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Abstract

Clinical trial adaptation refers to any adjustment of the trial protocol after the onset of the trial. The main goal is to
make the process of introducing new medical interventions to patients more efficient. The principal challenge, which
is an outstanding research problem, is to be found in the question of how adaptation should be performed so as to
minimize the chance of distorting the outcome of the trial. In this paper, we propose a novel method for achieving
this. Unlike most of the previously published work, our approach focuses on trial adaptation by sample size adjustment,
i.e. by reducing the number of trial participants in a statistically informed manner. Our key idea is to select the sample
subset for removal in a manner which minimizes the associated loss of information. We formalize this notion and
describe three algorithms which approach the problem in different ways, respectively, using (i) repeated random
draws, (ii) a genetic algorithm, and (iii) what we term pair-wise sample compatibilities. Experiments on simulated data
demonstrate the effectiveness of all three approaches, with a consistently superior performance exhibited by the
pair-wise sample compatibilities-based method.
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1 Introduction
Robust evaluation is a crucial component in the process of
introducing new medical interventions. Amongst others,
these include newly developed medications, novel means
of administering known treatments, new screening pro-
cedures, diagnostic methodologies, physio-therapeutical
manipulations, and many others. Such evaluations usually
take on the form of a controlled clinical trial (or a series
thereof), the framework widely accepted as best suited for
a rigorous statistical analysis of the effects of interest [1–3]
(for a related discussion and critique also see [4]). Driven
both by legislating bodies, as well as the scientific com-
munity and the public, the standards that the assessment
of novel interventions are expected to meet continue to
rise. Generally, this necessitates trials which employ larger
sample sizes and which perform assessment over longer
periods of time. A series of practical challenges emerge as
a consequence. Increasing the number of individuals in a
trial can be difficult because some trials necessitate that
participants meet specific criteria; volunteers are also less
likely to commit to participation over extended periods of
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time. The financial impact is another major issue—both
the increase in the duration of a trial and the number of
participants result in additional cost to an already expen-
sive process. In response to these challenges, the use of
adaptive trials has emerged as a potential solution [5–7].
The key idea underlying the concept of an adaptive trial

design is that instead of fixing the parameters of a trial
before its onset, greater efficiency can be achieved by
adjusting them as the trial progresses [8]. For example,
the trial sample size (e.g. the number of participants in
a trial), treatment dose or frequency, or the duration of
the trial may be increased or decreased depending on the
accumulated evidence [9–11].

1.1 Contrast with previous work
Before introducing the proposed method in detail, it
is worthwhile emphasising two fundamental aspects in
which it differs from the methods previously described in
the literature.
The first difference concerns the nature of the statistical

framework which underlies our approach. Most existing
work on trial adaptation by sample size adjustment adopts
the frequentist paradigm. These methods follow the same
pattern: a particular null hypothesis is formulated which
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is then rejected or accepted using a suitable statistic and
the desired confidence requirement (a good review is pro-
vided by Jennison and Turnbull [12]). In contrast, the
method described in this paper is thoroughly Bayesian in
nature.
The second major conceptual novelty of the proposed

method lies in the question it seeks to answer. All previ-
ous work on trial adaptation by sample size adjustment
addresses the question of whether the sample size can be
reduced while maintaining a certain level of statistical sig-
nificance of the trial’s outcome. In contrast, the present
work is the first to ask a complementary question of which
particular individuals in the sample should be removed
from the trial once the decision of sample size reduction
has been made. Thus, the proposed method should not
be seen as an alternative to the any of the previously pro-
posed methods but rather as a complementary element of
the same framework.

