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Abstract

In this study, a speaker identification system is considered consisting of a feature extraction stage which utilizes both
power normalized cepstral coefficients (PNCCs) and Mel frequency cepstral coefficients (MFCC). Normalization is
applied by employing cepstral mean and variance normalization (CMVN) and feature warping (FW), together with
acoustic modeling using a Gaussian mixture model-universal background model (GMM-UBM). The main contributions
are comprehensive evaluations of the effect of both additive white Gaussian noise (AWGN) and non-stationary noise
(NSN) (with and without a G.712 type handset) upon identification performance. In particular, three NSN types with
varying signal to noise ratios (SNRs) were tested corresponding to street traffic, a bus interior, and a crowded talking
environment. The performance evaluation also considered the effect of late fusion techniques based on score fusion,
namely, mean, maximum, and linear weighted sum fusion. The databases employed were TIMIT, SITW, and NIST 2008;
and 120 speakers were selected from each database to yield 3600 speech utterances. As recommendations from the
study, mean fusion is found to yield overall best performance in terms of speaker identification accuracy (SIA) with
noisy speech, whereas linear weighted sum fusion is overall best for original database recordings.

Keywords: Speaker identification system, TIMIT, SITW 2016 and NIST2008 databases, Noise and handset effects

1 Introduction
Speaker identification is one important application of
biometrics and forensics to identify speakers based on
their unique voice pattern [1–3]. According to [4], fea-
ture extraction within speaker identification should be
less influenced by noise or the person’s health. How-
ever, to improve the speaker identification accuracy (SIA),
Mel frequency cepstral coefficients (MFCC) features were
fused with inverse MFCC features (IMFCC) in [5], but
the approach was limited by the number of GMM com-
ponents. An overview of speaker identification was pre-
sented in [6] and increasing the number of speakers
and using different types of realistic non-stationary noise
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(NSN) in evaluation was suggested to develop the field
along with exploiting fusion techniques. Nakagawa et al.
[7] proposed combining phase information with MFCC
features to improve speaker identification. Despite this
research, recognition rate is still a subject of focus.
Murty and Yegnanarayana [8] elucidate improvements in
a speaker verification system by combining the resid-
ual phase derived from linear prediction analysis of the
speech signal with the spectral MFCC features. In addi-
tion, the National Institute of Standards and Technology
(NIST) 2003 database [8] was used; a 14% equal error rate
(EER) performance was achieved for MFCC and a 22%
rate for the residual phase. Although the combination was
better than the individual features alone, the system was
not subjected to realistic noise conditions and channel
variabilities. Similar to this approach, Wang et al. [9] used
a linear weighted sum for the score fusion but the work
did not consider noise, and likewise in [10] channel distor-
tion seems to have been ignored. In [11], different feature
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combinations were presented using MFCC and linear
prediction cepstrum coefficients (LPCC) to improve the
recognition rate. However, a limited number of speakers
was used, only digit speech was employed, and the system
was only tested in ideal conditions.
Bhardwaj et al. [12] presented three scenarios for

speaker identification, exploiting the generalized fuzzy
model (GFM). However, the identification rate using the
NIST 2003 database was poor. In [13], approximately
1000 speakers were selected and recordings were made,
including in an acoustics room, with noise, and with
varying microphone distance. However, the conditions
were perhaps unfair and a non-standard database (derived
from YouTube) was used. In addition, the tested sys-
tem performed best with the Texas Instruments and
Massachusetts Institute of Technology (TIMIT) database,
with a reduction of 10% for the NIST 2002 database, and
approximately 30% with the telephone bandwidth version
of TIMIT, or Network TIMIT (NTIMIT). However, the
system was not evaluated under different environmental
noise conditions. In [14], a mean clustering approach was
proposed for GMM speaker models, but the time com-
plexity of the log-likelihood calculation was a bottleneck
for the testing phase. The system achieved highest perfor-
mance with TIMIT, with 10 and 30% reductions for the
NIST 2002, and NTIMIT databases, respectively. Again,
however, the system was not evaluated under different
environmental noise conditions.
In another study, fuzzy clustering was presented in [15],

which employed hierarchical tree decisions for speaker
identification. The study involved 3805 speakers sub-
jected to AWGN, and it was also noted that the system
could be improved using fusion; however, no tests for
realistic noise were conducted. In [16], both the NIST
2008 and TIMIT databases were employed to achieve
robust speaker identification and mitigate room reverber-
ation and additive noise, but again handset effects were
ignored. Also, to accomplish robust speaker identifica-
tion, Li and Huang [17] employed Cochlear filter cepstral
coefficients (CFCCs) and used the NTIMIT and Speech
Separation Challenge databases, although fusion can also
be used to enhance the identification performance. Vari-
ous neural network-based approaches were proposed in
[18], without considering different noise and handset con-
ditions. Furthermore, other researchers have employed
deep neural network (DNN) analysis for speaker
identification [19]. In [20], the authors selected 100
speakers from the TIMIT and self-collected databases
using novel fuzzy vector quantization (NFVQ) tech-
niques to enhance the speaker identification system
(SIS). However, increasing the number of speak-
ers reduced the recognition rate, and there was no
testing under realistic noise and channel distor-
tion conditions. Moreover, [21] produced a multi-

modal neural network by exploiting wavelet analysis,
without testing for noise and channel effects and only
using 34 speakers. Other researchers have focused on
speaker identification and verification applications with
background noise to improve and create robust speaker
recognition [22]. Khanteymoori et al. [23] utilized a
dynamic Bayesian network (DBN) to model speakers
and improve identification compared with GMMs, but
a limited number of speakers was used. Furthermore, a
new discriminative likelihood score weighting technique
was proposed for speaker identification, and a likelihood
score weighting method was presented for the speaker
identification task [24]. In [25], a state of the art speech
recognition system was exploited for noisy environments
and reverberation. In addition, an empirical study was
presented by Reynolds [26], which included the handset
variability effects for the speaker recognition purpose
using the Switchboard corpus. On the other hand,
Reynolds et al. [27] focused on two issues in the speaker
identification task, the size of the population and the
degradation produced from the noisy telephone channel;
their study used the TIMIT and the NTIMIT databases.
However, only a limited number of studies have involved
a handset, AWGN, and NSN types in conjunction with
fusion strategies. In this work we extend our previous
work in [28, 29] with four combinations of features and
their score fusion methods for the original recordings;
and with AWGN, and three types of NSN: street traffic,
bus interior and crowd talk, with and without the G.712
type handset at 16 kHz, to provide a wide range of envi-
ronmental noise conditions. We emphasize that, although
the GMM-UBM approach is well established, no previous
study has comprehensively considered three databases,
one of which only appeared in 2016, nor the effect of such
a wide range of NSN and handset effects.
Section 2 contextualises robust biometric speaker iden-

tification; Section 3 describes adding the noise and apply-
ing the handset; Section 4 explains the databases and
simulation setup; Section 5 presents the simulation
Results and Discussions; Section 6 includes comparisons
with related work; Section 7 presents Conclusions and
future work.

2 An overview of a robust biometric speaker
identification system

The main system used in this paper is represented in
Fig. 1. The figure has three sections: feature extraction
and normalization, speaker modeling and matching, and
fusion strategies; it also shows test signals.

