-2;3,4,0, -4,-3;6,6,0, -6, 6;3,4,0, -4, -3;2,3,0,3, 2]
and
convolute the images and check the maximum response
of the horizontal and vertical edges. Then, we can obtain

Sa, = [2,3,6,3,2:3,4,6,4,3:0,0,0,0,0; -3, ~4, -6, -4, -3; -2, -3,-6,-3,-2] , tO
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4 4
Eqy (v,30) = Y (% + m=1,y, 4+ n-1) x Sy, (m,n),

m=0n=0
(16)
4 4
Ea, (%, , 51 ZZI xx +m-1,y, + n-1) x Sz, (m,n),
m=0n=0
(17)
E(xkvyk) = maX(EdH (xk7yk)7Edv (kayk))a (18)

where E(xy, y;) is the gradient of the point (xy, yx). Given
a constant 7, if E(xz, yx) > T, we consider the point (x, yx)
to be a boundary point. Then, the gray level g(k) of pixel
k in the sub-region ¢, = [T, Ps| will be transformed by
judging whether there is any edge information in ¢,
= [T, ,Ps]. Thus, the transformation value of the pixel
k e [T, P,] will be modified as follows.

Gd,., (k)

G, (k) = JelTs, P} E(%,5,)>T
" background

otherwise
(19)

According to Theorem 2, it holds under the premise
that the intensity of the uneven light d(x,y) remains ap-
proximately constant in each local sub-region. For the
pixel k€ [T}, PJ], the condition 3j € [T, Py, E(x;, y;) 2 T in-
dicates that there is edge information, and the trough T
and the peak P, are searched for due to the radical
change of the gray level in the sub-region ¢, = [T, P].
That is, there are two different classes in the sub-region.
Moreover, the intensity of the uneven light d(x,y) can be
regarded as approximately constant in ¢ = [T, P].
Then, Theorem 2 holds, and the wave transformation
value can remain unchanged, namely, G;iH (k) = Gg, (k).
If the pixel k[T, P;] does not satisfy the condition
JjelT,, Py, Ex;,y) 2 T, this indicates that there is no
edge information. That is, there is only one class in the
sub-region, and the trough 7; and the peak P are
searched for due to the gradual change of uneven light
intensity in the sub-region ¢ = [T, Ps|. Therefore, the

(a)

(b)

(the red curve) of the 160th row for the mouse image

Fig. 4 a The mouse image. b The edge information obtained by the Sobel operator. ¢ The gray wave curve (the blue curve) and the edge information

P, . edges P,

100 +

0 100 200 300

(©)
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variation of uneven light intensity is too large, and its
value cannot be regarded as approximately constant in
¢, = [T, Ps]. Then, Theorem 2 does not hold, and the
wave transformation value G ;H (k) should be modified to
the intensity of the background.

3.2.2.4 Integrate the horizontal and vertical
transformation values of each pixel with its non-local
information Since the wave transformation is applied
on the image in two directions, there are two transform-
ation values for each pixel, namely, two transformation
matrices for the image. In this section, we will integrate
the two matrices with non-local space information. Let
Gt’i}-{,i represent the one-dimensional wave transform-
ation value for the pixel k in the ith line f, ; in the dir-
ection dy. The horizontal wave transformation matrix
Y4, (f) of the image is composed by the wave trans-
formation G;IHJ, G(;,Hﬁz, G,;,Hs, -+ of all lines in the direc-
tion dy. Similarly, the vertical wave transformation
matrix ¥, (f) of the image can be obtained in the same
way. To integrate the two membership matrices, ¥, (f)
and ¥, (f), we take consider the non-local space infor-
mation of each pixel, namely, the weight matrix of pixels
as follows. Let ¥, (xk, yk) and ¥, (xk, yk) represent
the membership degrees (wave vectors) of the pixel k lo-
cated at (x, yi) in the dy and dy directions. The weight
matrix of the pixel k is {v(k,/)}, ((%,y;)€V}). The wave
transformation value of the pixel k in the directions dy
and d; with space information is modified by:

> vl ¥, (%)