2 Targeted removal sample selection
Previous research on clinical trial adaptation by sample
size reduction has universally focused on the question of
when such reduction should be performed. In contrast,
no consideration has been given to the question of which
specific samples should be removed from the trial and
which should be retained when sample size reduction is
performed. Indeed the current practice is to remove a
random subset of samples. More formally, if the sample
size before adaptation is n, the samples are {x1, x2, . . . , xn},
and m of them are to be removed, the first sample to
be removed xr1 is selected by drawing r1 from the set
{1, 2, . . . , n} with the uniform probability of 1/n. Simi-
larly, the second sample xr2 is selected by drawing r2 from
{1, 2, . . . , n}\{r1}with the uniform probability of 1/(n−1).
This proceeds until all m random samples are selected, in
each step selecting the i− th sample xri by drawing ri from
{1, 2, . . . , n} \ {r1, . . . , ri} with the uniform probability of
1/(n−i+1). The work described in this paper is motivated
by the observation that in general this strategy is not opti-
mal. To see why this is the case, let us first observe that the
described selection procedure is inherently uninformed in
the sense that all samples are treated in exactly the same
manner. What is being ignored is the fact that trial adap-
tation, by its very nature, takes place some time after the
commencement of the trial. During this time differenti-
ation between samples take place by virtue of their (in
general) different responses to the interventions adminis-
tered in the trial. This differentiation can be used to make
the process of sample selection informed. In the remain-
der of this section, we examine different means by which
this can be achieved. Specifically, we first formalize the
aim of informed sample selection when a specific sam-
ple size reduction is required, and then follow this up by

a description of three different approaches which address
the said aim.

2.1 Information preservation criterion
As explained previously, our goal is to perform the selec-
tion of samples which are to be removed in a manner
which minimizes the amount of information loss, i.e. pre-
serves the amount of information retained. Before this
problem can be tackled, it is necessary to ascertain what
the relevant information is.
Recall that our framework comprises two sets of sam-

ples. In keeping with the terminology of clinical trials
these are the set of nt ‘treatment’ samples which are being
administered the treatment of interest with the corre-
sponding trial observations Dt = {x1, x2, . . . , xnt }, and the
set of nc ‘control’ samples which are being administered
an alternative control intervention with the correspond-
ing trial observations Dc = {xnt+1, xnt+2, . . . , xn} , where
nt + nc = n is the total number of samples. Let the
inherent statistics of the two sets of data be described by
respectively the random variables Xt and Xc, which are
governed by the underlying probability density functions
pt and pc parameterized by the sets of latent variables �t
and �c so that we can write pt ≡ pt(x;�t) and pc ≡
pc(x;�c). Adopting the Bayesian methodology for infer-
ence, the observed trial data can be used to estimate the
corresponding probability density functions as follows:

p̂t =
∫

�t
p(Dt ;�t) p(�t) d�t ,

p̂c =
∫

�c
p(Dc;�c) p(�c) d�c. (1)

Similarly, after the removal of samples from Dt and Dc,
resulting in truncated sets D′

t and D′
c:

p̂′
t =

∫
�t

p
(
D′
t ;�t

)
p(�t) d�t ,

p̂′
c =

∫
�c

p
(
D′
c;�c

)
p(�c) d�c. (2)

Thus, it may seem reasonable to attempt to select sam-
ples for removal in a way which minimizes the difference
between the estimates of pt and pc before and after the
removal of said samples:

D′
t = argmin

p̂′
t
D(p̂t , p̂′

t), (3)

where D may be a divergence measure such as the
Kullback-Leibler divergence or a distance such as the
Bhattacharyya or the Hellinger distance.
Rather, here we argue that information and therefore

the loss of information should be understood in the
context of and relative to the ultimate aim of the trial.
Invariably this aim is to estimate the probability that
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the treatment of interest is more effective than the alter-
native, control treatment:

ρ(pt(x;�t), pc(y;�c)) =
∫ ∞

−∞

∫ x

−∞
pt(x;�t)

× pc(y;�c) dy dx. (4)

Using the Bayesian methodology as before allows us
to write:

ρ∗ =
∫

�c

∫
�t

ρ(pt(x;�t), pc(x;�c))︸ ︷︷ ︸
Target probability

for specific parameter values

× p(�t|Dt) p(�c|Dc)︸ ︷︷ ︸
Parameter pdf ’s

conditioned on observations

× p(�t) p(�c)︸ ︷︷ ︸
Parameter priors

× d�c d�t . (5)

Let the trial observation data in two matching sub-
groups be drawn from the random variables Xc and
Xt , which are appropriately modelled using normal
distributions [13]:

Xt ∼ 1
σt

√
2π

exp
{
− (x − mt)2

2σ 2
t

}
, and

Xc ∼ 1
σc

√
2π

exp
{
− (x − mc)2

2σ 2
c

}
. (6)