2.1 Feature extraction and compensation
In our work, to mimic human ear perception, MFCC fea-
tures are used [30] and combined with the corresponding
power normalized cepstral coefficient (PNCC) features
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Fig. 1 Robust biometric speaker identification and evaluation framework

presented in speech recognition systems; these provide
robustness [31], and are expected to improve SIA in the
presence of background noise. A 16-feature dimension
was used to mirror our work in [29, 32], which used
both MFCC and PNCC. In addition, the MFCC features
included the zero order C0 coefficient and the PNCC fea-
tures, including the Pc0 coefficent. A pre-emphasis finite
impulse response (FIR) filter realizing a first order high-
pass filter was employed to filter the speech samples with
emphasis coefficient 0.96 [5]. In addition, framing and
Hamming windowing were employed with a frame length
of 16 ms with an inter-frame overlap of 8 ms [33]. More-
over, this work exploits a triangular/Mel filter bank (MFB)
and the logarithmic non-linearity used in MFCC [34],
as well as the Gammatone filter bank (GFB) and power
law non-linearity for PNCC [31, 35, 36]. We focus on
using the PNCC by exploiting the GFB to improve SIA in
the presence of stationary AWGN and NSN background
noise. In addition, temporal masking, asymmetric noise
suppression (ANS), and power law non-linearity with a
1/15 exponent and GFB were the main elements in the
PNCC construction. Further information about PNCC
features is provided in [32, 37, 38]. Feature compensation
(normalization) is widely and effectively used for speaker
verification and identification tasks. The main aims of

using normalization are to reduce the effects of noise,
channel, and handset transducers and to alleviate linear
and non-linear channel effects. In this study, feature warp-
ing (FW) and cepstral mean and variance normalization
(CMVN) over a sliding window are used [39, 40] to reduce
the noise and handset effects and mitigate linear chan-
nel effects; this gives improvements and robustness to
SIA [6]. The features and feature normalization are as
employed in [29].

2.2 Speaker modeling andmatching
2.2.1 Gaussianmixturemodel (GMM)
In GMMs, each speaker can be represented by the multi-
variate parameters of the Gaussian components, namely,
mean, covariance, and a finite weighted mixture. The
weighted sum of the M components is called a Gaus-
sian mixture density, as represented in Eqs. (1) and (2)
in [29]:

p(x | λj) =
M∑

i=1
ωi pi(x) (1)

where j = 1, . . . , S and S is the number of speakers, ωi is
the i-th mixture weight, and
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where x is a D-dimensional random feature vector, andM
is the number of Gaussianmixture components. A param-
eter set for each speaker model is λj = {ωi,μi,�i | i =
1, . . . ,M},μi and �i are, respectively, the mean and
covariance parameters of the i-th component density and
(.)T denotes the transpose operator. In this paper, we used
nodal, diagonal covariance matrices instead of full covari-
ance as used in [6, 29]. In speaker modeling, the expecta-
tion maximization (EM) method estimates parameters for
each mixture.

2.2.2 Gaussianmixturemodel-universal backgroundmodel
(GMM-UBM)

A Gaussian mixture model-universal background model
(GMM-UBM) was used as in [29] and was trained offline
with a large amount of data through EM. Furthermore,
maximum a posteriori (MAP) approach adaptation was
employed to train the individual speaker models, and this
adaptation was initialized by the UBM and then cou-
pled with the training data for each speaker. The coupling
between large training data (UBM) and a small amount of
class-specific data (individual speaker models) makes the
GMM-UBM able to estimate a larger number of parame-
ters which increases the mixture size dimension, and thus
the SIA. As in our previous work [28], adaptation coef-
ficients are used in the learning of the means, weight,
and variances of the GMM models which can be rep-
resented by αm

i ,αw
i ,αv

i , where i = 1, . . . , S, respectively.
The parameters and adaptation coefficients used in the
paper can be listed as follows: for the initial UBM train-
ing finaliter = 20; whereas for the MAP adaptation, the
relevance factor rρ = 10, ρ ∈ {m,ω, }; and Nmix ∈
{8, 16, 32, 64, 128, 256, 512}; ds = 1;αρ

i ∈[ 0, 1] and is
calculated as ni

ni+rρ where ni = ∑TF
t=1 Pr(i| xt), where

TF is the number of feature vectors; where: Nmix is the
number of Gaussian components. The ds factor is the fea-
ture sub-sampling factor every ds factor frames. finaliter is
the number of expectation maximization (EM) iterations.
More details of the parameters and how they are used in
the adaptation of speaker models can be found in [28, 41].

2.2.3 Maximum log-likelihood scores
Matching between models built during training and eval-
uating datasets was carried out by log-likelihood ratios
(LLRs). In our evaluating studies, 120 speakers were
selected from each database. Each speaker has 10 speech
utterances, 6 were employed for training, while the
remaining 4 speech recordings were used for testing.
In total, 720 utterances were used for training purpose
(6 training files for each of the 120 speakers = 6 × 120).

In addition, 480 speech utterances were exploited for test-
ing (4 tests for each of the 120 speakers = 4 × 120). The
model-test set with a length 57,600 represents the multi-
plication between 120 models with 480 tests (120 × 480).
The log-likelihood ratios were calculated as in [29].

LLR(X) = log p(X | λGMM) − log p(X | λUBM) (3)

where X contains the corresponding TF feature vectors,
X =[ x1, . . . , xTF ]. Four sets of LLRs were found based
on feature and normalization types as described in the
next section. A maximum likelihood approach was used
to identify speakers as a final decision, as in [6, 42].
The SIA can be calculated as in Eq. (4) [5, 43]:

SIA = Number of True Speakers Identified
Total Number of Speakers

× 100%

(4)

2.3 Fusion strategies
Three methods to form a late fusion score were employed
as in [29]: weighted sum, maximum, and mean fusion.
Combined normalization methods were employed to pro-
duce normalized MFCC features (FWMFCC and CMVN-
MFCC). Likewise, normalized methods were used to form
PNCC features (FWPNCC and CMVNPNCC). Four sets
of score vectors could therefore be calculated and are
denoted as [28, 29]: f 1 = feature warping MFCC scores
vector (FWMFCC), f = CMVN MFCC scores vector,
g1 = feature warping PNCC scores vector (FWPNCC) and
g2 = CMVN PNCC scores vector. The maximum fusion
of these score vectors adopted row wise maximum as in
Eq. (5).

fmaxij = max( f i , gj) , i, j = 1, 2 (5)

where fmaxij represents the score vectors for the fusion
maximum.
Likewise, mean fusion is presented as:

fmeanij = ( f i + gj)/2 , i, j = 1, 2 (6)

where fmeanij denotes the score vectors for the fusion
mean.
In addition, a linear weighted sum score fusion takes the

form:

fweightij = ωβ × f i + (1− ωβ) × gj , i, j = 1, 2 (7)

where, both i and j take values 1 and 2, therefore fweightij
takes one of four values fweight11, fweight12, fweight13,
and fweight22, and fweight11 is the linear combination of
f 1 and g1, likewise fweight12 is the linear combination of
f 1 and g2 and so on. For each fweightij, ωβ can take on
one of four values, namely, ωβ ∈ {0.9, 0.8, 0.77, 0.7} which
is chosen to give empirically the best SIA. We limit ωβ to
these four values as lower values have been found to be
unsuitable to yield high SIA performance, because MFCC
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coefficients are more important in the speaker identifi-
cation task with clean speech. Further details for fusion
strategies can be found in [44, 45].

3 Adding noise and applying the G.712 type
handset

3.1 Adding stationary AWGN and non-stationary noise
Non-stationary noise (NSN) available online from the
websites [46, 47] were used to test the system. Both
AWGN and NSN were trimmed to the same fixed length
129,250 speech samples (8 s). Different background noise
types as well as AWGN were added only in the testing
phase with seven SNR levels based on the corresponding
noise power (0 to 30 dB) with step size 5 dB for each level
as in [29].

3.2 G.712 type handset
A G.712 type handset at 16 kHz with a fourth order linear
IIR filter was derived from the Z transform multiplica-
tion of two second order cascaded filters as previously
exploited in [6]. We applied the G.712 handset to the
normalized speech signal for both training and testing
phases as employed in [29]. The main reason for applying
and testing this channel distortion was to achieve robust
SIA under clean, AWGN noisy speech, and realistic NSN
conditions. The transfer function of the IIR filter in the
z-domain is given as:

H(Z) = b0 + b1Z−1 + b2Z−2 + b3Z−3 + b4Z−4

a0 + a1Z−1 + a2Z−2 + a3Z−3 + a4Z−4 (8)

where the numerator parameters are [ 1,−0.0216047,
−1.92904276,−0.0216047, 1] and denominator parameters
are [1,−0.2288945,−1.29745904, 0.06100624, 0.57315888].

