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Abstract

the course of 3 months.

We present the concept of an Intelligent Assistant Carer system for the elderly, designed to help with active aging
and to facilitate the interactions with carers. The system is modular, allowing the users to choose the appropriate
functions according to their needs, and is built on an open platform in order to make it compatible with third-party
products and services. Currently, the system consists of a wearable device (a smartwatch) and an internet portal that
manages the data and takes care of the interactions between the user, the carers, and the support services. We
present in detail one of the modules, i.e,, fall detection, and the results of a pilot study for the system on 150 users over

Keywords: Elderly care, Active aging, Smartwatch, Fall detection

1 Introduction

Advances in medicine and living conditions are signif-
icantly increasing average life expectancy, while at the
same time the natality rate in developed countries is
falling. This creates a distorted demographic pyramid
where there are more elderly people over 65 than there are
children under 15 [1]. It has been estimated by Eurostat
that the working population (15-64 years) will decrease
to 56% of total population by the year 2050 [2]. This
could lead to a number of problems for society, such as
insufficient numbers of qualified personnel to care for the
elderly, rising costs for individuals, families, and the public
purse, and consequently a potential decrease in the per-
ceived quality of life for individuals. At the same time, the
WHO is promoting the concept of “active aging’, a pro-
cess of optimizing opportunities for health, participation
and security, in order to enhance the quality of life as peo-
ple age [3]. We face two main challenges—first, to enable
the elderly to live a high-quality independent life at home
for as long as possible and, second, to facilitate the care
provided in the nursing homes.

Substantial progress in active aging and elderly care can
be achieved through the innovative use of information
and communication technologies (ICT). Although tech-
nology can never fully replace a human carer, it can assist
in several aspects, as shown in Table 1. Technological
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solutions in principle work 24/7, are not prone to human
error (such as forgetfulness), and are significantly cheaper
than employing a dedicated human carer. Of course, the
time when robots will be able to socialize and take care of
household chores still lies in the future. There are many
systems for elderly care available on the market [4-6],
and many systems are being developed as part of various
research projects. Several of the existing elderly-care sys-
tems enable some connectivity to other devices and smart
homes [7]. However, there are two major problems with
these types of systems. First, the elderly are typically reluc-
tant to start using new technologies when the need arises,
especially when this includes introducing new wearable
sensors or stationary devices to their homes. Second,
commercial systems are typically closed environments—
which means that integration with third-party services
and devices is complicated or impossible.

Here, we present the concept of an Intelligent Assis-
tant Carer (IAC), a system that is aimed to address both
issues. The system is designed to be modular, allowing the
users or their carers to activate individual modules when
required. Younger elderly users who live independently
are already used to some ICT technologies; therefore,
it is easier for them to start using the system. Initially,
they might use it for leisure activities, such as an exer-
cise tracker or as a means to stay connected with friends.
Through time, the system “grows” with the users, mean-
ing that the system learns about their habits and needs,
and the users adopt the system as a part of their daily
life. Therefore, the introduction of additional modules is a
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Table 1 Comparison of a professional personal assistant and a

virtual one

Human Virtual
Socialization Yes Conditionally
Reminders Yes Yes
Household tasks Yes No
Check on vital signs Yes Yes
Works 24/7 No Yes
Instant adaptation No Yes
Spoken communication Yes Conditionally
Costs $3$ $
Maintenance No Yes

smooth process. In addition, the IAC is based on an open
platform, which, first, allows quick modifications when
new, improved hardware becomes available and, second,
allows developers to ensure connectivity to other systems.
This approach is in line with the emerging European plat-
form for elderly care, within the framework of the EU
H2020 IN LIFE project [8].

