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Abstract

A reverberation-time-aware deep-neural-network (DNN)-based multi-channel speech dereverberation framework is
proposed to handle a wide range of reverberation times (RT60s). There are three key steps in designing a robust
system. First, to accomplish simultaneous speech dereverberation and beamforming, we propose a framework,
namely DNNSpatial, by selectively concatenating log-power spectral (LPS) input features of reverberant speech from
multiple microphones in an array and map them into the expected output LPS features of anechoic reference speech
based on a single deep neural network (DNN). Next, the temporal auto-correlation function of received signals at
different RT60s is investigated to show that RT60-dependent temporal-spatial contexts in feature selection are needed
in the DNNSpatial training stage in order to optimize the system performance in diverse reverberant environments.
Finally, the RT60 is estimated to select the proper temporal and spatial contexts before feeding the log-power
spectrum features to the trained DNNs for speech dereverberation. The experimental evidence gathered in this study
indicates that the proposed framework outperforms the state-of-the-art signal processing dereverberation algorithm
weighted prediction error (WPE) and conventional DNNSpatial systems without taking the reverberation time into
account, even for extremely weak and severe reverberant conditions. The proposed technique generalizes well to
unseen room size, array geometry and loudspeaker position, and is robust to reverberation time estimation error.

Keywords: Deep neural networks (DNNs), Simultaneous speech dereverberation and beamforming, Auto-correlation
function, Temporal and spatial contexts, Reverberation-time-aware (RTA)

1 Introduction
In hands-free speech communication systems, the acous-
tic environment can crucially affect the quality and
intelligibility of the speech signal acquired by the micro-
phone(s). In fact, the speech signal propagates through
the air and is reflected by the walls, the floor, the ceil-
ing, and any object in the room before being picked up
by the microphone(s). This propagation results in a signal
attenuation and spectral distortion, called reverberation,
that seriously degrades speech quality and intelligibility.
Many dereverberation techniques have thus been pro-
posed in the past (e.g., [1–5]). One direct way is to
estimate an inverse filter of the room impulse response
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(RIR) [6] to deconvolve the reverberant signal. Wu and
Wang [1], Mosayyebpour [2] designed an inverse filter of
RIR by maximizing the kurtosis and skewness of the lin-
ear prediction (LP) residual, respectively, to reduce early
reverberation. However, a minimum phase assumption
is often needed, which is almost never satisfied in prac-
tice [6]. The RIR can also be varying in time and hard
to estimate [7]. Kinoshita et al. [3] estimated the late
reverberations using long-term multi-step linear predic-
tion, and then reduced the late reverberation effect by
employing spectral subtraction.
Recently, due to their strong regression capabilities,

deep neural networks (DNNs) [8, 9] have also been uti-
lized in speech dereverberation. In [10, 11], a DNN-
based single-microphone dereverberation system was
proposed by adopting a sigmoid activation function at
the output layer and min-max normalization of target
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features. An improved DNN dereverberation system we
proposed recently [12] adopted a linear output layer
and globally normalized the target features into zero
mean and unit variance, achieving the state-of-the-art
performances.
Microphone array signal processing which utilizes spa-

tial information, is another fundamentally important way
for enhancement of speech acquisition in noisy envi-
ronment [13, 14]. It has recently been shown that the
use of the time-varying nature of speech signals could
achieve high-quality speech dereverberation based on
multi-channel linear prediction (MCLP) [15–17]. Its effi-
cient implementation method which performs in time-
frequency-domain, is often referred to as the weighted
prediction error (WPE) [15, 16, 18]. The work in [19]
designed a feed-forward neural network for mapping
microphone array’s spatial features into a T-F mask.
And [20] utilized a deep neural network (DNN) based
multichannel speech enhancement technique, where the
speech and noise spectra are estimated using a DNN
based regressor and the spatial parameters are derived in
an expectation-maximization (EM) like fashion.
In this paper, we aim to provide a robust and efficient

DNN-based multi-channel dereverberation framework
that takes explicitly and fully advantage of the rich tem-
poral and spatial information provided by the microphone
array. A linear uniform array is considered. And possible
extension to circular or even ad-hoc array arrangements
can be made in the future. First, we propose a single
DNN to simultaneously perform beamforming and dere-
verberation to overcome some of the limitations of the
commonly used delay-and-sum beamformers. We refers
to the proposed approach as DNNSpatial, because it selec-
tively combines LPS input features of reverberant speech
obtained from multiple microphones in an array and
map them into the expected output LPS features of ane-
choic reference speech. The proposed new data utiliza-
tion strategy based on multi-channel data, leverages upon
the complementary information captured in microphone
array speech to simultaneously perform beamforming and
dereverberation. Its key goal is to discover rich and com-
plex interactions in the signals without any ad-hoc pre-
processing but with only data. Different from beamform-
ing, where expert knowledge has to be involved in order to
reach the desired result, the DNNwill eventually boost the
signal in the direction of the desired source, and/or pos-
sibly ignore/deemphasize some of the available channels
using information available in the data. To better assess
the strength of the proposed approach, we also build two
standard DNN-based dereverberation systems, namely
DSB-DNN and DNNs-DSB, which are direct extensions
of the single-microphone case in [12] by combining a
beamformer with single or multiple DNN dereverberation
systems. The experimental evidence confirms that the

