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Abstract

We consider the problem of sequential inference of latent time-series with innovations correlated in time and
observed via nonlinear functions. We accommodate time-varying phenomena with diverse properties by means of a
flexible mathematical representation of the data. We characterize statistically such time-series by a Bayesian analysis of
their densities. The density that describes the transition of the state from time t to the next time instant t + 1 is used
for implementation of novel sequential Monte Carlo (SMC) methods. We present a set of SMC methods for inference
of latent ARMA time-series with innovations correlated in time for different assumptions in knowledge of parameters.
The methods operate in a unified and consistent manner for data with diverse memory properties. We show the
validity of the proposed approach by comprehensive simulations of the challenging stochastic volatility model.
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1 Introduction
This paper addresses inference of a broad class of latent
time-series observed via nonlinear functions. We aim at
modeling time-series with diverse memory properties in a
unified manner so that a method for inference of hetero-
geneous time-varying data can be proposed. To that end,
we elaborate on classical autoregressive moving average
(i.e., ARMA) models and consider innovations1 that are
correlated in time. With these flexible modeling assump-
tions, a diverse set of scenarios and data properties can be
accommodated. The studied latent time-series framework
not only covers classical ARMA type models and their
fractionally integrated generalizations, i.e., autoregressive
fractionally integrated moving average (ARFIMA) pro-
cesses but also allows for inference of time-series with
heterogeneous memory properties.
The analysis of time-series is relevant in a plethora of

disciplines in science, engineering and economics [1–3].
In all these areas, stochastic processes are used to model
the behavior of time-varying data. Often, the modeling is
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carried out by two processes, one of which is latent and the
other, observed and informative about the hidden process.
Among the relevant features of time-series data and the

stochastic models used for their description, theirmemory
is one of the most important characteristics. On the one
hand, there are short-memory processes, where only few
past data values affect the present of the time-series. On
the other, the present value is dependent on samples far
into the past for long-memory processes.
ARMA models have been widely studied for charac-

terizing short-term processes, as they accurately describe
quickly forgetting data. The pioneering work on short-
memory processes and ARMA(p, q) time-series was pre-
sented in the early 1950s by [4], it was continued by
[5], and later expanded by [2]. ARMA(p, q) processes
are defined by their autoregressive (AR) parameters
a1, a2, · · · , ap, of order p; moving average (MA) param-
eters b1, b2, · · · , bq, of order q; and driving innovations
ut , which are assumed to be independent and identically
distributed (i.i.d.).
The work on long-memory processes also began in the

middle of the 20th century, with the groundwork laid by
[6]. He studied Nile river data and realized that it man-
ifested long-range dependence. In the following decades,
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plenty of other geophysical, climatological, and financial
records have been described by similar long-term charac-
teristics [7–9].
For modeling time-series with long memory, there are

two types of formulations that have attracted interest of
practitioners [8]. They arise naturally from limit theorems
and classic models. With the first formulation, the long-
memory processes are described as stationary increments
of self-similar models, of which the fractional Gaussian
process (fGp) is a prime example. The second formulation
appears in the form of autoregressive fractionally inte-
grated moving average processes. These models are built
upon ARMA models by introducing non-integer values
of the differencing parameter d, which accounts for the
“integrated” part I of the model. The acronyms ARFIMA
or FARIMA are used to refer to these processes (where
the F refers to the “fractional” component), even if the
ARIMA(p, d, q) notation suffices if fractional values of
d are considered.
Both short- and long-memory processes (modeled by

ARMA, FARIMA, or other models) are commonly used in
practice to describe all kinds of time-varying data, includ-
ing eolic phenomena [10, 11], biomedical signals [12],
or financial markets [13, 14]. Our goal in this paper is
to consider a generic formulation of time-series so that
we accommodate diverse memory properties in a unified
framework. We do so by considering ARMA models with
innovations that are correlated in time.
We have pointed out that it is common to use two

dependent processes to model observed phenomena. The
reason is that often, we are not able to directly observe
the process of interest. This may be due to the intricacies
of the acquisition procedure or simply because the latent
process cannot be observed. Inference of hidden processes
is a very challenging task. The time-series estimation and
prediction problems are certainly much more difficult
when the process of interest is not directly observed, as is
the case in this paper.
The latent process has dynamics that are not directly

observed, but the observed process depends on the latent
process in various forms. One represents the two by
using a state-space formulation, where the evolution of
the system is modeled over time by a series of hidden
variables associated with another series of measurements.
That is, the state-space model comprises a set of ordered
observations yt that depend on some latent time-evolving
unknowns xt . Oftentimes, one is interested in online or
sequential estimation of the state, as data are observed
over time.
The task of estimating the hidden processes (i.e., xt)