In its present incarnation, the IAC consists of a mod-
ular wearable device (a wristwatch, we tested a series of
commercial products) and an online portal that acts as a
central hub for communications between the user, the for-
mal and informal carers, and the support services, such as
a 24/7 call center. The IAC system acts as a tool that both
takes care of the user in some situations and assists the
carer by providing relevant information when required.
In this paper, we present the system’s architecture and
a series of currently functional modules. We focus espe-
cially on the fall-detection module, which is described in
a special section. This module is specifically intended to
improve the user’s sense of security and thus prolong their
independent life—one of the main reasons people decide
to enter nursing homes is a fear that they will be unable
to call for help in the case of an accident or a medical
problem [9]. Approximately 30% of people over the age of
65 experience a fall each year and 20% of those who fall
require medical help afterwards [10]. A particularly dan-
gerous scenario is the “long lie”, where a person is unable
to get up for several hours [11]. We highlight how this
approach allows for a rapid adaptation to new versions of
hardware, including additional in-built sensors that may
be employed to improve the module’s accuracy. We report
on the results of a pilot study of the system, again with the
focus on the fall detection and related security modules
and on the user experience. The pilot study was carried
out on 150 elderly users who were each using the system
for 3 months. Finally, we discuss the system’s prospects
and further steps.
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2 System architecture

The elderly are a vastly heterogeneous group, with vari-
ous levels of mental capabilities, familiarity with modern
technology, and different needs. It is thus important to
simplify the user experience to as few different devices as
possible, but at the same time allow flexibility to incorpo-
rate numerous different applications that fit a specific user
the best. We are proposing an agent-based architecture.
Here, each module, performing its task, acts as an agent,
while the core of the application communicates with all
the agents and performs an informative decision based on
the inputs from them.

The architecture is presented in Fig. 1. The first layer
consist of internal and external sensors and hardware.
Communication with the sensors and hardware is handled
by the OS, in our case Android OS. The data is sent up to
each module, while actions (call, SMS) are sent down from
the module. Each module acts as an independent agent for
the delegated task. For example, the fall-detection mod-
ule gets the data from the bottom layer (either internal
or external accelerometer), determines whether there is a
fall or not, and sends this as input to the next layer. Such
a system design allows for great extensibility of the mod-
ules and allows a personalized experience for the user. The
most important layer is the Core, it collects information
from all the active modules and makes an informed deci-
sion based on the input (for example, “watch not worn”
and “fall alarm” together suggest that it is false alarm). The
information from the Core is relayed to the user through
the GUI (graphical user interface) layer (IN LIFE).

2.1 Modules

The main advantage of the system is its modularity. There
are currently four module groups: Security, Health, Tele-
care, and Accessibility. Each of these groups includes
a series of modules that the user or the carer can
choose from to best suit the elderly person ’s needs. Of
course, these needs are expected to change over time. Ini-
tially, health-module components (e.g., a fitness tracker)
may be of interest, while with advanced age, accompa-
nied perhaps with emerging dementia or other cognitive
impairments, security and telecare modules become more
prominent. In particular when considering a diminishing
mental capacity, it is important that the user is already
familiar with the IAC, as it is easier to adapt to new
modules on familiar devices than to a completely new
hardware.

2.1.1 Security

Security modules are intended to boost the user’s sense
of security or safety in order to prolong their indepen-
dent life. The fall-detection module detects a fall or similar
dangerous situations and automatically calls for help. The
user can also call for help manually, using the SOS button,
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Fig. 1 Intelligent assistant carer (IAC). Bottom layer encompasses the hardware. Middle layer consists of independent modules (agents) that process
the hardware input and output the results of their functions to the Core. The Core, based on the input from several sources, performs an action that

by pressing it for a couple of seconds. In both cases, the
localization module can retrieve the user’s location, either
outdoor via GPS or indoor using triangulation with previ-
ously mapped Wi-Fi routers or Bluetooth beacons. For the
elderly with advanced stages of dementia who may wander
away and get lost, carers can set the geo-fencing module. If
the user leaves a pre-defined area, the carer is notified.

2.1.2 Health

Most of the users who are still active are more interested
in the health modules than in the security ones. General
activity monitoring can be used as a sort of fitness tracker.
As the system is built on an open platform, it is possible
to connect it to external devices, such as a blood-pressure
or ECG monitors, and interpret the results. Some smart-
watches already include in-built heart-rate and sweating
sensors, which can be used for stress detection [12]. Some
modules are designed to assist with the management of
chronic diseases, such as diabetes [13] or chronic heart
failure (CHF) [14, 15], by monitoring a user’s activities and
issuing suggestions [16]. Some of these modules are still
in a development phase, while others are already being
tested.