proposed DNNSpatial approach outperforms the other
two more common DNN-based solutions investigated in
this work, in both 2-microphone and 6-microphone set-
tings, according to all of the three objective measures
tested. Moreover, the six-microphone array also outper-
forms the dual-microphone configurations at all reverber-
ation times.
In a single-channel case [12], we found that RT60-

dependent frame shift and acoustic context are two key
environment-aware parameters in DNN training, which
can boost the system’s environment robustness. While
in multichannel case, we pay more attention to spatial
information rather than frame shift, because spatial infor-
mation captured by microphone array is fundamentally
important to speech enhancement of speech acquisition
in noisy environment. We next investigate the temporal
auto-correlation function of reverberant signals in differ-
ent reverberant conditions, illustrating a RT60-dependent
feature selection is needed to achieve top performances
in diverse reverberant cases. Experimental evidence con-
firms that in stronger reverberant situations, even at a cost
of losing spatial contexts, larger temporal contexts with
larger aperture size can achieve higher quality derever-
berated speech, An environment-aware approach, namely
RTA-DNNSpatial, is thus designed to improve the sys-
tem performance and enhance system robustness, by
adopting RT60-dependent temporal-spatial information.
Experimental results demonstrate that RTA-DNNSpatial
surpassesWPE and DNNSpatial at a wide range of RT60s.
It also has good generalization capabilities to unseen
room size, array geometry and loudspeaker position, and
robustness to RT60 estimation error.
The rest of the paper is organized as follows. We

first describe the proposed reverberation-time-aware
DNN-based multi-channel dereverberation framework in
Section 2. Experimental results are next provided and
analyzed in Section 3. The generalization capabilities of
the proposed environment-aware model are illustrated
in Section 4. Finally we summarize our findings in
Section 5.

2 Multi-microphone dereverberation
The well-known delay and sum beamformer (DSB), which
is a fundamentally essential method to speech derever-
beration [7], is utilized in this paper. It provides us
with a foundation from which to explore alternative
approaches and techniques. It is of interest also since it
has been used as a benchmark for several newly devel-
oped dereverberation algorithms [21–23]. Moreover, we
adopt an improved DNN dereverberation system we pro-
posed recently [12] by adopting a linear output layer and
globally normalizing the target features into zero mean
and unit variance. In addition, a linear uniform array is
utilized.
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2.1 DSB-DNN
Figure 1 shows a potential framework, namely DSB-DNN,
consisting of a DSB followed by a single-channel derever-
beration DNN model [19, 24]. Here the DNN system is
adopted as the mapping function from DSB output to the
reference channel’s anechoic speech features. This system
has a low computational complexity and is easy to accom-
plish, therefore commonly used in dereverberation appli-
cations. The following experimental results show that it is
not the optimal choice.

2.2 DNNs-DSB
Another possible solution is that the DNN models are
performed first on each channel independently and the
resulting outputs are fed to the DSB [20], as illustrated
in Fig. 2. It has a very high computational cost, espe-
cially when the number of microphonesM becomes large.
ri(t) (i = 1, ...,M) is the i-ch reverberant signal, with Yri
and Φri representing its magnitude and phase spectrums,
respectively. Y ′

ri denotes the DNN-based dereverberated
magnitude. The enhanced waveform si(t) is then recon-
structed from the estimated spectral magnitude Y ′

ri and
the phase of reverberant speech Φri with overlap-add
method [12]. Finally, the system output s(t) is obtained by
performing delay and sum beamforming. The DSB relies
on the time delay between si(t) and sj(t) (i �= j) [7]. How-
ever, on the reconstructed signals, neither the magnitude
nor phase guarantees the delay assumptions across chan-
nels. For example, the phase of the reverberant speech
Φri could be different from the phase of reconstructed
signal Φsi , because for a spectrogram-like matrix in the
time-frequency domain, it is not guaranteed there exists
a time-domain signal whose STFT is equal to that matrix
[25]. Thus the following DSB is not reliable, and the dere-
verberated signal might have relative worse performance
on temporal-domain measures, like frequency-weighted
segmental signal-to-noise ratio (fwSegSNR) [26].