Using uninformed priors on mc, mt , σc, and σt (just as
in [14]) leads to the following expression:

ρ∗ ∝
∫

σt ,σc∈[0,∞]
mt ,mc∈[−∞,∞]

∫ ∞

0

∫ x

0
σ−1
t e

− (x−mt )2

2σ2t σ−N
t e

−
∑nt

i=1
(
x(t)i −mt

)2
2σ2t ×

σ−1
c e

− (x−mc)2

2σ2c σ−N
c e

−
∑nc

i=1(x(c)i −mc)2

2σ2c dx dmt dσt dy dmc dσc

(7)

=
∫ ∞

0

∫ x

0
It(x) Ic(y) dy dx =

∫ ∞

0
It(x)

∫ x

0
Ic(y) dy dx,

(8)

where each of the integrals It(x) and Ic(y) has the form:

I(x) =
∫ ∞

0

∫ ∞

−∞
1
σ

exp
{
− (x − m)2

2σ 2

}

× 1
σ n exp

{
−

∑n
i=1(xi − m)2

2σ 2

}
dm dσ , (9)

{xi} and n̂ stand for either
{
x(c)
i

}
and nc or

{
x(t)
i

}
and

nt , and
{
x(c)
i

}
(i = 1 . . . nc) and {x(t)

i } (i = 1 . . . nt)
are logarithmically transformed measured trial variables.
This integral can be evaluated by combining the two
exponential terms and completing the square of the
numerator of the exponent as in [14] so that:

(x − m)2 +
n̂∑

i=1
(xi − m)2 ≡ (am + b)2 + c, (10)

which leads to the following simplification of Eq. (8):

I ∝
∫ ∞

0

1
σ n̂+2 exp

{
− c
2σ 2

}
σ dσ =

∫ ∞

0

1
σ n̂+1

exp
{
− c
2σ 2

}
dσ , (11)

where the value of the only non-constant term, c, is:

c = x2 +
n̂∑

i=1
xi2 −

(
x + ∑n̂

i=1 xi
)2

n̂ + 1

=
(
n̂ + 1

) (
x2 + ∑n̂

i=1 xi2
)

−
(
x + ∑n̂

i=1 xi
)2

n̂ + 1
. (12)

Observing that the form of the integrand in Eq. (11)
matches that of the inverse gamma distribution:

Gamma(z;α,β) = βα

�(α)
z−α−1 exp{−β/z}. (13)

where �(α) is the value of the gamma function at α. The
variable z and the two parameters of the distribution, α

and β , can be matched with the terms in Eq. (11) and the
density integrated out, leaving the integral proportional to
a single non-constant term:

I ∝ c−
n−1
2 =

[
(n + 1)

(
x2 + ∑n

i=1 xi2
) − (

x + ∑n
i=1 xi

)2
n + 1

]− n−1
2

.

(14)

Remembering that the functional form of c is different
for the control and the trial groups (since it is dependent
on xi which stands for either x(c)

i or x(t)
i

)
and substituting

the result from Eq. (14) back into Eq. 8 gives the following
expression for the distance function:

ρ∗ =
∫ ∞

0

∫ x

0
pt(x) pc(y) dy dx ∝

∫ ∞

0

∫ x

0
c−

nt−1
2

t c−
nc−1
2

c dy dx

(15)

=
∫ ∞

0
c−

nt−1
2

t

∫ x

0
c−

nc−1
2

c dy dx.

(16)

The double integration can be performed numerically
and hereafter our goal is to minimize the effects of sam-
ple removal on this value. Specifically, if we denote by
ρ∗(D) the estimate of Eq. (16) after the removal of samples
comprising the set D, we aim to minimize:

	(D) =
∣∣∣∣ln ρ∗(∅)

ρ∗(D)