L 7
(7)<

G;’H(xkayk) = E V(k,]) ) (20)
("/%‘)EV;
> vk, )¥a (x,-,y,)
Gy, (%, 01) = (xi.yj)EVkZ v(k,j) ’ @D
(x]’vy/)e‘/;(

where V,’(' denotes a search window of radius 7 (here,
we set a search window of radius r = 1) centered at the
pixel (xz,y). The final local membership value of the
pixel k located at (x4, yx) is computed by the member-
ships in the two directions as follows:
¥ (%, 3) = <GdH (%, 9%) + Gy, (xk’)’k))/z- (22)
Theorem 3. Suppose the gray level of a pixel (x,y) in
the uneven lighting image f5 is constituted by f5(x,y) =
flx,y) + 8(x, ), where fix,y) is the original intensity of (x,
y) in the image with even light, and §(x,y) is the intensity
of the uneven light in (x,y). Given that &(x,y) remains
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approximately constant in a local sub-region, the integra-
tion of the horizontal and vertical transformation values
of each pixel in the original image f with its non-local
information is approximately equal to that of each pixel
in the uneven lighting image f5 namely, ¥ (xk, yk)sY"
(%6 7)-

Theorem 3 indicates that the addition of the non-local
space information does not change the uneven light in-
tensity, and the integration of the horizontal and vertical
wave transformation values with the non-local space in-
formation can reduce the influence of the uneven light
on the image segmentation.

After calculating all the local membership values of
pixels in the image according to the abovementioned
method, we obtain the final 2D wave transformation
matrix. In the matrix, the characteristic of a pixel is rep-
resented by the relative vector (the local membership
value) only related to its sub-region in order to reduce
the lighting difference between two neighborhood sub-
regions. At the same time, the non-local information is
incorporated to overcome the influence of the local
high-frequency signal on the establishment of the mem-
bership matrix. That is, although the membership de-
grees of pixels to the local peaks substitute the gray
levels as a new expression of pixels, they do not separate
with the original gray level and space information com-
pletely. Last, the membership matrix ¥ will be classified
using IFS entropy to obtain a final segmented image.

3.3 Segmentation of transformed image using
intuitionistic fuzzy set

We apply L level quantization on the membership
matrix ¥ (x,y) of size M x N to obtain a new matrix /
(x,9), which is also called wave transformation image.
Then, the image is modeled based on intuitionistic fuzzy
set [47]. Suppose the image I(x,9) has L gray levels G,
={0,1, ---,L -1}, and its histogram is H = {ho, h11, ..., h; _
1}- Let the 1D sample space X=G,=1{0,1, ---,L - 1}, and
p is the probability of a gray level, i.e., p({i}) =h;, i=0,
1,--+,L -1, where i is the quantization level.

The image can be considered as an array of fuzzy sin-
gletons according to Pal and King [38]. With regard to
an image property, each element of the array represents
the membership value of the gray level /. Then, the
image can be represented as the fuzzy set: A =
{<uz(l) > [1€{0,1,...,L-1} }. To segment images, we
use Vlachos’s method [47] by taking into consideration
the property of y;(I) as the distance of each level from
the means of their corresponding classes. Specifically,
the membership degree y; ({) of each pixel is determined
by an exponential membership function in Eq. (10). Its
corresponding membership and non-membership func-
tions in Eq. (6) are given by
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ua(lst) =My (lt), va(lit) = (L-pg(Lit))',  (23)

where 1 € [0, 1], and we set A =0.9 in this paper. There-
fore, the image is represented in the intuitionistic fuzzy
domain as follows: A ={<l, ua(l),va()>| €10, ...,L - 1}}.
Then, we use the intuitionistic entropy in Eq. (8) defined
by Burillo and Bustince [41] by means of the following
expression:

1 L-1

EIFS(A; t) = M x NZhA(l)(l_MA(lv t)_VA(l; t))a
=1

(24)

where M x N is the image dimensions in pixels. The po-
tential idea of the described approach is that the optimal
set has the least value of entropy Eirs(4; £), and its corre-
sponding IFS can represent the image more efficiently
with the least uncertainty. That is, the minimum entropy
corresponds to optimal image segmentation. Therefore,
the optimization criterion can be formulated as tqp
= Arg min,{Ers(A;£)} . The detailed steps of our
method are described in the form of a flowchart as
shown in Fig. 5.
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4 Results and discussion

4.1 Performance of wave transformation using the fuzzy
membership function

First, we use the uneven lighting rice image to test the
process of wave transformation using the fuzzy member-
ship function. As shown in Fig. 6a, there is a dark region
in the lower part of the rice image, where the overall
gray level in the region is lower than that in the upper
region of the image. Figure 6b shows the gray levels of
the pixels in 45th—50th columns, namely, the pixels in
the red rectangle of Fig. 6g. If we want to give consider-
ation to both of the regions with different light inten-
sities, it is difficult to find a single global threshold, such
as T7 and T, in Fig. 6g, which can extract all of the “rice”
objects. As shown in Fig. 6¢, without wave transform-
ation, some “rice” objects in the darkened regions are
extracted by the IFS entropy-based method with a
threshold 7 = 160.