4 Databases and simulation setups
4.1 Databases
4.1.1 TIMIT acoustic-phonetic continuous speech

corpus-1993
The TIMIT database is one of the most familiar and
widespread speech corpuses used for speech recognition
[6] and is available online at the Linguistic Data Consor-
tium website [48]. This corpus has 630 speakers recorded
in 8 main dialects of American English. In this work, 120
speakers were selected from dialect regions one and 4 to
mirror the work in [5] and our previous study in [29]. Each
speaker has 10 speech utterances; 6 were used for training
and 4 for testing. A fixed-speech length of 129,250 sam-
ples (8 s) was adopted for all 1200 speech utterances of the
120 speakers, concatenation was used when necessary.

4.1.2 The Speakers in theWild (SITW) speaker recognition
challenge 2016

This challenging database was collected to encourage
researchers to develop novel algorithms for benchmark-
ing speaker recognition technology and is available at [49].
The SITW database was collected under different chal-
lenging conditions for open sourcemedia: clean interview,
outdoor conditions, stadium conditions, and red carpet
interviews for single and multi-speakers. In the current
study, we selected 120 speakers; most were single speak-
ers, but some were unbalanced multi-speakers. In this
case, the target speaker was selected so as to obtain a
single speaker, using Goldwave and Audacity software. In
addition, we divided each speech file into 10 equal lengths,
with a fixed length (129,250 samples), to mirror our pre-
vious work. However, speech files of less than 8 s were
concatenated to achieve the same fixed length. Six files
were used for training and four for testing.

4.1.3 2008 NIST speaker recognition evaluation training set
part 2-2011

The database is available at [50], and its sources are mul-
tilingual telephone and microphone speech of native and
bilingual English interview speakers. We converted the
sampling frequency from the original 8 to 16 kHz, and 120
English only microphone channel speakers were selected
for comparison with the TIMIT and the SITW databases.
Again, we selected only single speakers by deleting the
interviewers and created six training files and four testing
utterances with a fixed length of 8 s.

4.2 Simulation setups
Six main simulations were performed utilizing the TIMIT,
SITW, and NIST 2008 databases. Simulation one tested
the system without additional noise and handset effects,
while simulation two evaluated noisy speech with both
AWGN and the G.712 type handset at 16 kHz. Simula-
tions 3–5 employed street traffic, a bus interior, and crowd
talk NSN, with handset at 16 kHz, respectively. In simula-
tion 6, we created PRSIA to measure the reduction caused
by noise and handset effects. Table 1 explains the param-
eters used in the simulations for the three databases,
as well as system details, conditions, databases, and
methods.

5 Simulation results and discussion
In this section, the simulations will be considered in two
groups, A and B. Part A includes the five simulations using
the three databases: original speech recordings, AWGN
with handset, street NSN with handset, bus NSN with
handset and crowd talking NSN with handset, respec-
tively. Part B includes further examination of the effects
of noise and handset on SIA based on features and fusion
methods.
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Table 1 Parameters and setup used in all experiments and
simulations

Aspects Parameters and experimental setup

Sampling frequency 16000

Window type Hamming

Frame length 16 ms

Frame shift 8 ms

Pre-emphasis factor 0.96

Databases
TIMIT, SITW, and NIST 2008

Number of speakers 120 speakers for each database,
total 360 speakers for all databases

Total speech utterances
used

1200 for each database, total 3600
for all databases

Language English

Data source (s) Microphone speech for TIMIT and
NIST 2008,

Hand annotated speech from open
source media for SITW

No. of samples per speaker 10 for TIMIT, 10 created

as well for both SITW and NIST 2008

Testing samples for each
database

Total 480 utterances

Training samples for each
database

Total 720 utterances

Dialect region We selected DR1 and DR4 from
TIMIT to mirror our previous studies

49 DR1&71 DR4 for TIMIT database

Average sample duration 8 s

(for each speech utterance in both
training and testing);

All speech samples were taken with
fixed length;

concatenation is applied where
necessary

Features MFCC and PNCC

Feature vector dimension 16

Feature normalization Feature warping (FW) and

Cepstral mean variance normaliza-
tion (CMVN)

Modeling GMM-UBM

Classifier LLR

GMC (mixtures) {8, 16, 32, 64, 128, 256, 512 }

Fusion types Late fusion:

Mean, linear weights, maximum

System environment Clean, AWGNwith G.712 type hand-
set at 16 kHz and

(street-traffic, bus-interior, and
crowd talking NSN) with handset

SNR levels in dB {0, 5, 10, 15, 20, 25, 30}

The colored data reflected three different databases and the highest SIA for each
database: red for TIMIT, blue for SITW and Violet for NIST 2008 database

In part A, simulation 1 shows the effect of the num-
ber of Gaussian mixture components (GMCs), namely
{8, 16, 32, 64, 128, 256, 512}, upon SIA for speech
utterances from the three databases, without noise or
a handset. All other simulations in part A were on
noisy speech, with seven SNR levels between 0 and
30 dB for the same databases at mixture size 256.
This noisy speech included the G.712 type handset at
16 kHz under AWGN and three NSN types: street traffic,
bus interior, and crowd talking.
In part B, PRSIA is used to give further quantita-

tive perspective on each feature type (without fusion)
and each fusion technique. In general, all simula-
tions for parts A and B present the SIA for the four
feature combinations based on MFCC and PNCC,
these are FWMFCC, CMVNMFCC, FWPNCC,
and CMVNPNCC. The scores for the best SIA
between the MFCC features (FWMFCC (f 1) and
CMVNMFCC (f 2) ) were fused to obtain the best
SIA with the PNCC features (FWPNCC (g1) and
CMVNPNCC (g2).
In Tables 2, 3, 4, 5, and 6, the row corresponding to

fusion decision defines which f and g vectors yield the
highest SIA and therefore only two score vectors were
fused. For example, for fweightij i is equal 1 or 2, that
means include either f 1 or f 2, and j is equal 1 or 2
implying using either g1 or g2, respectively. For exam-
ple, when the fusion decision is given as f 1 − g1 and ωβ

equals to 0.9, then fweight11 = 0.9 × f 1 + 0.1 × g1.
Their selection is based upon achieving the highest SIA.
Furthermore, in this work, mixture sizes of 1024 and 2048
are not considered, because in this work there are insuf-
ficient data size for training; utilizing these mixture sizes
causes a decline in the SIA performance.

5.1 Simulations and experiments for part A
In all experiments of parts A and B, the training and
the testing of the GMM-UBM are achieved in total
by 120 speakers (1200 speech utterances are split into
720 for training and 480 for testing) from the TIMIT
database in order to produce the SIA for TIMIT.
Likewise, the same partitioning method of training and
testing, and number of speakers, was applied to both
additional databases SITW and NIST 2008.