∣∣∣∣ = ∣∣ln ρ∗(∅) − ln ρ∗(D)
∣∣ . (17)
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2.2 Repeated random draws based sample selection
The simplest way of informing sample size reduction can
be achieved by performing repeated uninformed random
draws of sample sets of the desired size, followed by the
post hoc selection of the set corresponding to least infor-
mation loss, as per Eq. (17). Specifically, we generate a
hypothesis in the form of a set of samples considered for
removal one by one. In each iteration k + 1 (where k =
0, . . . , nr − 1), the probability of drawing xi ∈ D \ D(k)

s is:

pk+1(xi) = 1
n − k

, (18)

where D(k)
s is the subset of samples selected by the pre-

ceding k draws. This drawing rule ensures that in each
iteration all samples which have not yet been selected have
the same probability of being drawn next. After nr iter-
ations the entire hypothesis has been generated and its
quality can be assessed by the associated information loss
given by Eq. (17). If nh hypotheses (i.e. sample subsets) are
drawn, the sample subset corresponding to the hypothesis
associated with the least loss is chosen as the best subset
for removal from the subsequent stages of the trial.

2.3 An evolutionary approach
The selection method described in the preceding section
is informed in the sense that it makes use of the avail-
able trial data to select preferentially one subset of samples
over another. Nevertheless, this information is exploited
rather inefficiently because the repeated draws themselves
are entirely random and independent of one another—
discriminative information is applied post hoc. In this
section, we describe a method in which the said informa-
tion is applied proactively, that is, in a manner whereby
previously evaluated solutions direct the choice of future
hypotheses.
We have already noted that if the optimal solution to

the sample selection problem was to be guaranteed it
would be necessary to evaluate the fitness of every possi-
ble sample subset of the desired size, which is in general
unfeasible in practice. The key feature of the problem at
hand is that it does not possess optimal substructure, that
is, it cannot be solved (optimally) by an efficient com-
bination of optimal solutions of its smaller subproblems.
Put differently, the selection of the best (n1 + n2)-sized
subset of samples to be removed cannot be efficiently
constructed from the knowledge of the best selections of
n1-sized and n2-sized subsets. The method we describe
in this section is based on the idea that notwithstand-
ing this inherent computational hardness of the problem,
it is reasonable to expect that if good n1-sized and n2-
sized solutions are known, a (n1+n2)-sized solution better
than one which would on average be obtained by a ran-
dom draw can be hypothesized. We put this idea into
practice by employing a genetic algorithm. For the benefit

of the reader, we briefly review the key ideas underlying
genetic algorithms next, and then follow up by a specific
implementation engineered by us for the sample selection
problem at hand.

2.3.1 Genetic algorithms
Genetic algorithms belong to a class of adaptive heuristic
search algorithms which are inspired by the evolutionary
concepts from genetics and the theory of natural selection.
In particular, they make use of concepts such as herita-
ble characteristics and fitness-based selection and have
been applied with success in a number of diverse domains
[15–17].
The key elements of a genetic algorithm are ‘genes’,

‘chromosomes’ (in this context also called and synony-
mous with ‘individuals’), and ‘population’, whose functions
bear resemblance to their biological namesakes. Genes1
are the elementary units of heredity. A chromosome is
used to encode a solution to the search problem and it
comprises a sequence of a fixed number of genes. The
population is a set of chromosomes which exists at a point
in time, i.e. in a specific iteration (also referred to as a
generation) of the algorithm. Each chromosome, which is
to say a solution to the problem, has associated with it a
fitness value, i.e. a measure of the quality of a solution,
assessed using a suitable fitness function.
The algorithm is typically initialized with a random

selection of chromosomes (noting the obvious constraint
that each chromosome should encode a valid solution to
the problem). Subsequently, in each generational transi-
tion, three processes take place: (i) survival of the fittest,
(ii) sexual reproduction, and (iii) mutation. The first of
these, the survival of the fittest, refers to the passing of
the fittest chromosomes from one generation to another.
The survival rate, as the proportion of the population, is
governed by the parameter psurv of the genetic algorithm.
Sexual reproduction is a method of creating a new, off-
spring chromosome from two parent chromosomes of the
previous generation. A chromosomewith greater fitness is
preferentially selected as a parent—this process is shaped
by the function which maps a chromosome’s fitness to
a probability value. An offspring is created by combin-
ing a random selection of genes from its parents. Lastly,
mutation effects a random change of genes in a chromo-
some. Mutation rate pmut is another free parameter of
the algorithm. As always, the specific sexual reproduction
and mutation rules should be designed in a manner which
ensures that their result encodes a valid solution to the
problem at hand.