based on observations yt has been widely studied, see
[15] for example. To that end, two classes of problems
are contemplated: one where the processes and the obser-
vations are linear functions of the states with additive

and Gaussian perturbations and another where the func-
tions are nonlinear and/or the noises are not Gaussian.
The former class allows for estimating the latent pro-
cess by optimal methods (e.g., Kalman filtering [16]) while
the latter, by resorting to suboptimal methods, based on
Bayesian theory [17] or other approximating techniques
[18]. Precisely, popular approaches are based on (1) model
transformations (e.g., extended Kalman filtering [19]), (2)
resorting to QML solutions [15], and (3) Monte Carlo
sampling principles.
Our goal here is to provide a method that achieves

sequential estimation of hidden time-series with diverse
memory properties within a unified framework. We avoid
Gaussianity and linearity assumptions in the model and
thus consider techniques that can overcome such dif-
ficulties. In particular, among the advanced techniques
available for online estimation of data, we choose to work
with sequential Monte Carlo (SMC) or particle filtering
(PF) methods [20–22].
Ever since the publication of [23], they have been shown

to overcome the difficulties posed by non-Gaussian and
nonlinear models. They have an extensive record of being
successfully applied to many disciplines, including engi-
neering [24], geophysical sciences [25], biology [26, 27],
and economics [28]. Furthermore, it is an active area of
research, where new paradigms and extensions to the clas-
sical SMCmethod for estimation of latent states and fixed
parameters are being explored [29–31]. In this work, we
focus on the use of standard SMC methods for inference
of latent states with different memory properties in a uni-
fied and consistent manner. We present our contributions
in detail after providing a brief synopsis of the paper in the
following section.

1.1 Outline
We consider the general problem of sequential inference
of latent time-series, observed via nonlinear functions.
We describe the considered mathematical framework in
Section 2, where we adopt a state-space representation
of the processes. The latent time-series is modeled as an
ARMA(p, q) process driven by innovations correlated in
time. We make minimal assumptions about the observa-
tion equation so that any computable nonlinear function
can be accommodated.
In Section 3, we provide a Bayesian analysis of the

time-series model, for different assumptions about the
parameters of the model. We first derive the joint prob-
ability density of the data, for which the computation of
the covariance matrix is critical. We subsequently obtain
the transition density of the time-series of interest, which
plays a critical role in the proposed method.
We leverage the statistical description of the model and

propose an SMC solution in Section 4. After an outline of
the key concepts of the SMC technique in subsection 4.1,
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in the following subsection, we present a novel SMC
method for inference of latent time-series with non-i.i.d.
innovations.
We conclude the paper with Section 5where we evaluate

the proposed set of SMCmethods on an illustrative appli-
cation: inference of the stochastic volatility of observed
time-varying data. This model is not only of interest in
practice (e.g., finance) but also serves as a challenging
benchmark for alternative methods already available in
the literature. The results validate our proposed method.

1.2 Contribution
The main contribution of this paper is a set of SMCmeth-
ods for inference of latent states with different memory
properties in a unified and consistent manner.
In previous work, SMC methods have been intro-

duced for specific modeling assumptions: ARMA pro-
cesses in [32–34] and latent fractional Gaussian processes
in [35]. On the contrary, an SMC-based alternative for
filtering time-series of different properties could be to
pose the problem from a model selection perspective
[36–38]. However, we study a different and more ambi-
tious approach in this paper, as we target inference of
latent states with different characteristics in a unified and
consistent manner.
We consider time-varying phenomena with diverse

characteristics, provide a flexible and compact mathemat-
ical representation of the data, and propose generic SMC
methods for sequential inference of latent time-series with
different memory properties.
More precisely:

• We provide a mathematical framework for the
characterization of heterogeneous time-series as
ARMA(p, q) models driven by innovations correlated
in time.

• We derive a compact mathematical formulation that
describes time-series of diverse memory properties.

• We derive both the joint and the transition density of
such time-series under different model parameter
assumptions.

• We present a set of SMC methods for inference of
latent time-series with non-i.i.d. innovations, based
on which parameters of the model are known.

• We demonstrate the performance of the proposed
SMC on the stochastic volatility model driven by a
fractional Gaussian process filtered by an
ARMA(p, q) process.

2 Mathematical model
We are interested in the study of latent time-series
with diverse memory properties observed via nonlinear
functions. To systematically accommodate observed and
hidden variables, we adopt the state-space methodology.