Then, the proposed method is applied on the test
image, with @ =60 (see in Eq. (13)) for the search of
peaks and troughs in S4. Several peaks and the troughs
of the 45th column are searched for in Fig. 6e of the rice
image, where the symbol “o” represents the peaks and
the symbol “4” represents the troughs. The local

-

’Sl. Input: an M*N gray-level image l

Wave transformation with fuzzy membership

S2. Compute the non local

\ 4 S4. Partition the image into
many sub-regions by rows and

S6. Compute the local

membership degrees of

'k, DY, (x,.y)ev,) for pixel
k inEq. (12).

spatial information of each columns (see in Eq. (13)). > cach pixel within some
pixel using Eq. (11) and sub-region by S function
obtain the  non  local S5. Compute  the edge in two directions. (see in
mean-filtered image. information of each pixel|— Eq. (15) and (19)).
using the Sobel operator (see
3 in Eq. (18)). v
S3. Output the weight matrix S7. Merge the wave vectors of each pixel in two

directions using Eqs. (20)-(22) with spatial information

V'(k, j) to obtain the final membership matrix ¥'(x,y).

S9. Calculate the membership degree of each
level [ using Eq. (10), and represent the
image in the intuitionistic fuzzy domain using

S8. Obtain the transformation image [I'(x,y)
by applying L level quantization on the
membership matrix and compute its
corresponding histogram H .

Eq. (23).
'

S10. Calculate the intuitionistic fuzzy entropy

E,,(A;t) using Eq. (24).

threshold which

least

SI1. Find an optimal
corresponding to the entropy and

segment the image with the threshold.

Fig. 5 Flow chart of our method

S15. Output: Segmented image
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Fig. 6 a The rice image. d The wave transformation image. ¢-d Segmented images before and after wave transformation using the IFS entropy-
based method. e The original wave curve of the 45th column. f The wave transformation result of the 45th column by the fuzzy membership
function. g The grayscale wave of the 45th-50th columns. h The wave transformation result of the 45th-50th columns

membership values (wave transformation values) of the
45th column are obtained in Fig. 6f by the S-function. It
is obvious that all of the peaks and troughs are respect-
ively located in the same horizontal lines. The local char-
acteristics of other pixels are represented by their
locations in the sub-regions.

Figure 6h shows the wave transformation result of 45th—
50th columns. Figure 6b shows the transformation image of
the rice image. It is obvious that the dark region in the lower
part of the rice image is appropriately lightened to the same
as the upper part of the rice image. Thus, a threshold of 167
can be easily found by the IFS entropy in S, and all of the
“rice” objects are extracted by the IFS entropy-based
method, as shown in Fig. 6d. Moreover, the threshold of 167
corresponds to a membership degree of 167-} = 0.6523 be-
cause the transformation image is obtained by applying L =
256 level quantization on the membership matrix.

4.2 Performance of the revision of the wave
transformation values using edge information

In this section, we test the process of the revision of the
wave transformation value using edge information. Taking
the uneven lighting mouse image used in Section 3.2.2 for
example, the two pure background sub-regions (77, P;) and
(P, T3) in the 160th row are extracted due to its large
variation of light intensity with & = 60. The wave transform-
ation values (the membership degrees) of the pixel in these

regions vary from O to 1, according to Eq. (14) (see Fig. 7b,).
Consequently, some pixels will be misclassified as objects,
as shown in Fig. 7bs, according to the principle that the
pixels close by the peak or the trough correspond to dif-
ferent classes.