2.3.2 Genetic algorithm-based sample selection
Having explained the key ideas behind the design of
genetic algorithms, we now explain how we utilized these
to search the space of possible sample subsets for the one
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which can be removed with the least loss of information,
as described in Section 2.1.
In our design, each gene in a chromosome corresponds

to a particular sample in a trial. Thus, if the trial has
n samples, all chromosomes have the length n. Further-
more, in the proposed approach genes are binary—they
are either ‘on’ or ‘off ’. An ‘on’ gene indicates that in the
solution encoded by that chromosome the corresponding
sample is selected for removal; an ‘off ’ gene indicates that
it is not. Therefore, for a chromosome to encode a valid
solution it is necessary to ensure that it contains exactly nr
‘on’ genes.
When two selected parent chromosomes sexually repro-

duce, offspring are generated as follows. First, we com-
pute a temporary chromosome which can be described
as the union of two parents if they are understood as
representing sets. Specifically, in this new chromosome
a gene is ‘on’ if and only if it is ‘on’ in one of the par-
ent chromosomes. Note that a chromosome produced in
this manner does not in general represent a valid solu-
tion as it may have more than n ‘on’ genes (but not
fewer). However, this is only an intermediate result. From
this chromosome, a child chromosome is generated by
selecting randomly an nr-sized subset of the intermediate
chromosome’s ‘on’ chromosomes (with the uniform prob-
ability of nr ! (nt − nr)! /nt ! where nt is the number of ‘on’
genes in the intermediate chromosome) and setting them
‘on’ in the child too, with the remaining genes staying ‘off ’.
This process is illustrated in Fig. 1. Clearly, offspring gen-
erated in this way have exactly nr ‘on’ genes and are thus
valid solutions.
Equation 17 provides a ready means of assessing the

relative fitness of two solutions—a chromosome encod-
ing a solution associated with lesser loss is fitter than the
one associated with a greater loss. However we still need
a way of accounting for this in the random selection of
chromosomes which mate to generate offspring. Clearly
the form of the fitness measure needs to be a monotoni-
cally decreasing function of the loss 	(D). In this work we

map the loss to a quasi-probability value using a decaying
exponential:

fp(D) = exp {−0.1 × 	(D)} , (19)

and perform normalization over the entire solution set in
a generation to ensure that the corresponding probabili-
ties sum to unity.
In genetic algorithms the operation of mutation is usu-

ally implemented as a change to a gene at a randomly
selected locus in a chromosome. As in our case this
would produce a chromosome which is not a valid solu-
tion, we implement mutation as the swapping of genes
at two randomly selected loci in a chromosome. Clearly,
this leaves the numbers of ‘on’ and ‘off ’ genes unchanged
so a valid solution always produces a valid solution too.
In effect, the described operation either leaves a chro-
mosome unchanged (when the two genes have the same
value) or it changes the values of exactly two genes (when
the two genes have different values).
The values of the parameters of the genetic algorithm

used in our experiments are detailed in Section 3.

2.4 Pair-wise compatibility-based selection
In contrast to the repeated random draws approach
described in Section 2.2 which uses the available infor-
mation about samples in a post hoc manner, the genetic
algorithm-based method introduced in the previous
section actively uses this information in guiding the search
for the optimal sample subset. At the same time, as
is always the case when genetic algorithms are used,
although simple to implement the behaviour of this
method is difficult to understand. Thus, in this section
our aim is to develop a sample set selection algorithm
which inherits the key advantageous aspects of the genetic
algorithm-based method, while attaining higher inter-
pretability of action.
As we noted earlier, the sample selection problem does

not possess the property of optimal substructure. At the
same time we argued that it is reasonable to expect (and