2.3 DNNSpatial
Both the DSB-DNN and DNNs-DSB rely on the DSB
module, but actually it is possible to embed the beam-
former in DNN, which encourages us to design a
single-DNN configuration without DSB to accomplish
simultaneous speech dereverberation and beamforming.
We propose a speech dereverberation framework, namely
DNNSpatial, by selectively combining input LPS features

of reverberant speech from multiple microphones in an
array andmap them into the expected output LPS features
of anechoic reference speech based on DNNs. The block
diagram of DNNSpatial system is illustrated in Fig. 3,
while the detailed training procedure is in the bottom
panel.
A clean signal x(t) is first passed through a M-

microphone array. In our experiments, the received signal
of each channel ri(t) (i = 1, ...,M) is then divided into
32ms time framewith 16ms frame shift. A 512-point DFT
of each overlapping windowed frame is computed. Then
257-dimension LPS feature vectors [27] are used for DNN
training. We use Ri(k, c) to denote the log magnitude in
the time-frequency (T-F) unit for time frame k and fre-
quency channel c in the ith channel. Therefore, in the LPS
domain, each frame can be represented as a vector ri(k):

ri(k) =[Ri(k, 1),Ri(k, 2), ...,Ri(k, 257)]T (1)

In order to incorporate temporal dynamics, we include
the spectral features of neighboring frames into a feature
vector. Therefore, ri(k) is extended to

r̃i(k) =[ ri(k − di); ...; ri(k); ...; ri(k + di)] (2)

where di denotes the number of neighboring frames in
each side in the ith channel. Note that it has been shown
in [11] that using the frames in both sides is an optimal
feature extension strategy. The input vector is a concate-
nation of selective speech frames spatially from different
microphones and temporally from various acoustic con-
texts in different microphones. Therefore, the concate-
nated vector for the DNN feature mapping is:

r̂(k) =[ r̃1(k); ...; r̃i(k); ...; r̃M(k)] (3)

The desired output of the neural network is the spec-
trogram of anechoic reference speech y(t) = x(t − t′)
(t′ is the time delay between loudspeaker and reference
microphone) in the current frame k, denoted by a 257-
dimensional feature vector, whose elements correspond to
the log magnitude in each frequency bin at the kth frame.
The channel between the loudspeaker and the first micro-
phone is considered as the reference channel; therefore
the target feature is denoted as y1(k).
A fixed-length context window is used in order to

ensure a fair comparison and a controlled environ-

DSB DNN Dereverberated Speech

Microphone 1

Microphone M

Fig. 1 A block diagram of the DSB-DNN system
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Fig. 2 A block diagram of the DNNs-DSB system

ment (i.e.,
∑M

i=1(2di + 1) is a fixed value). It also
avoids a brute-force approach that always selects the
same number of frames for each microphone, which
may eventually leads to a too big DNN input size as
the number of microphone increases and thus causes

dramatic performance deterioration [28]. The proposed
approach has a low computational complexity, since
only a single DNN is used. It is also independent
on the delay assumptions because no beamformer is
utilized.

Fig. 3 A block diagram of the proposed DNNSpatial system
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2.4 Reverberation-time-aware DNNSpatial
In DNNSpatial, the input vector is a concatenation
of speech frames selected temporally (di) and spatially
(i) from various acoustic contexts in different micro-
phones, and thus there are different possible com-
binations of temporal and spatial features. Therefore,
the effects of temporal-spatial feature combinations on
DNNSpatial-based dereverberation performance should
be investigated.

2.4.1 Temporal auto-correlation function at different RT60s
In reverberant environments, the source speech, x(t), and
the corresponding received signal at the ith microphone,
ri(t), can be related by

ri(t) = x(t) ∗ hi(t), (4)

where hi(t) is the RIR of the ith channel, which is assumed
to be a time-invariant system, and ∗ denotes convolution.
Then the room transfer functionHi

(
ej2π f

)
is found by tak-

ing the Fourier transform of hi(t), which can be expressed
in terms of a direct and a reverberant component, i.e.,

Hi
(
ej2π f

)
= Hd,i

(
ej2π f

)
+ Hr,i

(
ej2π f

)
. (5)

where f denotes the signal frequency.
It is further assumed that the direct and reverberant

components are statistically uncorrelated, and thus, the
energy spectral density can be written as
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The direct component is given by [29]

Hd,i
(
ej2π f

)
= ejQDi

4πDi
, (7)

where Di is the distance between the source and the ith
microphone. The wave numberQ = 2f /c with c being the
sound velocity in air.
From the statistical room response model, the reverber-

ant component, E
{∣
∣Hr,i

(
ej2π f

)∣
∣2

}
, can be written as [29]

E
{∣
∣
∣Hr,i

(
ej2π f

)∣
∣
∣
2
}

= 1 − α

πAα
, (8)

where α and A are the average wall absorption coefficient
and total wall surface area, respectively.
Using Eqs. (7) and (8), we obtain the energy spectral

density

E{|Hi
(
ej2π f

)
|2} = 1

16π2D2
i

+ 1 − α

πAα
. (9)

The temporal auto-correlation function of ri(t) is given
as follows [30],

φriri(τ ) = φxx(τ ) ∗ Rhi(τ ), (10)

where φriri(τ ) and φxx(τ ) represent the auto-correlation
function of ri(t) and x(t), respectively. And, Rhi(τ ) �
hi(τ ) ∗ hi(−τ) is called the deterministic auto-correlation
function of hi(t) [31]. The Fourier transform can be writ-
ten as the following equation:

�riri

(
ej2π f

)
= �xx

(
ej2π f

)
× �hihi

(
ej2π f

)
, (11)

where�riri
(
ej2π f

)
,�xx

(
ej2π f

)
and�hihi

(
ej2π f

)
denote the

Fourier transforms of φriri(τ ), φxx(τ ), and Rhi(τ ), respec-
tively. Because the autocorrelation function and energy
spectral density are a pair of Fourier transform for a
random energy signal [32],

�hihi

(
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)
= E
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2
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. (12)

Moreover, the energy of φriri(τ ) can be calculated by
using Parseval’s theorem [33]

Eφriri
=

∫ ∞
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(13)

Substituting Eqs. (9) and (12) into Eq. (13), then we can
obtain

Eφriri
=

∫ ∞

−∞

∣
∣
∣�xx

(
ej2π f

)∣
∣
∣
2
(

1
16π2D2

i
+ 1 − α

πAα

)2

df .

(14)

Clearly, Eφriri
is inversely proportional to α (0 < α ≤

1) and RT60 is also inversely proportional to α [34].
As a result, RT60 is proportional to Eφriri

. Therefore, a
higher RT60 will result in a larger Eφriri

. Generally, φriri
will decrease with the increase of τ , so there will be
more energy at high autocorrelation lags in more severe
reverberation.
Figure 4 shows an utterance’s temporal auto-correlation

function, corrupted by reverberation in a simulated room
of dimension 6 by 4 by 3 m (length by width by height)
at RT60 = 0.2 and 2 s, respectively. Since the energy of
the reverberant utterance will significantly affect the auto-
correlation, we scale φrr(0) to 1 to fairly compare the
auto-correlations of the received signals at different rever-
berant environments. The positions of the loudspeaker
and microphone are at (2, 3, 1.5) and (4, 1, 2) meters. It
can be observed that φrr(τ ) at high autocorrelation lags
at RT60 = 2 s is much stronger than that at RT60 = 0.2 s,
which is consistent with the above theoretical analysis.
Consequently, in more severe reverberation, the tem-

poral correlation of the consecutive reverberant frames
will become stronger. Thus, the temporal context needs



Wu et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:81 Page 6 of 13

Fig. 4 Temporal auto-correlation function of an utterance in TIMIT dataset [51], corrupted by reverberation at RT60 = 0.2 and 2 s, respectively

to be more emphasised; however it may cause the loss of
spatial context because of the fixed-length context win-
dow scenario, which has been adopted in this paper for a
fair comparison among different approaches, as discussed
in Section 3.2. While in weaker reverberant conditions,
the spatial context can be guaranteed by decreasing the
redundant temporal context. Based on the above findings,
an approach exploiting the combinations of temporal and
spatial information at different RT60s, should be more
appropriate in multi-channel dereverberation systems.

2.4.2 Channel selection with less spatial contexts
In stronger reverberant conditions, the temporal context
should be emphasised, resulting in less spatial contexts,
i.e., only a subset of microphones is available. To achieve
better performances, we use the array aperture size as a
measure for selecting the channels.
For example, in a fixed uniform linear array, the beam-

width is [13]

θ = 2cos−1
[

c
Mdf

]

, (15)

where M and d denote the number of microphones and
the spacing between neighboring sensors, respectively.
L = Md is the array aperture. Therefore, the spatial dis-
crimination capability depends on the array aperture size,
i.e., discrimination improves with a larger aperture size
[13]. If we assume only 2 elements in the M-microphone
array are available in highly reverberant cases, in order to
get the largest aperture size, the ith andMth channels with
the largest spacing should be chosen.
In addition, in order to avoid spatial aliasing, the spac-

ing between neighboring sensors has to satisfy the spatial
sampling theorem [35, 36], i.e.,

d ≤ λ

2
= c

2f
, (16)

where λ is the wavelength of the speech signal. Since
microphone signals are naturally broadband [37], one
should sample at half of the wavelength corresponding to
the smallest wavelength (or highest temporal frequency)
of interest. For example, for a two-element array, the spac-
ing is only about 2.1 cm to prevent aliasing for up to 8 kHz.
Clearly, spatial aliasing is somewhat of a misunderstood
phenomenon [38], since the human binaural auditory sys-
tem does not experience problems localizing broadband
sounds with an average spacing of 20 cm (correspond-
ing to aliasing above 850 Hz). And it has been revealed
in [38] that the spatial Nyquist criterion has little impor-
tance for microphone arrays. Therefore, in array design,
we could expect a large aperture size by setting a large
spacing.
For the purpose of improving the system perfor-

mance and enhancing system robustness, we propose
an environment-aware framework, namely RTA-
DNNSpatial, by incorporating the temporal-spatial
characteristics at distinct reverberant conditions and
the channel selection strategy. A block diagram of the
proposed RTA-DNNSpatial system is illustrated in
Fig. 5 which is an improved version over our proposed
DNNSpatial system illustrated in Fig. 3, by integrat-
ing the RT60-dependent temporal and spatial contexts
(red parts), into training and dereverberation. In the
training and dereverberation stages, the feature selec-
tion of temporal and spatial contexts is dependent on
the utterance-level RT60, while an RT60 estimator
is required in the dereverberation stage. A detailed
description of how RT60 affects the combinations of
temporal and spatial features will be presented later in
Section 3.2.1.