2.1.3 Telecare

Telecare modules are mostly intended to facilitate the
interaction between the users, the carers, and the support
services, such as a call center. Examples of telecare mod-
ules include reminders (e.g., “Take pills”) and scheduling

carer tasks. This group also includes modules for the man-
agement of settings, modules, phone numbers, etc. Carers
have a complete overview of the devices’ logs for alarms
and other signals.

2.1.4 Accessibility

These modules facilitate the use of the system for the
elderly. The display of a smartwatch is relatively small
and some people find it difficult to interact with. The
voice interaction module allows the user to control the
watch with a small number of simple voice commands. It
also converts the watch’s feedback into voice/sound alerts.
Another simplification is the NFC album, which allows
triggering of a predetermined action by approaching a
chosen NFC tag in the album.

3 Fall detection

As discussed above, a system that allows the user to call
for help in case of emergency, or even calls automati-
cally, is highly desired by the elderly users to increase
their sense of security. Currently, there are two approaches
when looking at fall detection and monitoring systems—
external and body-worn [17, 18]. External systems typi-
cally rely on cameras or similar sensors installed in the
living environment [19]. Since they are stationary, they are
easy to charge and maintain, but they do not work out-
doors and are typically perceived as invading the user’s
privacy. Several contemporary systems include a manu-
ally triggered SOS button—but such systems fail if the
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user cannot reach them or is unable to press the but-
ton. On the other hand, body-worn sensors can be carried
around everywhere. They do not rely on image processing
but detect movement based on acceleration. This makes
them more acceptable. The downsides include more fre-
quent charging of the battery, and there is also the mini-
mum requirement that the user actually wears the sensor.
Another issue could be the unwillingness of the user to
wear an unusual device, or even perceive it as a per-
sonal stigma—indicating to friends and family members
that they require help. This is especially an issue with
several contemporary solutions that take the shape of
a pendant or a belt-worn sensor. While these locations
on the body have proven to be beneficial for fall recog-
nition [20], they are less easily embraced by the users.
On the other hand, as people are used to wearing wrist-
watches [21], it is reasonable to integrate the system into a
smartwatch—as in the case of the IAC. Here, we demon-
strate the development of the algorithm we used in several
steps. Most of the commercially available devices (at least
those where the algorithm is disclosed) employ some sort
of threshold-based method. We further expand this with a
ML approach and in combination with additional sensors.

3.1 Acceleration-based

Most contemporary body-worn systems for fall detection
are acceleration-based. During a fall, the person is sub-
jected to large and characteristic accelerations that can be
recognized and classified with an appropriate method. In
this regard, wrist-worn devices are notoriously poor at fall
recognition [22, 23] as people perform numerous activi-
ties with their hands; many of those can, to some degree,
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resemble a fall if looked at solely from the point of view of
the acceleration patterns.

3.1.1 Threshold-based

A threshold-based method is the simplest solution for
detecting falls and is also the one most often used. First, a
low-pass filter (Eq. 1) removes the noise at high frequen-
cies (it is reasonable to assume that any movements above
a certain level are not related to human motions); this is
done on the data for each axis separately (x, y, z). Next, the
system calculates the magnitude of the acceleration vec-
tor. If the magnitude surpasses a certain predetermined
threshold, an alarm is triggered.!

ay = (newy * @) + (ay * (1 — a)) (1)

The above method has a very good sensitivity, catch-
ing most of the falls, but a low specificity. In order to
improve the overall performance, we added two time win-
dows, before and after the perceived fall happens. After
the acceleration breaches the threshold, the method looks
at the acceleration in both windows. If there is a move-
ment in the first window (indicating that the person was
moving around) and no movement in the second window
(after the acceleration), this indicates that something hap-
pened and the person cannot move anymore (Fig. 2). This
triggers the alarm procedure. The duration of both time
windows was empirically determined to be 5 s before the
event and 15-20 s after. Using additional sensors (such as
barometer) can shorten these windows.