Fig. 1 Pair-wise chromosomal mating as implemented in the proposed genetic algorithm-based sample selection. From a temporary chromosome
inheriting all ‘on’ genes from both parents, offspring (children) chromosomes are generated by selecting randomly nr-sized subsets of ‘on’ genes
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indeed we will shortly demonstrate this empirically) that
a combination of good sub-solutions will yield a better
solution than one which would be obtained by a random
draw. The method we describe now uses pair-wise sample
compatibility to drive sample selection, that is, it builds
an nr-sized solution by adding individual samples to the
solution, the preference being guided by the previously
included samples and their compatibility with the as of yet
not selected samples. We formalize this method next.
As in the simplest method we described in Section 2.2,

we generate a hypothesis in the form of a set of samples
considered for removal one by one. The first sample in the
set is selected by a random draw where the probability of
drawing xi is:

p1(xi) = fp(	({xi}))∑
x∈D fp(	({x})) , (20)

where as before fp is the function that maps the informa-
tion loss quantified by Eq. (17) to a quasi-probability value
as per Eq. (19). In each subsequent iteration k + 1 until
the entire nr-sized set is generated (i.e. until k = nr) , a
sample xi from the set of not yet selected samples is drawn
by weighting its individual probability-mapped loss by its
compatibility with each of the already selected samples:

pk+1(xi) = p̂k+1(xi)∑
x∈D\Ds p̂k+1(x)

, (21)

where

p̂k+1(xi) = fp(	(xi)) ×
∏
x∈Ds

fp(	({xi, x})), (22)

andDs is the subset of samples selected by the preceding k
draws. This drawing rule captures a weighting of the initial
probability in Eq. (18). Specifically, the weighting is done
by the compatibility fp(	({xi, xj})) of a not yet selected
sample xi with each of the previously selected samples x.
As in the sample random draws based method, after nr
iterations the entire hypothesis has been generated and its
quality can be assessed in the same manner as before by
the associated information loss given by Eq. (17). After nh
hypotheses (i.e. sample subsets) are drawn, the best sub-
set for removal from the subsequent stages of the trial is
made. Specifically, this is the sample subset corresponding
to the hypothesis associated with the least loss.

3 Experiments and discussion
We now turn our attention to the empirical analysis of
the methods proposed in the previous section, and report
and discuss their performance. Likemost previous work in
this area, we adopt the evaluation protocol standard in the
domain of adaptive trials research and obtain data using
a simulated experiment [14, 18–22]. The first experiment
investigates the effectiveness of the proposed methods
on the proximal aims of information loss minimization.

The second experiment examines their performance on
the ultimate goal of targeted sample removal. The precise
methodology is explained in detail next.

3.1 Methodology
In the first set of experiments our aim was to investi-
gate the performance of the three sample subset selec-
tion strategies described in Section 2. This was done in
the context of their ability to minimize information loss
expressed by Eq. (17).We approach this by generating a set
of synthetic trial outcomes and evaluate the loss associ-
ated with each of the algorithms across 100 repeated runs
to minimize variability caused by the stochastic nature of
the algorithms.We generate the sets of nt = nc = 200 trial
outcomes of the treatment and control groups by random
draws from respectively N (1, 5) and N (0, 5). To ensure a
fair comparison of methods which are governed by differ-
ent parameters, we compare a genetic algorithm with the
population size np, the maximal number of generations
ng , and the fittest survival rate rf with a repeated ran-
dom draws algorithm which makes nh draws computed as
follows:

nh = (1 − rf ) × np × ng + rf × np. (23)

This way in a single run, in general, each of the algo-
rithms generates the same number of unique hypotheses.
The term (1− rf )×np is the number of chromosomes in a
generation generated as offspring from the previous gen-
eration; these in general correspond to unique hypotheses.
Thus, (1− rf )×np×ng is the number of all such hypothe-
ses over the entire run of the algorithm (this includes
(1 − rf ) × np hypotheses of the first generation which
although not generated as offspring are unique as they
are randomly drawn). The second term in the equation,
rf × np, is simply the remaining number of hypotheses of
the first generation which, again, are unique by design. In
our experiments, we used the following parameter values:
the survival rate rf = 0.2, the population size in a gener-
ation np = 50, and the number of generations computed
from Eq. 23 for a specific value of nh which we varied from
nh = 100 to nh = 800. Lastly, to examine the effect that
the proportion of samples removed has on relative per-
formances of different selection methods, we repeated the
experiment with different values for nr : 50, 100, 150, and
200 (i.e. 12.5, 25, 37.5, and 50% of the total number of
samples).
For the second set of experiments, we extend the simu-