5.1.1 Evaluation of speech data from TIMIT, SITW, and NIST
2008without handset and noise (part A)

In this subsection, Table 2 shows the relationship
between SIA and GMCs for the three databases
according to feature combinations (without fusion),
based on MFCC and PNCC features, and various fusion
schemes are also considered. According to Table 2, we
highlight that the best SIA values were achieved using
the same fusion decision (f 1-g2) for all three databases
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Table 2 Simulation 1: 1 A, 1 B, and 1 C are the SIA for different Gaussian mixture components (GMC) for the TIMIT, SITW and NIST 2008,
respectively

Methods Mix8 Mix16 Mix32 Mix64 Mix128 Mix256 Mix512

Simulation 1 A: the SIA for clean speech TIMIT database

FWMFCC ( f 1) 80% 84.17% 89.17% 93.33% 93.33% 93.33% 94.17%

CMVNMFCC ( f 2) 77.5% 80.83% 86.67% 91.67% 91.67% 92.5% 90.83%

FWPNCC ( g1) 60% 71.67% 80.83% 86.67% 88.33% 90% 90%

CMVNPNCC ( g2) 70% 74.17% 83.33% 86.67% 90% 89.17% 90.83%

Fusion decision ( f 1-g2) ( f 1-g2) ( f 1-g2) ( f 1-g2) ( f 1-g2) ( f 1-g1) ( f 1-g2)

Fused ω1 = 0.9 79.17% 84.17% 90% 91.67% 93.33% 93.33% 95%

Fused ω2 = 0.8 80.83% 83.33% 90% 92.5% 93.33% 94.17% 94.17%

Fused ω3 = 0.77 80.83% 83.33% 90% 92.5% 93.33% 94.17% 94.17%

Fused ω4 = 0.7 79.17% 82.5% 89.17% 92.5% 93.33% 94.17% 93.33%

Fusion max 77.5% 75% 85% 90% 94.17% 93.33% 93.33%

Fusion mean 78.33% 80.83% 90% 92.5% 93.33% 94.17% 94.17%

Simulation 1 B: the SIA for SITW database

FWMFCC ( f 1) 71.67% 75% 76.67% 77.5% 78.33% 78.33% 80%

CMVNMFCC ( f 2) 69.17% 74.17% 75.83% 78.33% 80.83% 80% 79.17%

FWPNCC ( g1) 64.17% 70.83% 78.33% 79.17% 80.83% 79% 79.17%

CMVNPNCC ( g2) 67.5% 73.33% 77.5% 78.33% 80.83% 80% 80%

Fusion decision ( f 1-g2) ( f 1-g2) ( f 1-g1) ( f 2-g1) ( f 2-g2) ( f 2-g2) ( f 1-g2)

Fused ω1 = 0.9 71.67% 75.83% 77.5% 77.5% 80.83% 80.83% 81.67%

Fused ω2 = 0.8 71.67% 74.17% 77.5% 77.5% 80.83% 80.83% 81.67%

Fused ω3 = 0.77 71.67% 74.17% 76.67% 77.5% 80.83% 80.83% 81.67%

Fused ω4 = 0.7 71.67% 75.83% 75.83% 78.33% 80.83% 80.83% 82.5%

Fusion max 72.5% 75% 77.5% 78.33% 79.17% 78.33% 79.17%

Fusion mean 73.33% 76.67% 74.17% 79.17% 79.17% 80% 81.67%

Simulation 1 C: the SIA for NIST 2008 database

FWMFCC ( f 1) 90% 89.17% 92.5% 95.83% 93.33% 92.5% 94.17%

CMVNMFCC ( f 2) 83.33% 87.5% 88.33% 90.83% 90% 90.83% 89.17%

FWPNCC ( g1) 83.33% 86.67% 87.5% 87.5% 89.17% 88.33% 88.33%

CMVNPNCC ( g2) 84.17% 85% 89.17% 89.17% 89.17% 88.33% 88.33%

Fusion decision ( f 1-g2) ( f 1-g1) ( f 1-g2) ( f 1-g2) ( f 1-g2) ( f 1-g2) ( f 1-g2)

Fused ω1 = 0.9 89.17% 90.83% 94.17% 95.83% 95% 95% 95%

Fused ω2 = 0.8 91.67% 91.67% 93.33% 95% 94.17% 95% 94.17%

Fused ω3 = 0.77 90.83% 91.67% 93.33% 94.17% 94.17% 95% 94.17%

Fused ω4 = 0.7 90.83% 90.83% 92.5% 94.17% 94.17% 95% 94.17%

Fusion max 90% 86.67% 93.33% 93.33% 92.5% 92.5% 91.67%

Fusion mean 88.33% 90% 90.83% 91.67% 92.5% 94.17% 92.5%

The colored data reflected three different databases and the highest SIA for each database: red for TIMIT, blue for SITW and Violet for NIST 2008 database. The colored italic
entries represent the highest SIA

and they are at 95.83% for the mixture size 64, 95% for
the mixture size 512, and 82.5% for the mixture size
512 for the NIST 2008, TIMIT, and SITW databases,
respectively. These best SIAs for the TIMIT and
NIST 2008 databases were obtained with weighted sum
fusion and ωβ equal 0.9, while for SITW database,

the best SIA was also acquired with the weighted sum
fusion but with ωβ equal 0.7. Additionally, from the
results of simulation 1 in Table 2, we formed the
plots in Fig. 2 to give more analysis and discussion.
In Fig. 2, we selected the highest SIA regardless of
using any feature type (without fusion) or fusion method
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Table 3 Simulation 2: 2 A, 2 B, and 2 C are the SIA under AWGN and G.712 type handset at 16 kHz for different signal to noise ratio
levels for the TIMIT, SITW, and NIST 2008, respectively, at mixture size 256

Methods SNR0 dB SNR5 dB SNR10 dB SNR15 dB SNR20 dB SNR25 dB SNR30 dB

Simulation 2 A: the SIA for noisy speech using AWGN and G.712 type handset at 16 kHz for TIMIT database

FWMFCC ( f 1) 0.83% 1.67% 5.83% 14.17% 25.83% 45% 64.17%

CMVNMFCC ( f 2) 0.83% 1.67% 2.5% 5.83% 14.17% 31.67% 57.5%

FWPNCC ( g1) 1.67% 4.17% 5.83% 15.83% 31.67% 47.5% 60%

CMVNPNCC ( g2) 2.5% 3.33% 7.5% 20% 39.17% 51.67% 60.83%

Fusion decision ( f 1-g2) ( f 1-g1) ( f 1-g2) ( f 1-g2) ( f 1-g2) ( f 1-g2) ( f 1-g2)

Fused ω1 = 0.9 0.83% 1.67% 6.67% 15% 30% 46.67% 66.67%

Fused ω2 = 0.8 0.83% 1.67% 5.83% 17.5% 33.33% 45.83% 70%

Fused ω3 = 0.77 0.83% 1.67% 5% 17.5% 35% 45.83% 70.83%

Fused ω4 = 0.7 0.83% 1.67% 4.17% 16.67% 35.83% 48.33% 70.83%

Fusion max 2.5% 1.67% 7.5% 16.67% 34.17% 50% 73.33%

Fusion mean 0.83% 1.67% 6.67% 18.33% 36.67% 51.67% 75.83%

Simulation 2 B: the SIA for AWGN and G.712 type handset at 16 kHz for SITW database

FWMFCC ( f 1) 3.33% 9.17% 16.67% 31.67% 52.5% 65% 71.67%

CMVNMFCC ( f 2) 3.33% 6.67% 15% 27.5% 47.5% 63.33% 73.33%

FWPNCC ( g1) 3.33% 6.67% 22.5% 51.67% 71.67% 75.83% 78.33%

CMVNPNCC ( g2) 1.67% 5% 23.33% 53.33% 74.17% 75.83% 78.33%

Fusion decision ( f 1-g1) ( f 1-g1) ( f 1-g2) ( f 1-g2) ( f 1-g2) ( f 1-g2) ( f 2-g2)

Fused ω1 = 0.9 3.33% 9.17% 18.33% 35.83% 55.83% 71.67% 73.33%

Fused ω2 = 0.8 3.33% 10% 20% 38.33% 58.33% 73.33% 75%

Fused ω3 = 0.77 3.33% 10% 20% 40.83% 60% 73.33% 75.83%

Fused ω4 = 0.7 4.17% 10.83% 21.67% 45% 62.5% 73.33% 76.67%

Fusion max 4.17% 10% 23.33% 48.33% 62.5% 74.17% 76.67%

Fusion mean 4.17% 10% 25% 51.67% 73.33% 78.33% 77.5%

Simulation 2 C: the SIA for AWGN and type handset at 16 kHz for NIST 2008 database