Figure 7c, shows the gray wave transformation of the
160th row when the edge information is taken into ac-
count by Eq. (19), with T=800. For the pixels in the
pure background sub-regions without edge information,
ie, ke [Ty, P,] or ke [P, Ts], the transformation values
are set to 1, namely, the value of the background
Gl:{ow160°h (k) = background = 1. For the pixels in the
sub-regions k € [Py, T5] or ke [T,, P,] with edge informa-
tion, the transformation values are unchanged, ie.,
G rowieot (k) = Growigon (k). Figure 7by, ¢; shows the cor-
responding gray wave transformation images of Fig. 7b,,
Cy. It is obvious that the transformation image in Fig. 7¢;
agrees with the actual requirement more than that in
Fig. 7b,. Figure 7bs, c3 shows the segmented images be-
fore and after adding edge information. Apparently,
when the edge information is taken into account, the
proposed method can obtain a better segmented result.

4.3 Performance of segmentation of uneven lighting
images with noise injection

To prove the effectiveness of our method for uneven
lighting images with strong noise injection, experimental
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Fig. 7 a; The mouse image. a, The gray wave curve (the blue curve) and the edge information (the red curve) of the 160th row for the mouse
image. as The edge information obtained by the Sobel operator. by—¢; The gray wave transformation image before and after adding the edge
information by Eqg. (19) in the horizontal direction. by—c, The gray wave curve of the 160th row before and after adding the edge information by
Eqg. (19) in the horizontal direction. bs—c3 The segmented images before and after adding edge information T = 800, a = 60

tests are implemented on six uneven illumination images
corrupted by the Gaussian noise. The intensity value
of the pixel in these images varies from 0 to 255,
namely, L=256. In the experiments, several classical
local methods, Bernsen’s method [22], Niblack’s method
[23], and Sauvola’s method [24]; related works for the
local methods, Bradley’s method [29], Chou’ s method
[35], and Valizadeh’s method [31]; based on an improved
water flow model-based method, Wei’s method [36]; and
several related global two-dimensional methods with
space information, the two-dimensional Otsu method
(2DOtsu) [13] proposed by Liu et al., the fuzzy c-means
clustering algorithm with nonlocal spatial information
(FCM_NLS) [16] proposed by Zhao et al, and the two-
dimensional weak fuzzy partition entropy-based method
(2DWEFPE) [14] proposed by Yu et al. are implemented
on the test images, and their results are compared with
our method.

The parameter settings for these methods are as fol-
lows. Bernsen’s method uses a 93 x 93 neighborhood.
Niblack’s method uses a 50 x 50 neighborhood with k =
—-0.2. Sauvola’s method uses a 50 x 50 neighborhood

with k= 0.2. Bradley’s method uses a 30 x 30 neighbor-
hood. Valizadeh’s method uses the parameter W=2.
Chou’s method uses a mean threshold of 128 and a vari-
ance threshold of 10 with a block size 3 x 3. Wei’s
method uses the parameter a =60. FCM_NLS uses the
parameter = 10. Specifically, for the parameters of the
non-local filter in our method and FCM_NLS, we set
r=5,a=2,and h = 15 for the fingerprint image and
r=5,a =2, and & = 30 for the other images.

Figures 8, 9, 10, 11, 12, and 13 show six test images,
their noisy images (corrupted by the Gaussian noise), their
corresponding ground-truths (hand-labeled by people),
and their binarized results. Taking the rice image for ex-
ample, the segmentation results of the local methods are
presented in Fig. 8d-h. Although the seven local
methods of Bernsen, Niblack, Sauvola, Bradley, Chou,
and Valizadeh perform in the foreground areas (objects),
they create much of the pepper noise in the background
areas. Although Wei’s method uses wave transformation
to reduce the uneven light, it still leads to a bad result
since it does not take into account the space informa-
tion. Simultaneously, the global methods 2DOtsu and
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k 2DOtsu. I FCM_NLS. m 2DWFPE. n Our method with T =800, a = 60

Fig. 8 Segmentation results on the rice image 256 x 256 corrupted by the Gaussian noise (0, 0.010). a Original image. b Noisy image. ¢ Ground-
truth. d Bernsen’s method. e Niblack's method. f Sauvola’'s method. g Bradley's method. h Chou's method. i Valizadeh's method. j Wei's method.