lation to model the entire duration of a trial and examine
the effect of different sample size reduction strategies on
the ultimate outcome of the trial. Specifically, we simu-
lated a trial involving 400 samples, half of which were
assigned to the control and the other half to the treatment
group. For each sample, we maintain a variable which
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describes the associated effect of the assigned interven-
tion. Thus, for the treatment group, we have nt variables
{x1, . . . , xnt } and similarly for the control group nc vari-
ables {xnt+1, . . . , xnt+nc}. As the trial progresses the effects
of the treatment accumulate. These are modelled as pos-
itive, i.e. the treatment is modelled as successful in the
sense that on average it produces a superior outcome in
comparison with the control intervention. We model this
using a stochastic process which captures the variability
in participants’ responses to the same treatment. Specifi-
cally, at the discrete time step k + 1 (the onset of the trial
corresponding to k = 0), the effect associated with the
i-th treatment sample at the preceding time step k, xi(k),
is updated in the following manner:

xi(k + 1) = xi(k) + w(t)
i (k + 1) × exp

{
−k + 1

10

}
, (24)

where w(t)
i (k + 1) is drawn from a normal distribution:

Wt ∼ N (0.01, 0.05). (25)

Notice that this progression has a ‘ground truth’
asymptote at:

lim
k−→∞

E[ xi(k)] = xi(0) + 0.1 × exp
{− 1

10
}

1 − exp
{− 1

10
}

≈ xi(0) + 0.95. (26)

Similarly, the effect of the control intervention on the
i-th control sample is:

xnt+i(k + 1) = xnt+i(k) + w(c)
i (k + 1) × exp

{
−k + 1

10

}
,

(27)

where w(c)
i (k + 1) is drawn from a normal distribution:

Wc ∼ N (0.00, 0.05). (28)

By definition, at the onset of the trial there is no effect
of the treatment; thus:

∀.i = 1 . . . nt + nc. xi(0) = 0. (29)

3.1.1 Results and discussion
The key results of the first set of experiments are summa-
rized in Fig. 2. Each plot in this figure shows the average
fitness of the best sample selection solutions produced

Fig. 2 Comparative performance of different sample selection methods on information loss. Each plot shows the average fitness of the methods
described in Section 2.4 (solid red line) and Section 2.3.2 (dotted blue line) relative to the simplest, baseline described in Section 2.2, and its variation
as a function of the number of generated hypotheses. Different plots correspond to different sizes of the sample set selected for removal (from the
total initial number of samples equal to 400). a nr = 50 (12.5% of data). b nr = 100 (25% of data). c nr = 150 (37.5% of data). d nr = 200 (50% of data)
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by the methods described in Section 2.4 (solid red line)
and Section 2.3.2 (dotted blue line) relative to the sim-
plest, baseline described in Section 2.2. The variation in
relative fitness is shown as a function of the number
of generated hypotheses nh. Regardless of the propor-
tion of samples which are removed, the plots demon-
strate a consistent behaviour of the described selection
methods. As expected both informed approaches, the
genetic algorithm based and the pair-wise compatibility-
based method, outperform the simple baseline. What is
more, the pair-wise compatibility-based method consis-
tently exhibited superior performance. This was particu-
larly pronounced with the increase in the proportion of
samples which were to be removed. When only 12.5% of
samples were removed, the average fitness of the solution
produced by the pair-wise compatibility-based method
was approximately 1.6 and 2 times greater than respec-
tively the fitness of the average genetic algorithm based
and the repeated random draws based methods. When
the proportion was increased to 50% of the samples,
the corresponding gains in fitness were approximately 10
and 20.
It is insightful to investigate the behaviour of the genetic

algorithm-based method in further detail. Figure 3 shows
the typical variation in the fitness of all samples in a
generation across time as well as the fitness of the best
solution, relative to the fitness of the solution produced by
the baseline, repeated random draws based method using
nr = 100 (i.e. 25% of the samples are to be removed).
Blue dots show the relative fitness (ordinate) of each indi-
vidual (solution) in a generation (abscissa). The red line
shows the variation of the maximal fitness (i.e. the best
solution) in a generation and is, by the design of the
algorithm, non-decreasing. It can be readily seen that all