FWMFCC ( f 1) 0.83% 1.67% 3.33% 7.5% 14.17% 18.33% 20.83%

CMVNMFCC ( f 2) 0.83% 1.67% 2.5% 5% 15.83% 19.17% 23.33%

FWPNCC ( g1) 0.83% 1.67% 2.5% 2.5% 5.83% 13.33% 25.83%

CMVNPNCC ( g2) 0.83% 1.67% 2.5% 3.33% 5.83% 13.33% 26.67%

Fusion decision ( f 1-g2) ( f 1-g2) ( f 1-g2) ( f 1-g2) ( f 2-g2) ( f 2-g2) ( f 2-g2)

Fused ω1 = 0.9 0.83% 1.67% 3.33% 7.5% 15.83% 20% 22.5%

Fused ω2 = 0.8 0.83% 1.67% 3.33% 6.67% 15.83% 20.83% 23.33%

Fused ω3 = 0.77 0.83% 1.67% 3.33% 7.5% 15% 21.67% 24.17%

Fused ω4 = 0.7 0.83% 1.67% 3.33% 9.16% 12.5% 21.67% 24.17%

Fusion max 0.83% 2.5% 3.33% 5% 10.83% 20% 23.33%

Fusion mean 0.83% 1.67% 3.33% 7.5% 14.38% 18.33% 26.67%

The colored data reflected three different databases and the highest SIA for each database: red for TIMIT, blue for SITW and Violet for NIST 2008 database. The colored italic
entries represent the highest SIA

for each mixture size for TIMIT, SITW, and NIST
2008 databases. On this basis, we made the following
observations.
Firstly, increasing the GMCs always increases the SIA

for all databases as in the simulations (1 A, 1 B, 1 C), except
in mixture size 64 for the NIST 2008 database which

obtains better SIA than other mixtures. This is because
the GMM-UBM system was trained on a large number
of speakers through the UBM, and individual speaker
models were adapted through the GMMs. This coupling
increases the dimensionality of the GMC to cover all
speakers. Hence, this generally improves the SIA.
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Table 4 Simulation 3: 3 A, 3 B, and 3 C are the SIA for street traffic NSN and G.712 type handset at 16 kHz for different signal to noise
ratio levels for TIMIT, SITW, and NIST 2008, respectively, at mixture size 256

Methods SNR0 dB SNR5 dB SNR10 dB SNR15 dB SNR20 dB SNR25 dB SNR30 dB

Simulation 3 A: the SIA for street traffic NSN and G.712 type handset at 16 kHz for TIMIT database

FWMFCC ( f 1) 5.83% 15% 26.67% 47.5% 67.5% 78.33% 82.5%

CMVNMFCC ( f 2) 5.83% 15.83% 29.17% 50% 68.33% 79.17% 85%

FWPNCC ( g1) 1.67% 4.17% 13.33% 30% 40.83% 51.67% 61.67%

CMVNPNCC ( g2) 1.67% 5% 13.33% 35% 50.83% 60% 66.67%

Fusion decision ( f 2-g2) ( f 2-g2) ( f 2-g2) ( f 2-g2) ( f 2-g2) ( f 2-g2) ( f 2-g2)

Fused ω1 = 0.9 6.67% 18.33% 29.17% 51.67% 72.5% 80.83% 86.67%

Fused ω2 = 0.8 5% 18.33% 30.83% 52.5% 73.33% 82.5% 88.33%

Fused ω3 = 0.77 5% 17.5% 30% 52.5% 74.17% 82.5% 88.33%

Fused ω4 = 0.7 6.67% 17.5% 31.67% 53.33% 73.33% 83.33% 88.33%

Fusion max 3.33% 9.17% 27.5% 50% 70.83% 82.5% 86.67%

Fusion mean 2.5% 14.17% 30.83% 55% 73.33% 84.17% 90%

Simulation 3 B: the SIA for street traffic NSN and G.712 type handset at 16 kHz for SITW database

FWMFCC ( f 1) 15.83% 23.33% 41.67% 62.5% 71.67% 76.67% 79.17%

CMVNMFCC ( f 2) 15% 22.5% 32.5% 52.5% 70% 73.33% 75.83%

FWPNCC ( g1) 5.83% 8.33% 28.33% 50.83% 69.17% 74.17% 78.33%

CMVNPNCC ( g2) 5.83% 9.17% 29.17% 48.33% 69.17% 75.83% 79.17%

Fusion decision ( f 1-g2) ( f 1-g2) ( f 1-g2) ( f 1-g1) ( f 1-g2) ( f 1-g2) ( f 1-g2)

Fused ω1 = 0.9 15% 24.17% 46.88% 63.33% 70.84% 76.67% 80%

Fused ω2 = 0.8 14.17% 24.17% 39.17% 63.33% 71.67% 76.67% 80%

Fused ω3 = 0.77 14.17% 24.17% 40% 63.33% 71.67% 76.67% 80%

Fused ω4 = 0.7 14.17% 22.5% 39.17% 62.5% 73.33% 77.5% 80%

Fusion max 10.83% 21.67% 35% 62.5% 70.83% 77.5% 79.17%

Fusion mean 10.83% 20.83% 35.83% 65% 74.17% 79.17% 81.67%

Simulation 3 C: the SIA for street traffic NSN and G.712 type handset at 16 kHz for NIST 2008 database

FWMFCC ( f 1) 1.67% 2.5% 10.83% 17.5% 29.17% 37.5% 47.5%

CMVNMFCC ( f 2) 1.67% 1.67% 6.67% 12.5% 23.33% 35% 45.83%

FWPNCC ( g1) 1.67% 2.5% 15% 34.17% 55.83% 74.17% 80%

CMVNPNCC ( g2) 1.67% 1.67% 6.67% 30% 54.17% 71.67% 78.33%

Fusion decision ( f 1-g1) ( f 1-g1) ( f 1-g1) ( f 1-g1) ( f 1-g1) ( f 1-g1) ( f 1-g1)

Fused ω1 = 0.9 1.67% 5.83% 10.83% 20% 30% 40% 50.83%

Fused ω2 = 0.8 1.67% 3.33% 10.83% 21.67% 34.17% 42.5% 55%

Fused ω3 = 0.77 1.67% 3.33% 10.83% 22.5% 34.17% 45% 57.5%

Fused ω4 = 0.7 1.67% 3.33% 10.83% 24.17% 35.83% 48.33% 60%

Fusion max 1.67% 3.33% 13.33% 25.83% 39.17% 58.33% 64.17%

Fusion mean 0.83% 3.33% 12.5% 28.33% 40.83% 50.83% 69.17%

The colored data reflected three different databases and the highest SIA for each database: red for TIMIT, blue for SITW and Violet for NIST 2008 database. The colored italic
entries represent the highest SIA

Secondly, the NIST 2008 evaluation, which is rep-
resented by the violet curve in Fig. 2 attained the
best SIA performance followed by the red curve for
the TIMIT database. In contrast, the evaluation of the
SITW database (blue curve) has the lowest SIA per-
formance, as expected, most probably due to the wild

and challenging environments compared to the semi-ideal
TIMIT database and the less challenging conditions of
NIST 2008.
Finally, in Fig. 2 the NIST 2008 database curve has

the smallest variation between the highest SIA (at mix-
ture size 512) and the lowest SIA achieved at mixture
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Table 5 Simulation 4: 4 A, 4 B, and 4 C are the SIA for bus interior NSN and G.712 type handset at 16 kHz for different signal to noise
ratio levels for the TIMIT, SITW, and NIST 2008, respectively, at mixture size 256

Methods SNR0 dB SNR5 dB SNR10 dB SNR15 dB SNR20 dB SNR25 dB SNR30 dB

Simulation 4 A: the SIA for bus interior NSN and G.712 type handset at 16 kHz for TIMIT database