This approach does, however, not detect falls when the
person continues to make substantial movements after-
wards, but cannot get up. In this case, we assume that the

Acceleration during the fall

~X
-y
Z

the fall the person is lying still—therefore no movement is detected

Before Fall Dﬁrihg I;“all After Fall — Unconscious

Fig. 2 Fall pattern measured with accelerometer. Before the fall, the movement is normal ; during the fall, the y and z axes change positions; after
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person can trigger the SOS button manually—thus, the
automatic call takes place only when the person is unable
to move after the fall.

3.1.2 Machine-learning

In order to reduce the waiting time before the alarm and
to possibly allow some movement in the period after, we
introduced some machine-learning methods to improve
the accuracy. First, we extract multiple features proposed
in [24-26]. Features include max(a), min(a), STD(a), for
each separate axis of the accelerometer: free-fall detection
(Eq. 2), time difference between max and min accelera-
tion dt, and max and min pressure dt,, difference between
max and min acceleration dm, and maximum and mini-
mum pressure dp.

freeFall = magnitude(a) < 5m /s? (2)

Due to the limitations of processing power and more
importantly battery life on a smartwatch, we did not
run ML methods continuously. First, a threshold based
method 3.1.1 was tuned to have a sensitivity of 1 in
order to detect all possible falls. When such an event was
detected, a ML method was run. In this way, ML meth-
ods are calculated less frequently, while the accuracy stays
at least the same as a continuous run because of the high
sensitivity.

3.2 Pressure-based

Some newer smartwatch models are also equipped with
barometers that are accurate enough to detect changes in
pressure over just a few cm of height difference (Fig. 3).
The wristwatch is so sensitive that fast movements of
the hand or a light squeeze on the watch is also noticed.
Weather conditions greatly influence the pressure reading
as well, but these effects occur on much slower timescales.
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It is thus important to only work with relative pressure
differences compared to readings a few minutes apart. To
prevent or reduce the noise from fast movement and/or
watch squeezing, we look at the average pressure in a
time window before and after the perceived fall (Eq. 3).
The required height of the fall can be calculated from a

person’s body height (height — hthip)—/i(knees) 72h (knees) )

Fall = (mean(ppefore) — mean(Pafier)) > 4 (3)

3.3 Laboratory testing

In order to determine the best method for fall recognition,
we devised a laboratory test where we recorded an elab-
orate scenario of everyday activities and possible falls on
six users (three males and three females, all healthy young
adults for safety reasons), equipped with multiple sensors
(on both hands, waist, ankle, and a pendant) [27].

We devised 26 non-fall and 15 fall scenarios, where
some fall scenarios have several variants (e.g., fall back-
ward or forward). The test subjects were not instructed on
how to perform the falls exactly and were told to just fall
as they think they would in a real-life situation. Scenarios
included most of the common ways a person can fall: trip-
ping or stumbling, slipping, fainting (no hands), collapse
(drop attack), arising from a bed and falling, arising from
a chair and falling (including grabbing a table or chair to
try and prevent the fall), missing the bed and falling on
the ground, sitting on the edge of a chair and falling down,
hitting a closet and falling, rolling out of bed, walking
and losing balance, dizziness, and falling when picking up
something. Due to safety reasons, we did not record more
dangerous scenarios, such as falling down the stairs.

Non-fall activities were devised in multiple subgroups,
i.e., normal everyday activities like walking, collapsing into

979,6

Pressure during a fall

979,55 P4

Height Difference

979,5

979,45 —

979,4

979,35

979,3

mbar Os

not usable and off the charts

------ 50 per. Mov. Avg.
(Series1)

time 30s

Fig. 3 Fall pattern measured with barometer. The average height difference in the windows before the fall and after the fall differs in terms of the
height of the user standing and lying on the ground. During the fall itself, the precise barometer also detects air resistance; these data are therefore
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a chair, standing up and lying on a bed, and activities that
might resemble falling, i.e., stumbling but catching bal-
ance, quickly lying on a bed, and quickly changing position
in bed. We also included some exercise activities and nor-
mal everyday activities such as cooking, talking, working
on a PC, reading, playing cards, and similar.