Fig. 3 The fitness of the generation in the genetic algorithm-based
solution across time. Blue dots shown the fitness (ordinate) of each
individual (solution) in a generation (abscissa). The red line shows the
variation of the maximal fitness (i.e. the best solution) in a generation
and is, by the design of the algorithm, non-decreasing

of the solutions generated in the first generation, and
thus the best solution of this generation too, are worse
than the baseline solution of the repeated random draws
based method (as witnessed by their relative fitness being
lower than unity). This is to be expected from theory;
recall from the design of the experiment that in the first
generation ng random solutions are generated whereas the
repeated randomdraws basedmethod performs nh = (1−
rf )×np×ng +rf ×np solutions which is equal to the num-
ber of unique solutions created by the genetic algorithm
across all generations. Indeed, the plot in Fig. 3 shows that
the genetic algorithm finds a better than baseline solution
after only five generations, i.e. after generating fewer than
10% of the number of solutions examined by the repeated
random draws based method.
The same relative performances of different sam-

ple selection methods we observed in the first set of
experiments were maintained when the experiment was
extended to a simulation of an entire adaptive trial. The
error of the estimate of differential outcome of treatment
and control interventions was consistently lower using the
proposed pair-wise compatibility-based method than the
baseline repeated random-draws algorithm. Specifically,
we found that the average error was approximately 2.9,
3.6, and 4.1 times lower for respectively one, two, and
three sample size reductions. What is more, the consis-
tency of the estimate was improved too as witnessed by
the standard deviation of the error which was 3.3, 5.0, and
6.1 times lower for the proposed method. Representative
simulations are illustrated in Fig. 4 which shows the run-
ning ground truth of the differential effect (black dotted
line), the estimate when the designated number of samples
is removed using the proposed pair-wise compatibility-
based selection (blue line; see Section 2.2), and the esti-
mate when the designated number of samples is removed
using repeated random draws based sample selection (red
line; see Section 2.4).

4 Conclusions
In this paper, we introduced a novel method for clinical
trial adaptation. Our focus was on adaptation by amend-
ing sample size. In contrast to all previous work in this
area, the problem we considered was not when sam-
ple size should be adjusted but rather which particular
individuals should be removed from the trial once the
decision of sample reduction is made. Thus, our method
is not an alternative to the current state-of-the-art, but
rather a complementary element of the same framework.
Our approach is based on the idea of selecting the sam-
ple subset for removal in a manner which minimizes
the associated loss of information which we formalized
using a Bayesian framework. Using the derived result we
described three algorithms which approach the result-
ing optimization problem in different ways. Specifically,
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Fig. 4 Simulation examples. Shown are the running ground truth of
the differential effect (black dotted line), the estimate when the
designated number of samples is removed using the proposed
pair-wise compatibility-based selection (blue line; see Section 2.2),
and the estimate when the designated number of samples is
removed using repeated random draws based sample selection (red
line; see Section 2.4). The proposed method clearly outperforms the
random draws based approach. a Two sample size reductions. b
Three sample size reductions

we proposed sample selection methods using (i) repeated
random draws, (ii) a genetic algorithm, and (iii) pair-
wise sample compatibilities. Experiments on simulated
data demonstrate the effectiveness of all three approaches,
with a consistently superior performance exhibited by the
pair-wise sample compatibilities-based method.

Endnote
1Hereafter, we omit the use of inverted commas for

the sake of reducing clutter, with the understanding that
the terms are a part of the technical jargon of genetic
algorithms unless stated otherwise.
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16. B Conn, O Arandjelović, in Proc. IEEE International Joint Conference on
Neural Networks. Towards computer vision based ancient coin
recognition in the wild—automatic reliable image preprocessing and
normalization (IEEE, 2017), pp. 1457–1464

17. I Schlag, O Arandjelović, in Proc. International Conference on Computer
VisionWorkshop on e-Heritage. Ancient Roman coin recognition in the
wild using deep learning based recognition of artistically depicted face
profiles (IEEE, 2017)

18. KE James, DA Bloch, KK Lee, HC Kraemer, RK Fuller, An index for assessing
blindness in a multi-centre clinical trial: disulfiram for alcohol cessation–a
va cooperative study. Stat. Med. 15(13), 1421–1434 (1996)

19. H Bang, L Ni, CE Davis, Assessment of blinding in clinical trials. Contemp.
Clin. Trials. 25(2), 143–156 (2004)
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