FCM_NLS, which have relative good performance in
anti-noise interference, cannot extract some “rice” ob-
jects in the dark regions. 2DWEFPE [14] is our previ-
ously proposed method which maximizes weak fuzzy
partition entropy on the two-dimensional histogram

to obtain optimum segmentation results. The global
method can improve the segmentation effect for noisy
images, but it only uses the absolute characteristic
(the gray level) of the pixel and thus cannot deal well
with uneven lighting images. However, the method
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Fig. 9 Segmentation results on the mouse image 243 x 326 corrupted by the Gaussian noise (0, 0.010). a Original image. b Noisy image. ¢

Ground-truth. d Bernsen’s method. e Niblack's method. f Sauvola's method. g Bradley's method. h Chou’s method. i Valizadeh's method. j Wei's
method. k 2DOtsu. | FCM_NLS. m 2DWFPE. n Our method with T = 800, a = 60

(b)

(m) (n)

proposed in this paper uses the relative characteristic
of the pixel in local sub-regions to reduce the influ-
ence of uneven light and non-local spatial information
to avoid noise interference. Thus, it can obtain the
best results for uneven lighting images with noisy in-
jection, as shown in Fig. 8k.

To evaluate the effectiveness of these segmentation
methods, we use a supervised evaluation method, i.e., mis-
classification error (ME) [48]. ME can be expressed as
ME=1-(|B,nBy| +|F,nF7|)/(| B,| +|F,|) through a

comparison of a segmented image and a ground-truth
image, where | - | is the cardinality of the set, Fzand Br
represent the foreground and background area pixels of
the segmented image, and F, and B, represent the
foreground and background area pixels of the ground-
truth image. The evaluation values ME of these segmenta-
tion methods are shown in Table 1. The effect of local
thresholding methods is poor since they are very sensitive
to noise. Figures 9, 10, 11, 12, and 13 show the results for
the rest of the images. The global 2DOtsu, FCM_NLS,
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Fig. 10 Segmentation results on the fingerprint image 288 x 254 corrupted by the Gaussian noise (0, 0.002). a Original image. b Noisy image. ¢
Ground-truth. d Bernsen’s method. e Niblack's method. f Sauvola’s method. g Bradley's method. h Chou's method. i Valizadeh's method. j Wei's
method. k 2DOtsu. | FCM_NLS. m 2DWFPE. n Our method with T = 800, a = 60

and 2DWFPE methods still cannot correctly extract all of
the objects. However, our method takes the spatial infor-
mation and gradient information into account in the wave
transformation, thus obtaining the best results and the
lowest misclassification rate.

4.4 Influence of the parameters a and T

The parameters a and T are very important in our
method. The value of a determines the search of local
peaks and troughs in Eq. (13) (see Section 3.2.2), namely,
the search of local sub-regions. Meanwhile, the value of
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Fig. 11 Segmentation results on the block image 511 x 441 corrupted by the Gaussian noise (0, 0.015). a Original image. b Noisy image. ¢
Ground-truth. d Bernsen’s method. e Niblack's method. f Sauvola’s method. g Bradley's method. h Chou’s method. i Valizadeh's method. j Wei's
method, k 2DOtsu. | FCM_NLS. m 2DWFPE. n Our method with T =800, a = 80

(n)

T determines the extraction of edge information in Eq.
(19) (see Section 3.2.2). To study the influence of the pa-
rameters & and 7, we draw the ME curves with varying
parameters o and T on three test images, as shown in
Figs. 14 and 15. Moreover, we compare the segmentation

results with ME =0.05 as the reference value. For the
rice image with the Gaussian noise (0,0.010) in Fig. 15a,
it can be found that ME under each a value within
[22,120] is smaller than 0.05 and presents no apparent
changes, which indicates that we can obtain relatively
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(d)

NG S A T e
M

Fig. 12 Segmentation results on the license-plate image 153 x 544 corrupted by the Gaussian noise (0, 0.015). a Original image. b Noisy image. ¢
Ground-truth. d Bernsen’s method. e Niblack's method. f Sauvola’s method. g Bradley's method. h Chou's method. i Valizadeh's method. j Wei's
method. k 2DOtsu. | FCM_NLS. m 2DWFPE. n Our method with T = 800, a = 60

satisfactory segmented results in this case. That is, too
small or too big of an a cannot extract the objects from
the background correctly. Therefore, a reasonable value
of a has an important influence on the wave trans-
formation value of each pixel, and thus on the segmen-
tation results.