In total, there were 48 non-fall recordings and 83 falls.
In some of the fall scenarios, the subjects were trying
to recover after the fall, while in others they were lying
still, unable to move. With this approach, we attempted to
recreate real-life falls as closely as possible.

We did some light pre-processing on the data in order
to unify the input for all the methods tested and to elim-
inate some of the noise caused by the sensor error. First,
we applied a low-pass filter to smooth out the signal. After
that, we split the recordings into segments containing only
one of the events. We classified this segments binary as
fall or non-fall.

3.4 Results

For testing, we used the leave-one-person-out approach,
where we trained the model on five people and then tested
it on the remaining one.

We measured all the standard evaluation criteria such
us accuracy, sensitivity, and specificity. Surprisingly, our
simple threshold-based method performed well enough
already, achieving 77% average accuracy (Table 2). We
fine-tuned the threshold values by trying different com-
binations of values chosen by an expert and interpolating
between them.

Using different methods for machine-learning, we fur-
ther increased the performance. The comparison of meth-
ods is shown in Table 3 and Fig. 4.

We noticed that the tested methods typically perform
better for the left hand as opposed to the right hand. The
reason behind this is the fact that all the volunteers in the
test were right-handed. As they are more active with their
dominant right hand, there is less noise on the left-hand
data. In addition, all the ML-based methods outperform
the simple threshold-based approach; however, they are
also significantly more computationally intensive. Of the
tested ML-based methods, the best average accuracy is
achieved for kNN, with k& = 5. The kNN method is eas-
ier to implement on a smartwatch (compared to DNN, for
example) and works sufficiently quickly for our purposes.

Table 2 Results of laboratory tests for a simple threshold-based

model

Hand Accuracy Sensitivity Specificity
Left 76.3% 83.5% 52.1%
Right 77.9% 87.3% 62.5%

When tuning the model parameters, sensitivity was given a priority over specificity,
asitisin our interest to detect all falls, even if it results in some additional false alarms
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Table 3 Comparison of different ML methods for fall detection

Hand Accuracy Sensitivity Specificity
Decision Trees
Left 90.8% 82.2% 75.0%
Right 88.8% 82.8% 79.2%
SVM
Left 92.3% 88.7% 79.2%
Right 91.7% 80.5% 854%
DNN (4 layers)
Left 93.7% 87.8% 95.7%
Right 93.7% 94.3% 91.1%
kNN (k=5)
Left 94.9% 89.0% 96.8%
Right 93.4% 80.0% 96.6%

In the next step, we added the barometer data, which
further increased the accuracy of the kNN method by
1.9%. We experimented with continuous learning for
both the single- and multiple-users-based (collaborative)
approach. The problem with this approach is that any
mis-labeling by the user can greatly reduce the accuracy
of the model in the future. A sufficiently large number
of users could even allow us to create various user types
with different habits, presenting an improvement over the
learning on the entire set.

4 Evaluation on real users and discussion

For pilot testing of the system, we recruited 150 volun-
teers to test our system in real-life conditions for at least 3
months each. We performed the tests in two consecutive
rounds—this approach allowed us to work with a man-
ageable number of users, lowered the hardware costs, and
allowed us to enroll minor fixes to the bugs encountered
in the first round before starting with the second round.

4.1 Experimental setting

During the pilot test, each user received one model of the
watch (out of three models, the only difference being the
hardware (size, battery, charger)). At the beginning, the
type was distributed randomly, but towards the end, more
weight was put on the type that was best received by the
users.

By default most of the modules from the security and
telecare group were turned on. Users had the option to
turn on/off additional modules, but in general never chose
to do so. For the fall detection, we used both threshold-
based and kNN methods. We chose kNN since it gave the
best results in a laboratory test and was best at classify-
ing unseen events. Because of battery constraints, we also
used threshold-based (uses much less battery than kNN).
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It later turned out that an increase in battery life is pre-
ferred by the users, compared to better accuracy of the
kNN. Only one method was active at any given time.