FWMFCC ( f 1) 50.83% 65% 75.83% 79.17% 85% 87.5% 89.17%

CMVNMFCC ( f 2) 53.33% 68.33% 77.5% 82.5% 87.5% 90.83% 91.67%

FWPNCC ( g1) 10% 23.33% 35.83% 50.83% 65% 70% 72.5%

CMVNPNCC ( g2) 13.33% 27.5% 45% 55.83% 63.33% 69.17% 73.33%

Fusion decision ( f 2-g2) ( f 2-g2) ( f 2-g2) ( f 2-g2) ( f 2-g1) ( f 2-g1) ( f 2-g2)

Fused ω1 = 0.9 55% 69.17% 80.83% 84.17% 88.33% 91.67% 91.67%

Fused ω2 = 0.8 56.67% 71.67% 83.33% 85.83% 89.17% 91.67% 90%

Fused ω3 = 0.77 56.67% 72.5% 82.5% 85.83% 90% 91.67% 90%

Fused ω4 = 0.7 56.67% 70% 83.33% 85.83% 90.83% 90% 89.17%

Fusion max 40.83% 65% 76.67% 83.33% 84.17% 87.5% 89.17%

Fusion mean 51.67% 68.33% 78.33% 84.17% 86.67% 88.33% 90.83%

Simulation 4 B: the SIA for bus interior NSN and G.712 type handset at 16 kHz for SITW database

FWMFCC ( f 1) 65.83% 70.83% 73.33% 75.83% 77.5% 79.17% 79.17%

CMVNMFCC ( f 2) 66.67% 70.83% 72.5% 73.33% 76.67% 77.5% 79.17%

FWPNCC ( g1) 27.5% 49.17% 64.17% 71.67% 75.83% 77.5% 79.17%

CMVNPNCC ( g2) 28.33% 48.33% 65% 72.5% 75% 79.17% 80%

Fusion decision ( f 2-g2) ( f 2-g1) ( f 1-g2) ( f 1-g2) ( f 1-g1) ( f 1-g2) ( f 1-g2)

Fused ω1 = 0.9 66.67% 71.67% 73.33% 75.83% 77.5% 80% 80%

Fused ω2 = 0.8 65% 72.5% 74.17% 75.83% 77.5% 80.83% 80%

Fused ω3 = 0.77 66.67% 72.5% 75% 76.67% 77.5% 81.67% 80%

Fused ω4 = 0.7 65.83% 72.5% 75% 76.67% 78.33% 80.83% 80.83%

Fusion max 63.33% 72.5% 73.33% 79.17% 80% 80.83% 80.83%

Fusion mean 59.17% 70.83% 73.33% 76.67% 79.17% 81.67% 80.83%

Simulation 4 C: the SIA for bus interior NSN and G.712 type handset at 16 kHz for the NIST 2008 database

FWMFCC ( f 1) 22.5% 32.5% 36.67% 42.5% 59.17% 72.5% 85.83%

CMVNMFCC ( f 2) 19.17% 28.33% 36.67% 45% 60% 74.17% 85.83%

FWPNCC ( g1) 7.5% 15% 37.5% 57.5% 71.67% 80% 80%

CMVNPNCC ( g2) 6.67% 14.17% 35.83% 57.5% 73.33% 82.5% 84.17%

Fusion decision ( f 1-g1) ( f 1-g1) ( f 2-g1) ( f 2-g2) ( f 2-g2) ( f 2-g2) ( f 2-g2)

Fused ω1 = 0.9 20.83% 32.5% 39.17% 49.17% 60.83% 78.33% 88.33%

Fused ω2 = 0.8 17.5% 30% 40.83% 53.33% 63.33% 84.17% 90%

Fused ω3 = 0.77 17.5% 27.5% 40.83% 53.33% 64.17% 84.17% 90.83%

Fused ω4 = 0.7 17.5% 26.67% 42.5% 54.17% 68.33% 83.33% 90.83%

Fusion max 15% 28.33% 41.67% 53.33% 69.17% 85% 89.17%

Fusion mean 15.83% 25.83% 45.83% 58.33% 75% 86.67% 92.5%

The colored data reflected three different databases and the highest SIA for each database: red for TIMIT, blue for SITW and Violet for NIST 2008 database. The colored italic
entries represent the highest SIA

size 8. The second smallest variation is for the SITW
database. However, the largest variation was attained with
the TIMIT database. The main reason for this is that
TIMIT is pure clean speech (ideal database as described
by [6]), so the highest SIA was achieved with the highest
mixture component size (512) which gives very accurate

modeling, whereas modeling with the smallest mixture
size (8) was not very accurate thereby giving the lowest
SIA. On the other hand, for the other databases which
do not contain pure speech, such accurate speech model-
ing is not possible and therefore less variation in SIA as a
function of mixture size is generally observed.
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Table 6 Simulation 5: 5 A, 5 B, and 5 C are the SIA for crowded talking NSN and G.712 type handset at 16 kHz for different signal to
noise ratio levels for the TIMIT, SITW, and NIST 2008, respectively, at mixture size 256

Methods SNR0 dB SNR5 dB SNR10 dB SNR15 dB SNR20 dB SNR25 dB SNR30 dB

Simulation 5 A: the SIA for crowded talking NSN and G.712 type handset at 16 kHz for TIMIT database

FWMFCC ( f 1) 9.17% 18.33% 35% 50.83% 66.67% 74.17% 80%

CMVNMFCC ( f 2) 7.5% 19.17% 34.17% 55.83% 69.17% 81.67% 87.5%

FWPNCC ( g1) 1.67% 2.5% 15.83% 29.17% 43.33% 56.67% 59.17%

CMVNPNCC ( g2) 1.67% 5% 19.17% 35% 54.17% 60.83% 68.33%

Fusion decision ( f 1-g2) ( f 2-g2) ( f 1-g2) ( f 2-g2) ( f 2-g2) ( f 2-g2) ( f 2-g2)

Fused ω1 = 0.9 10% 19.17% 35.83% 57.5% 70.83% 83.33% 87.5%

Fused ω2 = 0.8 10% 16.67% 36.67% 59.17% 71.67% 83.33% 90%

Fused ω3 = 0.77 10% 16.67% 36.67% 60% 72.5% 83.33% 88.33%

Fused ω4 = 0.7 8.33% 16.67% 37.5% 61.67% 74.17% 84.17% 88.33%

Fusion max 2.5% 9.17% 39.17% 52.5% 73.33% 84.17% 88.33%

Fusion mean 5% 15% 38.33% 62.5% 73.33% 82.5% 89.17%

Simulation 5 B: the SIA for crowded talking NSN and G.712 type handset at 16 kHz for SITW database

FWMFCC ( f 1) 18.33% 33.33% 45.83% 64.17% 73.33% 75.83% 78.33%

CMVNMFCC ( f 2) 15.83% 30% 43.33% 59.17% 72.5% 75.83% 77.5%

FWPNCC ( g1) 5% 15% 33.33% 59.17% 71.67% 76.67% 79.17%

CMVNPNCC ( g2) 4.17% 12.5% 30% 53.33% 70% 75.83% 80.83%

Fusion decision ( f 1-g1) ( f 1-g1) ( f 1-g1) ( f 1-g1) ( f 1-g1) ( f 1-g1) ( f 1-g2)

Fused ω1 = 0.9 20% 65% 48.33% 67.5% 73.33% 75.83% 80%

Fused ω2 = 0.8 18.33% 61.67% 50% 68.33% 73.33% 75.83% 80%

Fused ω3 = 0.77 17.5% 60% 50.83% 69.17% 73.33% 75.83% 80%

Fused ω4 = 0.7 17.5% 57.5% 53.33% 70% 73.33% 77.5% 80%

Fusion max 14.17% 48.33% 46.67% 65.83% 73.33% 76.67% 80.83%

Fusion mean 11.67% 45% 50.83% 72.5% 75% 78.33% 82.5%

Simulation 5 C: the SIA for crowded talking NSN and G.712 type handset at 16 kHz for NIST 2008 database