3 Experiments and result analysis
3.1 DNNSpatial
The experiments were conducted in a simulated room
of dimension 6 by 4 by 3 meters (length by width by
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RT60-dependent
contexts

Anechoic Reference/
Multi-Channel

Reverberant Speech

Feature 
Concatenation

DNN
Training

Training Stage

Dereverberation Stage

Feature 
Concatenation

DNN
Decoding

Multi-Channel
Reverberant Speech

RT60-dependent
contexts

RT60
Estimator

Fig. 5 A block diagram of the proposed RTA-DNNSpatial system

height). The position of the loudspeaker was at (2, 3,
1.5) meters. Both 2-microphone and 6-microphone arrays
were considered. For the 2-microphone array, the posi-
tions of the microphones were at (4, 1, 2) and (4, 1.2,
2) meters, respectively. For the 6-microphone array, the
positions of the microphones were at (4, 1, 2), (4, 1.1, 2),
(4, 1.2, 2), (4, 1.3, 2), (4, 1.4, 2), and (4, 1.5, 2) meters.
Ten RIRs were simulated using an improved image-source
method (ISM) [39] with reverberation time (RT60) rang-
ing from 0.1 to 1.0 s, with an increment of 0.1 s. To
learn a high-quality DNN model, all 4620 training utter-
ances from the TIMIT set were convolved with the gen-
erated RIRs to build a large multi-condition training set,
resulting in about 40 h of reverberant speech at each
microphone. To test DNN’s generalization capability in
mismatch conditions, RIRs with RT60 from 0.1 to 1.0 s
with the increment of 0.05 s (rather than 0.1 s) were con-
volved with 100 randomly selected utterances from the
TIMIT test set to construct the test set. This resulted in
a collection of 19 × 100 reverberant utterances at each
microphone.
Kaldi [40] was used to train DNNs, with 3 hid-

den layers, 2048 nodes for each layer. The number of
pre-training epochs for each RBM [41] layer was 1.
The learning rate of pre-training was 0.4. As for fine-
tuning, the learning rate and the maximum number of
epochs were 0.00008 and 30, respectively. The mini-
batch size was set to 128. The configuration parameters
were chosen according to a previous investigation on
speech enhancement [42]. Input and target features of
DNN were globally normalized to zero mean and unit
variance [43].
In addition, frequency weighted segmental SNR

(fwSegSNR) [26], short-time objective intelligibil-
ity (STOI) [44], and perceptual evaluation of speech
quality (PESQ) [45] were used to evaluate the system
performance.

3.1.1 Single-microphone DNN-based dereverberation
systems

We first show the performances of our recently proposed
single-channel DNN dereverberation system “DNN-
baseline” in [12] with 11 frames of input feature expansion;
another single-channel DNN dereverberation system
“DNN-HWW” in [10] without post-processing [25]; the
signal processing dereverberation method “WPE” with its
single channel mode. The WPE code is available at http://
www.kecl.ntt.co.jp/icl/signal/wpe/index.html. “Rev” rep-
resents unprocessed reverberant speech.
Figure 6 illustrated that when compared to unpro-

cessed reverberant speech, our proposed DNN-baseline
could achieve a significant fwSegSNR improvement of
3.5 dB on the average at all RT60s, including mis-
matched conditions of RIRs and unseen speakers. This
results demonstrated that our proposed single-channel
DNN system had both powerful regression and gener-
alization capabilities. Furthermore, the proposed system
was superior to WPE and DNN-HWW at each RT60,
achieving average fwSegSNR increase of 2.5 and 1.2 dB,
respectively.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6

8

10

12

14
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eg
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 (
d

B
)
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WPE
DNN−HWW
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Fig. 6 Average single-microphone fwSegSNR of WPE, DNN-HWW,
and DNN-baseline at different RT60s

http://www.kecl. ntt.co.jp/icl/signal/wpe/index.html
http://www.kecl. ntt.co.jp/icl/signal/wpe/index.html
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Fig. 7 Average 2-microphone fwSegSNR (a), STOI (b) and PESQ (c) of three DNN-based array dereverberation systems at different RT60s

3.1.2 Multi-microphone DNN-based dereverberation
systems

Then we show the performances of three DNN-based
array dereverberation systems (i.e., DSB-DNN, DNNs-
DSB, and DNNSpatial) in a 2-microphone array. For DNN
models in both DSB-DNN and DNNs-DSB, a 11-frame
context window was considered during DNN training.
While for DNNSpatial, a 10-frame context window was
utilized (i.e.,