Actually, the value of a seriously depends on the gray
difference between the objects and the background in
the dark regions. In most cases, the larger the gray level
difference of the objects and the background in the dark
regions, the larger the reasonable value of « and the lar-
ger the range in which a can take value in, and vice
versa. That is, the smaller the degree of uneven lighting,
the larger the range in which & can take value in. Under
the condition of the Gaussian noise (0,0.010), if we want

to obtain a ME value smaller than 0.05, a can take value
in [22, 120] for the rice image as shown in Fig. 14a, and
a can take value in [20, 220] for the license-plate image
as shown in Fig. 15b. However, for the mouse image, a
only can take value in [40, 80] for the relatively satisfac-
tory results in Fig. 15a. Moreover, the ME value also de-
pends on many factors, such as the proportion of the
dark regions in the whole image and the intensity of
local illumination variation.

Noise injection also has an important influence on the
segmentation performance especially on the dark region
with a small gray difference between the objects and the
background. To reduce the influence of noise injection
on the search of local peaks and troughs and differenti-
ate the objects and the background in the dark regions,
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Fig. 13 Segmentation results on the coin image 280 x 393 corrupted by the Gaussian noise (0, 0.010). a Original image. b Noisy image. c
Ground-truth. d Bernsen’s method. e Niblack's method. f Sauvola’'s method. g Bradley's method. h Chou’s method. i Valizadeh's method. j Wei's
method. k 2DOtsu. | FCM_NLS. m 2DWFPE. n Our method with T = 400, a = 30

the reasonable range of & is narrowed with increasing
noise strength. Taking the rice image for example, in
order to obtain a ME value smaller than 0.05, the rea-
sonable range of the parameter a under the condition of
the Gaussian noise (0,0.020) is [42, 125], which is nar-
rower than the range [22, 125] of a under the condition
of the Gaussian noise (0,0.010), as shown in Fig. 144, b.
The segmentation results of our method also depend
on the edge detection with the parameter 7 in Eq. (19).
For the rice image, three curves with the parameter T
respectively equal to 600, 800, and 1000 tend to change

similarly with the parameter a. However, a reasonable
parameter 7 is crucial to the segmentation performance
for the mouse image that has relatively more serious un-
even light. As shown in Fig. 15a, the ME value with T =
600 is bigger than 0.05, since incomplete edge informa-
tion leads to some incorrect computation of local mem-
berships and consequently bad segmentation results.

In conclusion, the parameter selection of our method
is affected by multiple factors, such as the noise
strength, the degree of uneven lighting, and the gray dif-
ference between objects and the background. However,
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Table 1 Missclassfication rate (ME) obtained by the eight methods on images corrupted by addictive noise

ME Gaussian  Bernsen'’s Niblack's Sauvola’s Bradley’s Chou's Valizadeh's  Wei's 2D FCM_NLS 2D Our
noise method method method method method  method method  Otsu WFPE  method
Rice 0010 0.1718 03497 0.2225 03537 0.3502 0.2064 03307 00884 0.0462 0.0686 0.0284
Fingerprint  0.002 0.1386 0.1707 0.1758 01417 0.1751 0.1394 0.1023 02359 0.2091 03645 0.0644
Mouse 0010 0.2897 02818 0.2341 0.2421 0.2852 0.2929 04277 05326 05184 0.5982 0.0471
Block 0015 0.3246 05262 04734 04685 0.5254 0.5007 04637  0.1497 00815 0.1708 0.0089
License- 0.015 0.1348 0.2552 0.2264 0.2817 0.2549 0.2526 0.2042 0.0523 0.0487 0.0414 0.0258
plate
Coin 0010 0.2229 03704 03164 0.3540 03154 02813 03096  0.1925 0.2000 02017 0.1167

the above experimental results show that the intervals
[60, 80] and [800, 1000] may be two reasonable
ranges respectively for a and T to take value in.
Moreover, when the light intensity of the sub-regions
becomes darker, the value of the two parameters
should decrease properly.