FWMFCC ( f 1) 7.5% 12.5% 24.17% 30% 37.5% 47.5% 66.67%

CMVNMFCC ( f 2) 3.33% 10.83% 18.33% 28.33% 40.83% 46.67% 67.5%

FWPNCC ( g1) 3.33% 11.67% 29.17% 44.17% 67.5% 78.33% 80.83%

CMVNPNCC ( g2) 2.5% 10% 24.17% 45% 68.33% 79.17% 82.5%

Fusion decision ( f 1-g1) ( f 1-g1) ( f 1-g1) ( f 1-g2) ( f 2-g2) ( f 1-g2) ( f 2-g2)

Fused ω1 = 0.9 6.67% 15% 24.17% 34.17% 45.83% 55.83% 70.83%

Fused ω2 = 0.8 10% 15% 24.17% 35% 48.33% 60.83% 75.83%

Fused ω3 = 0.77 10% 15% 25.83% 36.67% 49.17% 61.67% 77.5%

Fused ω4 = 0.7 10% 15% 28.33% 40.83% 49.17% 64.17% 80%

Fusion max 8.33% 15.83% 29.17% 45.83% 51.67% 70% 77.5%

Fusion mean 8.33% 17.5% 30% 45% 57.5% 73.33% 84.17%

The colored data reflected three different databases and the highest SIA for each database: red for TIMIT, blue for SITW and Violet for NIST 2008 database. The colored italic
entries represent the highest SIA

5.1.2 Evaluation of noisy speech data from TIMIT, SITW, and
NIST 2008with handset and noise (part A)

This subsection is represented by Tables 3, 4, 5, and
6, which show the evaluation of TIMIT, SITW, and
NIST 2008 for noisy speech with handset using different

background noises: AWGN, street traffic NSN, bus
interior NSN, and crowd talking NSN, respectively.
In addition, the handset used in all simulations was

the G.712 type handset at 16 kHz. From using time-
frequency analysis of the three types of NSN, we have
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Fig. 2 Evaluations in terms of SIA for the TIMIT, SITW, and NIST 2008
databases for widespread Gaussian mixture components {8, 16, 32,
64, 128, 256, 512} without handset and noise using the GMM-UBM
algorithm

observed the street traffic and crowd talking have broad
spectra and therefore have similar effect as AWGN. On
the other hand, the dominant energy of the bus-interior
noise is low frequency and therefore has least effect on
the speech when it is added. Therefore, for the AWGN,
street and crowd talking, we only consider reduction in
SIA performance between 30 and 10 dB; whereas, for bus-
interior, we consider between 30 and 0 dB. According to
the tables fromTables 3, 4, 5, and 6, the highest SIA results
are selected regardless of feature type (without fusion) or
fusion method for each SNR level. Then, these results are
shown in Fig. 3.
Firstly, for AWGN and G.712 type handset, represented

in Table 3, the bar charts in Fig. 3a can be used to ana-
lyze and discuss the results given in Table 3. The figure
shows the reduction in SIA was 75.83% at 30 dB to 7.5% at
10 dB for the TIMIT database, while in SITW the reduc-
tion in the SIA was 78.33% at 30 dB to 25% at 10 dB .
In contrast, the NIST 2008 had the lowest SIA among
all other databases at 30 dB with 26.67% then this was
reduced to the 3.33% at 10 dB, as such all databases
were affected by stationary noise, with a constant spec-
trum profile. The particular sensitivity to such noise when
applied to the NIST 2008 database may be due to the
natural characteristics of the interview speech.
Secondly, for street traffic NSN with handset, seen in

Table 4, Fig. 3b shows that the reduction in SIA was from
90% at 30 dB to 31.67% at 10 dB for the TIMIT database.
similarly, the reduction in SIA obtained by the NIST 2008
database was from 80 to 15%. In contrast, the lowest
reduction in the performance accuracy was attained using
the SITW database with SIA 81.67% at 30 dB dropping
down to 46.88% at 10 dB. As a consequence, the SITW
database has the lowest reduction in SIA compared with
the other three databases used for the evaluation.

Thirdly, for the bus interior NSN, seen in Table 5,
Fig. 3c illustrates that the reduction in SIA was from
91.67% at 30 dB to 56.67% at 0 dB for the TIMIT
database. Likewise, for the SITW database the SIA reduc-
tion was from 80.83 to 66.67% for 30and 0 dB, respec-
tively. However, the highest reduction in SIA was for the
NIST 2008 database with SIA 92.5% at 30 dB to 22.5%
at 0 dB.
Finally, the results in Table 6, Fig. 3d show that the

evaluation of the crowd talking NSN with the handset
evaluation was similar to the street NSN. For the TIMIT
database, the reduction in SIA was from 90% at 30 dB to
39.17% at 10 dB. Similar to this reduction, the figure for
the NIST 2008 database were 84.17% at 30 dB to 30% at
10 dB. In contrast, for the SITW database, the reduction
in SIA was from 82.5 to 53.33%. Considering the reduc-
tion in SIA for all simulations as a result of noise and
handset effects, the most important issue is the relative
sensitivities of the various methods to the environments.
To address this point, we consider further comparative
analysis.

5.2 Simulations and experiments for part B
In this study, based on the feature types (using four feature
combinations without fusion) and fusion methods, the
quantitative perspectives were measured by calculating
the PRSIA.

5.2.1 Quantitative perspective for noise and handset effects
in part B

The PRSIA was calculated for different conditions as in
Eq. (9):

PRSIAcond = SIAclean − SIAcond
SIAclean

(9)

where cond ∈ {1, 2, 3, 4 }, 1 refers to the AWGN and
handset, 2 to street traffic NSN and handset, 3 to the bus
interior NSN and handset, and 4 to the crowded talk-
ing NSN and handset. The handset used was G.712 type
at 16 kHz. This equation measured the SIAclean at mix-
ture size 256 for the original recordings in TIMIT, SITW,
and NIST 2008, without noise and handset conditions.
Then, we measured the SIAcond under the four condi-
tions in the testing phase. Table 7 presents the results of
PRSIA for each condition, depending on the noise type
with handset, each feature type, and each fusion method.
The negative sign “-” refers to reduction, while “+” refers
to increase. It is surprising to see a few positive sign val-
ues in Table 7, as we are considering different background
noise with handset effects, and the system should gener-
ally be degraded; but at SNR 30 dB, the very small amount
of noise may have a stabilization effect on the speaker
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Fig. 3 Performance measurement for noisy speech for the TIMIT, SITW, and NIST 2008 database at mixture size 256 under G.712 type handset at
16 kHz with background noise a AWGN , b street traffic NSN, c bus-interior, and d crowd talking NSN for wide range of SNR levels 0–30 dB and using
GMM-UBM algorithm

identification system. Moreover, all positive sign values
in Table 7 are for the challenging new database (SITW).
Generally, however, we can notice from Table 7 that all
the results for TIMIT and NIST 2008 at SNR 30 dB have
negative sign values, meaning a reduction in the SIA as a
result of the noise and handset effects. Secondly, most of
the fusion methods reduced the PRSIA for all databases
used.