∑2
i=1(2di + 1) = 10), to ensure a fair com-

parison and a controlled environment. The possible con-
figurations for feature selection in DNNSpatial are (9, 1),
(7, 3), and (5, 5). Specifically, (9, 1) implies the number of
frames in acoustic context for the first and second micro-
phone is 9 and 1, respectively (i.e., d1 = 4, d2 = 0). We
referred to these three configurations as DNNSpatial9-
1, DNNSpatial7-3, and DNNSpatial5-5, respectively. We
selected the last one as our DNNSpatial configuration
without any special purpose. And note that the phase
used to do reconstruction in DNN-based systems were
the phase of the delay-and-sumed speech signal, so that
all systems are comparable regardless of phase issue. As
shown in Fig. 7, compared with DNN-baseline, although
DSB-DNN could substantially increase the fwSegSNR
scores, the improvements were small. DNNs-DSB only
improved fwSegSNR below RT60 ≤ 0.15 s, and showed
decreases at all other RT60s tested, as explained in
Section 2.2. While our proposed DNNSpatial could sig-
nificantly improve the speech quality and achieved the
best fwSegSNR scores at all RT60s. In terms of STOI and
PESQ, the proposed DNNSpatial still could obtain bet-
ter scores than DSB-DNN and DNNs-DSB at almost all

RT60s, demonstrating DNNSpatial performed better than
the other two DNN-based array dereverberation models.
Moreover, the proposed DNNSpatial framework general-
izes well to unseen RT60s.
Figure 8 shows the performances of three DNN-based

array dereverberation systems in a 6-microphone array.
And, DNNSpatial5-1-1-1-1-1 (d1 = 2, d2 = d3 =
d4 = d5 = d6 = 0,

∑6
i=1(2di + 1) = 10) was

adopted in the experiment without any special purpose.
It still could obtain the best scores at almost all RT60s,
in terms of fwSegSNR, STOI, and PESQ, demonstrating
its robustness to the array configuration. Moreover, the
6-microphone array also outperformed dual-microphone
configurations at all RT60s according to the three objec-
tive measures tested.

3.2 Reverberation-time-aware DNNSpatial
(RTA-DNNSpatial)

In Section 3.2.1, our proposed DNNSpatial models were
trained to estimate the two contexts, i and di, needed to
achieve top performances for each RT60. In Section 3.2.2,
we further explore a RTA-DNNSpatial system that con-
sider the effects of feature selection by adopting the “opti-
mal” temporal and spatial contexts at each RT60, which is
assumed to be known in the dereverberation stage.

3.2.1 Temporal and spatial contexts in feature selection
The following experimental settings were the same as in
Section 3.1. The larger microphone array that consisted
of six elements was considered. Three-thousand seventy-
two nodes for each layer were used to train DNNs. The

Fig. 8 Average 6-microphone fwSegSNR (a), STOI (b) and PESQ (c) of three DNN-based array dereverberation systems at different RT60s
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Table 1 Average 6-microphone fwSegSNR of different DNNSpatial configurations at different RT60s

RT60 (s) 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00

Rev 13.51 10.71 9.26 8.35 7.69 7.19 6.79 6.47 6.20 5.98 5.78 5.62 5.47 5.35 5.24 5.14 5.05 4.98 4.90 4.84

WPE 14.78 12.15 11.22 10.72 10.33 10.03 9.74 9.47 9.25 9.03 8.80 8.62 8.40 8.23 8.03 7.82 7.65 7.47 7.32 7.15

DNNbaseline 13.52 12.54 11.91 11.48 11.15 10.90 10.67 10.50 10.32 10.16 10.01 9.88 9.74 9.62 9.51 9.40 9.30 9.21 9.10 9.01

DNNSpatial3-3-1-1-3-3 15.68 14.16 13.23 12.55 12.04 11.61 11.26 10.97 10.70 10.46 10.25 10.05 9.86 9.68 9.52 9.36 9.22 9.08 8.95 8.83

DNNSpatial5-1-1-1-1-5 15.65 14.13 13.21 12.56 12.05 11.66 11.32 11.04 10.79 10.57 10.38 10.19 10.01 9.84 9.69 9.56 9.43 9.31 9.20 9.08

DNNSpatial7-0-0-0-0-7 15.10 13.74 12.92 12.36 11.93 11.58 11.27 11.03 10.80 10.60 10.39 10.23 10.06 9.92 9.78 9.66 9.53 9.42 9.30 9.20