The users and their carers were instructed in how to use
the system beforehand, and the carers were encouraged to
help charge the watch or to remind users to wear them in
case they forgot. This was especially emphasized in homes
for the elderly, for users suffering from dementia. Other
than that users were not instructed to behave any differ-
ently because of the system. The main goal of the pilot test
was to see how well the system performs in a real-life set-
ting with currently available technology (both hardware
and software).

4.2 User profile

All the users in our tests were over 65 years, with the aver-
age age being roughly 78. We decided to include different
profiles of users: users that live independently at home
(without help), users in sheltered housing, and users in
nursing homes. Around 50 of the users were in nursing
homes under the constant care of caregivers; the rest were
living independently, either alone or with their spouses
or family. The majority of the users had mild cognitive
impairment (mild dementia), while some showed no signs
of it at all. Only two had advanced stages of dementia. The
majority of the users were able to move without help. On
average, the users who lived at home seemed to have been
in better physical and mental health and were also slightly
younger.

4.2.1 User feedback

After 3 months of testing, the feedback from the users was
generally positive. Acceptance of the systems was around
60%, we elaborate on this in Section 4.2.2.

The analysis of usage patterns revealed that the users
living in nursing homes and being taken care of (food,
hygiene, living space) already felt safe while having nurs-
ing staff around them. While agreeing to participate in the
project, they in most cases stored the watch in a drawer
and forgot it existed shortly after. When asked about it,
they said they did not feel the need for wearing such a sys-
tem, knowing that the carers would take care of them if
anything happened.

On the other hand, most users living at home (alone or
with their spouses) continued to use the system through-
out the whole testing phase. When asked about it, they
confirmed they felt safer while using the system. About
half of this group only wore the watch when going outside
(and alone). Most of the users actually started going out
more, as they felt no danger in doing so. For example, a
77-year-old user started riding his motorcycle again, while
another 80-year-old resumed with some light chores in a
nearby forest. Both users agreed that they could do this
because they felt that someone would always find them in
case anything happened to them.

We asked the users for technical feedback and one of the
most frequent requests was a desire for a longer battery
life (which, with the current hardware, lasted about a day).
The users needed to remember to charge their devices
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daily, which turned out to be more difficult to remember
for patients with dementia. Other users had some trouble
with the volume of the device or with the size of the screen
being too small to see without glasses. Surprisingly, there
were no complaints regarding the false alarms. Users said
they understood that the system cannot be perfect and
that they would rather have occasional false alarms than
the other way around.

4.2.2 Usage analysis

We deployed the watches to the users in multiple waves
over the first few weeks. After approximately 3 months of
using the system, 65% of the users used the system at least
once in the previous 5 days. It is interesting to observe
that if the user used the system continuously for the first
5 days, he/she was almost four times as likely to continue
to use the system in the future—as opposed to those who
used it only once or twice during the first week.

In total, we recorded over 4000 events (Table 4). Inter-
estingly, over 50% of them were events that were triggered
when the user did not wear the watch (“watch-not-worn”
events). This confirms that the watch was not worn all the
time, but only when the user went for a walk or otherwise
felt they needed the system.

There were 695 alarms in total, 431 (62%) of which were
escalated to the call center. There, the users spoke with
a caretaker on duty who took next necessary actions. In
total, there were no such falls where somebody fell uncon-
scious and, in all instances, the user could talk to the
caretaker. However, there were four events (later reported
by a carer) when a user fell and could not get up but did
not (manually) call for help nor did the system detect such
an event as critical and automatically call for help. In all
four events, the users were suffering from advanced stages
of dementia and in case of fall forgot what to do in the case
of a fall (press the SOS button or stay still); instead, they
tried to get up unsuccessfully. In Fig. 5, we see the num-
ber of alarms that were automatically detected. The gray
bar represents the alarms that were canceled by the users
(37%); red represents cases where a call was made (63%).

There were 672 calls manually initiated by the users.
In the vast majority of these cases, there was no actual
danger. In most cases, the users were demonstrating the
system to their friends or testing whether the system

Table 4 Total events recorded in the pilot test and their
distribution

Total events recorded 4116

Alarms (fall) 694 17%
Manual alarms (SOS button) 672 17%
No movement 445 10%
Watch not worn 2305 56%
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was still working. In some cases, users called for help
with no apparent reason; we suspect that they wanted to
have some social contact with the person on the other
side, although they did not admit this. Figure 6 shows
alarms that were triggered by the users manually. It is
clear that most of the calls were triggered at the beginning
of the pilots, which indicates that the users were initially
intensely testing the system’s functions. A couple of days
later, when they got used to the watch, there were fewer
manual calls, and they more accurately corresponded to
actual emergencies.