Further, and most importantly, NIST 2008 is more
sensitive to noise, especially AWGN, and has a higher
reduction in PRSIA compared with TIMIT and SITW.
In contrast, SITW seems relatively robust against noise.
The fusion mean seems to have the lowest reduction
in SIA compared with other fusion methods. However,
MFCC features have less reduction in SIA for the TIMIT
database, while this position is reversed for SITW and
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Table 7 Percentage reduction in SIA (PRSIA) for the TIMIT, SITW, and NIST 2008, respectively, under G.712 type handset at 16 kHz,
AWGN, street traffic, bus interior, crowded talking NSN

Noise and handset effects Methods AWGN-with handset Street-WH Bus-WH Crowd talking-WH

Simulation 6 A: PRSIA at mixture size 256 and SNR 30 dB for TIMIT database

Feature based without fusion FWMFCC ( f 1) −31.24% −11.6% −4.46% −14.28%

CMVNMFCC ( f 2) −37.84% −8.11% −0.9% −5.41%

FWPNCC ( g1) −33.33% −31.48% −19.44% −34.26%

CMVNPNCC ( g2) −31.78% −25.23% −17.76% −23.37%

Fusion based Fused ω1 = 0.9 −28.57% −7.14% −3.57% −6.25%

Fused ω2 = 0.8 −25.67% −6.2% −4.43% −4.43%

Fused ω3 = 0.77 −24.78% −6.2% −4.43% −6.2%

Fused ω4 = 0.7 −24.78% −6.2% −5.31% −6.2%

Fusion max −21.43% −7.14% −4.46% −5.36%

Fusion mean −19.48% −4.43% −3.55% −5.31%

Simulation 6 B: PRSIA at mixture size 256 and SNR 30 dB for SITW database

Feature based without fusion FWMFCC ( f 1) −8.5% +1.07% +1.07% 0%

CMVNMFCC ( f 2) −8.34% −5.21% −3.13% −3.13%

FWPNCC ( g1) −0.85% −0.85% −1.9% +0.22%

CMVNPNCC ( g2) −2.09% −1.04% −1.04% +1.04%

Fusion based Fused ω1 = 0.9 −9.28% −1.03% −1.02% −1.03%

Fused ω2 = 0.8 −7.21% −1.03% −1.02% −1.03%

Fused ω3 = 0.77 −6.19% −1.03% −1.02% −1.03%

Fused ω4 = 0.7 −5.15% −1.03% 0% −1.03%

Fusion max −2.12% +1.07% +3.19% +3.19%

Fusion mean −3.13% +2.09% +2.09% +3.13%

Simulation 6 C: PRSIA at mixture size 256 and SNR 30 dB for NIST 2008 database

Feature based without fusion FWMFCC ( f 1) −77.48% −48.65% −7.21% −27.92%

CMVNMFCC ( f 2) −74.31% −449.54% −5.5% −25.69%

FWPNCC ( g1) −70.76% −9.43% −9.43% −8.49%

CMVNPNCC ( g2) −69.81% −11.32% −4.71% −6.6%

Fusion based Fused ω1 = 0.9 −76.32% −46.49% −7.02% −25.44%

Fused ω2 = 0.8 −75.44% −42.11% −5.26% −20.18%

Fused ω3 = 0.77 −74.56% −39.47% −4.39% −18.42%

Fused ω4 = 0.7 −74.56% −36.84% −4.39% −415.79%

Fusion max −78.38% −30.63% −3.6% −16.22%

Fusion mean −71.68% −26.55% −1.77% −10.62%

The colored data reflected three different databases and the highest SIA for each database: red for TIMIT, blue for SITW and Violet for NIST 2008 database

NIST 2008. For PNCC, the features have less reduction
thanMFCC in terms of the SIA. Finally, the highest reduc-
tion in all databases occurred under the AWGN with
handset condition, which is due to the uniformity of the
spectrum effect of the noise. The bus interior NSN and
handset has the lowest reduction which as stated earlier
is due to its low frequency nature. The results for other

noise conditions (street and crowded talking) are between
the AWGN and bus NSN effects.

6 Related works based on the proposed speaker
identification system

Table 8 summarizes results mostly at SNR 30 dB, where
cond.1 is speech files from TIMIT, SITW, and NIST
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2008 without handset and noise, termed clean speech;
cond.2 is noisy speech by AWGN and handset; cond.3 is
street NSN and handset; cond.4 is bus NSN and hand-
set; cond.5 is crowded talking NSN and handset. The
handset used in all noise conditions is G.712 type at
16 kHz. Comparisons show improvement in SIA with
the TIMIT database in cond.1 over the state of the art
methods due to Kumar et al. [5] and Togneri and Pul-
lella [6]. However, Ming et al. in their earlier work in [29]
attain higher SIA in cond.1 with TIMIT but only with a
GMM model and 630 speakers, but they do not consider
a handset in cond. 3. New benchmark figures contributed
from this study for a range of environmental noise condi-
tions with the three databases are provided by cond.2 –
cond.5.

7 Conclusions
In this study, we provided a comprehensive evaluation of
text independent closed set speaker identification in the
presence of AWGN and NSN types with a G.712 type
handset at 16 kHz to provide benchmark evaluations of
three different databases. We presented different feature
combinations based on MFCC and PNCC, modeled by
the GMM-UBM approach with and without fusion tech-
niques (maximum, mean and weighted sum fusion). The
evaluations were conducted under challenging environ-
ments including in the presence of the G.712 handset,

AWGN, and various NSN types. Three databases (TIMIT,
NIST 2008, and SITW) with a wide range of seven SNR
levels (0–30) dB with step size 5 dB were employed. In
addition, a wide range of Gaussian mixture components
{8, 16, 32, 64, 128, 256, 512 } for clean speech was also con-
sidered. Thorough evaluation and results were provided
by this research in order to give benchmark evaluations
and results for the three databases for other researchers
working in the speaker identification area. The major
findings from this study are

• On the basis of the evaluations of three databases
without the noise and handset conditions, the best
speaker identification method for all three
databases used was weighted sum fusion.

• Based on the three databases without the noise
and handset conditions, the order for best SIA was
NIST2008, TIMIT, SITW with 95.83, 95, and
82.5%, respectively, at mixture sizes 64, 512, and
also 512, respectively. These SIAs were achieved
by using weighted sum fusion with 90% from
FWMFCC features and 10% from the
corresponding CMVNPNCC features for both the
TIMIT and NIST 2008 database. On the other
hand, in the SITW database, 70% from FWMFCC
features was fused with 30% from the
corresponding CMVNPNCC features. The

Table 8 Comparisons with the state of the art in terms of SIA

Authors Database System approach Cond.1 Cond.2 Cond.3 Cond.4 Cond.5

Proposed work by TIMIT Fusion based 95% 75.83% 90% 91.67% 90%

Al-Kaltakchi et al. 120 speakers GMM-UBM SNR 30 dB SNR 30 dB SNR 30 dB SNR 30 dB

Microphone channel

Proposed work by SITW Fusion based 82.5% 78.33% 81.67% 81.67% 82.5%

Al-Kaltakchi et al. 120 speakers GMM-UBM SNR 30 dB SNR 30 dB SNR 30 dB SNR 30 dB

Proposed work by NIST 2008 Fusion based 95.83% 26.67% 80% 92.5% 84.17%

Al-Kaltakchi et al. 120 speakers GMM-UBM SNR 30 dB SNR 30 dB SNR 30 dB SNR 30 dB

Microphone channel

Kumar et al. TIMIT GMM 93.88%

[5] [2012] 120 speakers

Togneri and Pullella TIMIT GMM-UBM 94.5% 74.2%

[6] [2011] 64 speakers at SNR 30 dB

Ming et al. TIMIT GMM 96.51% 92.86%

[51] [2007] 630 speakers Mix 128 at 20 dB

without handset

The colored data reflected three different databases and the highest SIA for each database: red for TIMIT, blue for SITW and Violet for NIST 2008 database. The colored italic
entries represent the highest SIA
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weighting should therefore be chosen as a function
of the fidelity of the speech recordings.

• On the basis of the results in this paper, the
evaluations in noisy conditions suggest that mean
fusion of four combinations of two types of
features from (FWMFCC, CMVNMFCC,
FWPNCC, and CMVNPNCC) is the most robust
method for a practical speaker identification
system, but there is not a consistent best pairing.

Future work will consider a similar extensive evaluation
for a speaker identification system built from an I-vector
approach [4].
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