RT60 was also extended to 2.0 s, in order to explicitly
explore the effects of temporal and spatial variations in
feature selection on the dereverberation performance.
Table 1 presents the average fwSegSNR scores of a series

of sampled DNNSpatial configurations at different RT60s.
The numbers in bold denote maximum values at each
RT60 among all DNNSpatial models. “Rev” represents
unprocessed reverberant speech. The results in Table 1
show that:
(i) A 14-frame context window was used to study

how RT60 affected the temporal-spatial features. To
ensure a controlled environment and differentiable
temporal-spatial contexts, three symmetric configura-
tions of DNNSpatial3-3-1-1-3-3, DNNSpatial5-1-1-1-1-5,
and DNNSpatial7-0-0-0-0-7 were investigated. Obviously,
DNNSpatial7-0-0-0-0-7 had the longest temporal context
but the least spatial context, and the largest aperture array
size having only two elements.
Clearly the performances were affected greatly by the

combinations of temporal-spatial contexts as these bold
numbers show the optimal contexts vary with RT60s.
Specially, for conditions of RT60≥ 0.9 s, it was surpris-
ing that even at a price of losing some spatial con-
texts, DNNSpatial7-0-0-0-0-7 still could perform better
than DNNSpatial3-3-1-1-3-3 and DNNSpatial5-1-1-1-1-
5. This could be explained by the theoretical analysis
in Section 2.4 that, in a stronger reverberant environ-
ment, (a) larger temporal contexts should bemore empha-
sized because of the stronger temporal correlation of the
consecutive reverberant frames; (b) the channels with
larger spacing should be selected in order to obtain the
largest aperture size, which could compensate the loss of
spatial contexts. Similar results were obtained in terms
of STOI and PESQ. A “optimal” RT60-dependent feature
selection of temporal-spatial contexts was then obtained
by extracting the best DNNSpatial configuration at each
RT60 in Table 1, illustrated in Table 2.
(ii) The DNNbaseline with 15-frame feature extension

was also considered, which was actually a special case
of DNNSpatial15-0-0-0-0-0. It was not surprising that at
RT60=2.0 s, DNNbaseline with the largest temporal con-
text was superior to DNNSpatial3-3-1-1-3-3. This was
also consistent with our findings in Section 2.4.

(iii) Compared with the state-of-the-art signal process-
ing multi-channel dereverberation method WPE with the
6-channel mode, our proposed DNNSpatial frameworks
(3-3-1-1-3-3, 5-1-1-1-1-5, 7-0-0-0-0-7) could significantly
improve the fwSegSNR by about 1.6 dB on the average at
all RT60s tested.

3.2.2 RTA-DNNSpatial (Known RT60)
Inspired by the findings in Table 1, a RTA-DNNSpatial1
was established by incorporating RT60-dependent
temporal-spatial contexts. In the training stage, the
utterance-based speech frames spatially from different
microphones and temporally from various acoustic
contexts in different microphones were concatenated by
the optimal temporal and spatial contexts, as shown in
Table 2. In the dereverberation stage, as the RT60s were
assumed to be known, the test data could be processed in
the same manner as the training utterances.
The results in Fig. 9 show that, compared with

DNNSpatial systems, RTA-DNNSpatial model could
achieved the best fwSegSNR, STOI, and PESQ scores
at almost all known RT60s, including extremely weak
(RT60 = 0.1 s) and severe (RT6 = 2.0 s) reverberant
cases. That indicates that the proposed environment-
aware approach is robust enough to handle the slightly
and highly reverberant situations. Furthermore, RTA-
DNNSpatial worked even better at low RT60s.

4 Discussions on generalization capabilities
Since the DNN is a data-driven mechanism, it is
important to evaluate our proposed RTA-DNNSpatial’s
generalization capabilities to situations not seen in
training. Therefore, we directly evaluate RTA-DNNSpatial
(obtained in Section 3.2.2) without retraining in a series
of mismatched conditions that are most commonly con-
sidered in practical applications. fwSegSNR, which is a
speech intelligibility indicator [46], was used to evaluate
the system performances.

Table 2 RT60-dependent temporal-spatial contexts

RT60 (s) 0.10∼0.30 0.40∼0.80 0.90∼2.00

Strategy 3-3-1-1-3-3 5-1-1-1-1-5 7-0-0-0-0-7
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Fig. 9 Average 6-microphone fwSegSNR (a), STOI (b) and PESQ (c) results at different RT60s

4.1 Generalization to room size
The DNN system, which was trained in the room of
dimension 6 by 4 by 3 m (length by width by height),
was tested in a very different room of dimension 10 by
7 by 3 m, with the positions of loudspeaker and micro-
phones unchanged. Figure 10 shows the generalization
results of the room size at different RT60s. Clearly, RTA-
DNNSpatial yielded higher fwSegSNR scores than the
unprocessed reverberant speech and WPE at each RT60s.
The results illustrates that although our proposed DNN
model was only trained in a single room, it generalized
well to an unseen room size, demonstrating the robust-
ness of our proposed environment-aware approach to new
room sizes.

4.2 Generalization to array geometry
Next, we investigated the geometry dependence of the
proposed RTA-DNNSpatial. In the training phase, a
uniform linear array with an increment of 10 cm was
utilized. In the dereverberation stage, a new array pattern
was constructed by increasing the increment to 15 cm.
As shown in Fig. 11, the RTA-DNNSpatial model still
could achieve the highest scores at each RT60s, illustrating
that the proposed approach had a powerful generalization
capability to the geometrically mismatched case.