5 Conclusions
In this paper, we presented a novel algorithm for the
segmentation of uneven background lighting images
with strong noise injection. We first treated the image as
a gray wave in three-dimensional space and extracted
grayscale wave curves in the horizontal and vertical di-
rections. Then, we applied wave transformation on the
curves using fuzzy membership to obtain the relative
characteristic of each pixel in order to reduce the influ-
ence of the uneven background lighting. Simultaneously,
the non-local spatial weight matrix and edge information
were also taken into account in the transformation in
order to improve the robustness of the transformation
to noise injection and avoid false peak and trough label-
ing. Finally, we segmented the wave transformation
image using intuitionistic fuzzy theory. In different ex-
periments, our algorithm demonstrated superior per-
formance against some well-known algorithms on
several uneven background lighting images.

Although the proposed algorithm for uneven lighting
image segmentation has some advantages, there are still

two problems requiring further study. The first critical
problem is the selection of the parameter a. The param-
eter a is set manually based on experience in this paper.
Therefore, further research on the automatic determin-
ation of & with consideration of both the uneven lighting
background and noise injection is necessary. The second
problem is the detection of edge information for a noisy
image. The edge information has an important impact
on the wave transformation of pixels in an uneven light-
ing image. In this paper, we used two 5 x 5 Sobel models
for the edge detection. However, when we used a given
global threshold T to extract the edge information, there
were still small noise edges being detected in some
cases. Therefore, how to effectively detect large edges in
the dark regions and ignore locally fluctuated edges
caused by noise will also be part of our future research.

6 Appendix

6.1 Proof of Theorem 1

Given a pixel (xg,y,) in an uneven lighting image f;,

where (xy,y,) represents the original coordinate of the

kth pixel, the square neighborhood Nj ; and N ; cen-

tered at two pixels (x4, y4) and (x;, y;) respectively are:

Nsi =Ny + 6k, Nsj=N;+6;. (25)

Since the intensity of the uneven light § remains ap-

proximately constant in a local region, then,

0.4
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L ~ T=800 4
03 T=1000 |-
0.25[ )
0.2 T
0.15[ ]
0.1] 1
0.05 A
00 20 40 60 80 100 120 140 160 180 200
(a)

Fig. 14 ME of our method versus T and a for the rice image. a With the Gaussian noise (0, 0.010). b With the Gaussian noise (0, 0.020)
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license-plate image with the Gaussian noise (0, 0.010)

Fig. 15 ME of our method versus T and a for the rice and license-plate images. a The mouse image with the Gaussian noise (0, 0.010). b The
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(26)

According to Eq. (12), the weight v(k,j) between two
pixels (x4 and (x;,y) in the original even lighting
image f'is:

exp(-[[Ni-Nj 5, /1)

5 o (i) e

je V;

v(k,j) (27)

Moreover, the weight v(k,j) between the two pixels
(%6 y%) and (x;, ;) in the uneven lighting image f is:

exp (- [Nsx-Ns, ;.. /72)
S e Y
/EVZ

eXp(_H(Nk +81)—-(N; + 6)) Hi,a/hz)

V§(k7j)

5~ (lsa-(ua) )
/'EV]’(
- o (NN /) = v(k,).

S o Y

v
TV

(28)

That is to say that, the weight matrix for the pixel
Q(xx i) in the uneven lighting image fs is approximately
equal to the weight matrix for the pixel Q(x,y;) in the
original image f, namely, vs(k, j) = v(k, j).

According to Eq. (11), the estimated value Q (xx,y;) of
the pixel (xz,7:) in the original even lighting image f is
computed as:

Q) = Y vik)Q(%,). (29)

Ly T
(x].y])evk

Then the estimated value Qg(xx,y;) of the pixel (x,
¥i) in the uneven lighting image f5 is computed by:

= volkoi)Q (5.3

% ki (%)

vk ) (Q(w3;) +(%.3;))

+5 vk ))8(x.)-

(e

aﬁ(xkayk)

Wi/l
%)evh
> vk )Q(%.;)

N
o)<

=

=~ =1

)<V
)i
)

(30)

Since the weight matrix satisfies the condition: ) v
/EV]:

(k,j) =1 (see in Section 3.2.1) and the intensity in the
local region remains approximately constant, i.e., 8(xz,
¥i) = 8(x;, ), it is obtained that:

> vlk O (%3,) =6 () (31)
(x,-.,y/)e‘/l:
Eq.(31) is brought into Eq. (30), and it follows that:
Qs (o0, ) ~Q (0k, i) + 6 (%, 3) - (32)

Then the theorem holds.