“No-movement” events relate to the general activity
monitoring module, where the system recognizes that the
user is less active than in the previous days—which could
be a possible concern. In most cases, those events were
false positives, as the watch was not able to determine that
it was not on the user’s hand. There were two cases when
the person was feeling ill and was lying in bed more than
usual.

The most frequent notification was that the user was not
wearing the watch. Our system was designed to be worn
24 h a day—otherwise it sends a reminder to the carer.

4.3 Discussion
We offered the system to different groups of elderly, which
is clearly reflected in the system usage. The system was
best accepted by the active (generally younger) user group,
some of whom actively contacted us in advance in order to
test the system. We believe that such systems can greatly
benefit the users both physically (monitoring) and psycho-
logically (sense of security). However, the introduction of
such bleeding-edge technology to the elderly may prove
problematic because the users can have problems learn-
ing to use it. Therefore, as discussed at the beginning,
we believe that the solution lies in a multi-modal system
that can be introduced to the users early, with different
solutions that can be enabled by users’ needs as they age.
We noticed some problems with the hardware device,
the main problem being the battery life. Ideally, the sys-
tem would function for months with a single charging,
while it currently works only for about a day. We imple-
mented several solutions to increase the battery life by
accurately determining user actions and, for example, low-
ered the sampling frequency, disconnected the device
from the network, and put the device into a sleep mode
while the user was sleeping. As soon as the user started
to move around, the device went into normal operating
mode again. With this approach, we more than doubled
the battery life, which is progress. There were also some
problems with the device’s size and weight, mostly from
women with generally smaller hands. But these issues can
be solved by creating a custom device with a focus on
these aspects.
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Fig. 5 Alarms: calls made vs canceled. Number of falls that were detected by the system. Red columns represent calls that were escalated to the call

5 Conclusions

ICT solutions are promising for making aging a better
experience, by improving the user’s quality of life, lower-
ing the costs, and making the interactions with all involved
easier. In this paper, we present the concept of a sys-
tem that assists in all three fields—the intelligent assistant
carer takes care of the user in a variety of situations, 24/7,
and helps the human carer when needed.

We discuss the two features of the system—being mod-
ular, the IAC allows personalization by enabling custom
modules (for example, fall detection within the group
of security-related modules, running on a smartwatch),
while being built on an open platform allows for quick
modifications for improvements (such as adding a barom-
eter to the accelerometer sensor in order to improve the
fall-detection algorithms). We briefly present a couple of
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Fig. 6 SOS Calls made by user. Number of calls made by users manually. At the beginning, users were testing the system a lot to see how it works
and whether someone will answer. Later, manual calls dwindle and more closely represent actual emergencies
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approaches with various algorithms we used based on
the data obtained in laboratory conditions (the best being
kNN) and during the pilot testing of the system.

The results of the pilot tests are in agreement with our
premise that it is beneficial to introduce the IAC to the
users as early as possible, since it is more difficult for
people with various levels of cognitive impairments to
learn to use such a system from scratch. Users suffering
from dementia had a poor acceptance rate of the sys-
tem, while the active users showed an increase in their
physical activities, which has a beneficial effect on the
overall health of the user. While the users agreed that the
system has numerous beneficial effects on their lifestyle
(security, health, socialization through alarm/SOS calls),
they also pointed out some shortcomings, mainly with
respect to the hardware. The battery life is one of the key
aspects that needs to improve, followed by the size and
ergonomics of the watch. While we are currently using
commercial devices, building custom designs should help
us to avoid several of these shortcomings and improve the
user experience.

Endnote

1Earth’s gravity causes all stationary objects to experi-
ence 1 G. Because of this, the fall threshold is reached
when the person is close to free falling (0 G).
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