4.3 Generalization to loudspeaker position
In real scenarios, the speaker could be anywhere. There-
fore, it is of importance to evaluate the generalization
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)
Bd( 

R
NSgeS

wf

RT60 (s)
Rev WPE RTA-DNNSpatial

Fig. 10 Average fwSegSNR results at different RT60s, tested in a new
room

capabilities of loudspeaker position. In the training stage,
the positions of the loudspeaker was at (2, 3, 1.5) m. In
the dereverberation stage, we purposely changed the posi-
tions of the loudspeaker to be at (1, 1.5, 2.5) m. This
time the room size and microphone array position was
kept unchanged. Figure 12 illustrates that compared with
WPE, the proposed RTA-DNNSpatial boosted fwSegSNR
scores at RT60 = 0.3 s, 1.5 and 2.0 s. It demonstrates that
our proposed RTA-DNNSpatial had good generalization
capabilities to loudspeaker position.

4.4 Robustness to RT60 estimation error
The above RTA-DNNSpatial models assumed RT60
known in the dereverberation stage. However, it was
unavailable in practice. Now, we present experimental
results to assess the performance of RTA-DNNSpatial
in practical solutions by using an accurate RT60 esti-
mator proposed in [47], marked as “RTA-DNNSpatial-
nonoracle”. The RT60 is estimated to choose the optimal
RT60-dependent temporal and spatial contexts from
Table 2, which will be utilized in the dereverbera-
tion stage. The results of the two standard DNN-based
multi-channel dereverberation configurations were also
given. As shown in Fig. 13, compared with unprocessed
reverberant speech, WPE, DSB-DNN, and DNNs-DSB,
the nonoracle case substantially boosted fwSegSNR scores
at all RT60s. Moreover, it is good to know that the two
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Fig. 11 Average fwSegSNR results at different RT60s, tested in a new
array geometry
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Fig. 12 Average fwSegSNR results at different RT60s, tested at a new
loudspeaker position

environment-aware DNNSpatial frameworks were com-
parable. That is because in our designed RT60-aware
DNNSpatial, the estimated utterance-level RT60 was
rounded up to the nearest value of the multiples of 0.1
s. That means it allows a ± 0.05 s RT60 estimation error,
increasing the robustness of our proposed algorithm to
potential estimation errors.
In addition, it is difficult to evaluate the proposed

approach on real RIRs. For example, in REVERB Chal-
lenge [48], it assumes the scenario of capturing utterances
with a 8-ch circular array in reverberant meeting rooms.
But the selection of RT60-dependent temporal and spa-
tial contexts are analyzed and determined on a uniform
linear array. But we can test our proposed DNNSpa-
tial and RTA-DNNSpatial in its single-channel model on
the REVERB Challenge 1-channel real data. As shown
in [49], the proposed DNN systems outperform all other
methods in all situations - the best performing method
listed in the REVERB Challenge is shown for ease of
comparison. In addition, although ACE Challenge [50]
provides a 8-channel uniform linear array real recorded
RIRs, it is tough for our RTA-DNNSpatial to handle all the
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Fig. 13 Average fwSegSNR results at different RT60s, tested with an
RT60 estimator

extreme mismatched conditions together (unseen room
size, speaker position, microphone position, array element
increment and RT60, etc).

5 Conclusions
In this paper, we first propose a speech dereverbera-
tion framework, namely DNNSpatial, by selectively com-
bining input LPS features of reverberant speech from
multiple microphones in an array and map them into
the expected output LPS features of anechoic refer-
ence speech based on DNNs. We compare the proposed
single-DNN approach to two standard DNN-based multi-
channel dereverberation configurations, namely DSB-
DNN and DNNs-DSB. Experimental results demonstrate
that the proposed single DNNSpatial model without DSB
performs better than the other two DNN models with
DSB in both 2-microphone and 6-microphone settings
according to all the three objective measures tested.
Next, we propose a reverberation-time-aware DNNSpa-

tial framework, namely RTA-DNNSpatial, by adopting
RT60-dependent temporal and spatial contexts, to make
the system robust enough to handle a wide range of
RT60s. Experimental results indicate that it is superior
to the state-of-the-art signal processing multi-channel
dereverberation algorithmWPE and DNNSpatial models,
including slightly and severely reverberant environments.
It also generalizes well to mismatched room size, array
geometry, and loudspeaker position, and is robust to RT60
estimation error, which will yield significant benefits in
many practical applications.
In future studies, we would like to explore the availabil-

ity of direction of arrival (DOA) information to further
improve the system performances.

Endnote
1 For the input concatenated feature vectors of 3-

3-1-1-3-3, 5-1-1-1-1-5, and 7-0-0-0-0-7, the same fre-
quency bin may correspond to different microphones.
Based on our preliminary experiments, this inconsistency
between frequency and spatial domains will result in
degraded dereverberation performances. Therefore dur-
ing the RTA-DNNSpatial training, the normalized input
vectors of different feature combinations were added
zeros to remove the inconsistency.
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