6.2 Proof of Theorem 2

Given G(k) is a wave gray curve in an arbitrary direction
of the image f, with k=0, 1, ..., K. ¢, is the sth local sub-
region of the curve, where T; and P are the trough and
the peak of the region, respectively. g = g(k) is the gray
level of the pixel k € [T}, Py].
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The gray level of the trough T, the peak P, and an
arbitrary pixel k in the sub-region ¢; in the uneven light-
ing image fs are respectively:

g&(Ts) = g(Ts) + 6(Ts)
:g(Ps)+6(Ps) (

Since the intensity of the uneven light &(x,y) remains
approximately constant in each sub-region, then

O(Ts)~0(Ps)~6 (k).

If g(T) < g(k) < (g(Ty) + g(Ps))/2, the membership degree
(the wave transformation value) of the pixel & in the ori-
ginal even lighting image f according to the S-function
in Eq. (14) is

5(Ps)
) =

g(k) + 8(k).  (33)

(34)

_ g(k)_g(Ts) 2
ue(k)) = 2<g<Ps>-g<Ts>> |

The membership degree (the wave transformation
value) of the pixel k in the uneven lighting image f5 ac-
cording to the S-function in Eq. (14) is

2
)
)

2
o &s(k)-gs(Ts) | _ [ (glk) +3(k)-(e(Ts) +8(T)
etk =2 (g(;(a)ga(m) -’ ((g(&) F0(P)-(a(T) T o(T,
2
o[ &lk)-g(Ty)
- (g(P) g(T)) Heto)
(36)
That is, ps(g(k)) = u(g(k)), when g(T;) < g(k) < (g(Ty) +
g(Py)/2.
Similarly, if (g(7 Py))/2 < g(k) < g(Py), the member-
ship degree of the plxel k in the original even lighting
image faccording to the S-function in Eq. (14) is

ulg(k)) = 1-2 (%) |

The membership degree of the pixel k in the uneven
lighting image f5 according to the S-function in Eq. (14)
is

(35)

(37)

2 2
(@) [ (et + 8k~ (e(P) + 5(P.)
#o(g(k)) = 1-2 (g§<Ps>—g5(Ts>> 12 ((g(&) o)~ (e(T,) + 6<Ts>))

(38)

That is, ps(g(k)) = u(g(k)), when (g(T;) + g(Py))/2 < g(k) <
g(Py).

Therefore, us(g(k)) = u(g(k)) for each pixel k in the sub-
region ¢ = [T, P;]. Then, according to Eq. (2) and Eq.
(3), it is concluded that two transformation matrices for
the hole image satisfy the condition ¥j(f) ~ ¥(f).
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Then the theorem holds.

6.3 Proof of Theorem 3
Given an pixel (x,y) in an uneven lighting image f;,
where (x,yi) represents the original coordinate of the
kth pixel, vs(k, j) is the weight matrix for the pixel (xz,
Vi)-

The wave transformation value of the pixel k in the
original image f'in the directions d;; with space informa-
tion is modified by:

> vk Pa(3.3))

(%9))Vi

>, vik,))
(w95)evy

The wave transformation value of the pixel k in the

original image f5 in the directions dy with space infor-
mation is modified by:

G, (%, 3) = (39)

2 vs(k,j) s, (xjayj)
. (v
san (0 20) = S )

(x,.y,)evz

(40)

According to Theorem 1 and Theorem 2, we can get
vs(k,j) = v(k,j) and ¥s.a, (x,, , yj) ~¥,, (x,, : yj) . Then, it

follows that
> vlk,j)¥a, (x,,y,)

) (x,y,) Vi
> v(k,j)
("/‘-Yi)e";

Gé,dﬁ (x/ﬁyk = G(;,dH (xkvyk)'

(41)

Similarly, we can get G(;_’ a, (%, yk)zG(;y 4, (%%, ) for the
pixels in the vertical direction d;. Then, according to Eq.
(22), the integration of two transformation values, Géde
(xk, yk) and G(;’dL (xk, yk), of each pixel (x4, y) is com-
puted by:

' Gy, (30 31) + Gy g, (1
W&(xkayk) = Sdn (xk yk) ;_ d.d (xk yk)

~ GdH (xk7yk) + GdL (xk’yk)
B .

= YI (x/ﬂyk)
(42)
Therefore, '1/5 (xk, yk)z“’/'(xk,yk) . Then the theorem
holds.
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