For the state, we use a flexible formulation that allows
for short- and long-memory processes. As for the space
equation, we make minimal assumptions.
Specifically, the state dynamics follow an ARMA(p, q)

model with non-i.i.d. innovations. That is, the driving
noise for the ARMA process is correlated in time. The
only restriction is that the innovation process must be
stationary. For the observation equation, we consider non-
linear functions of the state.
Mathematically, the model of interest is
{
xt = ∑p

i=1 aixt−i + ut + ∑q
j=1 bjut−j ,

yt = h(xt , vt) ,
(1)

where xt ∈ R (xt = 0, ∀t < 0) is the state of the latent
process at t; a1, a2, · · · , ap are the autoregressive (AR)
parameters; and b1, b2, · · · , bq are the moving average
(MA) parameters of the ARMAmodel.
The symbol ut represents a zero-mean Gaussian inno-

vation process that is correlated in time. That is, it is fully
characterized by its first (i.e., mean) and second moments
(i.e., an arbitrary autocovariance function γu(τ )). Note
that stationarity is enforced (the mean is constant and the
autocovariance depends only on the time lag τ ), but no
restriction on the form of the autocovariance function is
imposed.
We denote with yt ∈ R the observation at time t. We

consider that the observation can be expressed by any
generic function h(xt , vt) and that the observation noise
vt can have any distribution for as long as the likelihood
function f (yt|xt) is computable up to a proportionality
constant.
Our goal is to sequentially estimate the posterior distri-

bution of xt , given the observations y1:t ≡ {y1, y2, · · · , yt},
that is, f (xt|y1:t). We want to update f (xt|y1:t) to
f (xt+1|y1:t+1), for each new acquired observation yt+1.
We resort to Bayesian theory for the derivation of such

density. The key equation in the derivation is the one that
connects the filtering density at t, f (xt|y1:t), with that at
the next time instant t + 1, f (xt+1|y1:t+1). It is given by

f (xt+1|y1:t+1) =
∫

f (xt+1|x1:t , y1:t+1)f (x1:t|y1:t)dx1:t .
(2)

The analytical solution to this integral is only possible
for the case of Gaussian densities and linear functions, i.e.,
the celebrated Kalman Filter [16]. Since we do not restrict
ourselves to such assumptions in this paper, we resort to
SMC methods, widely popular since the seminal publica-
tion of [23]. These methods provide suboptimal solutions,
as they compute probability random measure approxi-
mations of the densities of interest, while guaranteeing
convergence under suitable conditions.



Urteaga et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:84 Page 4 of 15

We detail in Section 3 the Bayesian analysis of the
studied time-series (i.e., ARMA(p, q) models with corre-
lated innovations), before delving into the intricacies of
sequential Monte Carlo methods in Section 4.

3 Bayesian analysis of the time-series
We provide a Bayesian analysis of an ARMA(p, q)
model driven by an innovation process that is not i.i.d.
We emphasize the importance of considering the full
ARMA(p, q) with correlated innovations model, as it
allows for an accurate description of time-series with a
wide range of memory properties within the same mathe-
matical formulation.
Typical ARMA(p, q) models (i.e., with i.i.d. innova-

tions) possess exponentially decaying memory properties.
Regardless of the parameterization of the autoregressive
or the moving average components, the time-series for-
gets its past at a rate proportional to c−τ for a constant
c ∈ (0, 1). On the contrary, by considering correlated
innovations ut , we allow for the time-series to exhibit
a wide range of decaying memory properties. That is,
the modeled time-series can forget their past values sub-
exponentially.
For example, if the innovations are fractional Gaussian

processes, then the memory dependency is proportional
to τ−c for a constant c ∈ (0, 1) (e.g., see Fig. 1). Note that
such diverse memory characteristics cannot be modeled
with ARMA models and uncorrelated innovations. Fur-
thermore, any of the particular subcases (AR(p), MA(q),
or ARMA(p, q), with or without correlated noise) are
covered within the proposed generic formulation.
All in all, we study a generic ARMA(p, q) model with

non-i.i.d. innovations. We are interested in the statistical
properties of this stochastic process and, thus, in the joint
distribution of the time-series up to time instant t, i.e.,

Fig. 1 γu(τ ) for a fGp, as a function of the Hurst parameter

f (x1:t). This distribution contains all the relevant infor-
mation of the time-series, from which any marginal and
conditional of interest can be derived.
We start by reformulating the state time-series in Eq. (1),

where we fix b0 = 1,

xt =
p∑

i=1
aixt−i +

q∑
j=0

bjut−j ,

1 −
p∑

i=1
aixt−i =

q∑
j=0

bjut−j ,

(3)

and rewrite the above recursion in matrix form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −a1 −a2 · · · −ap 0 0 0 · · · 0
0 1 −a1 · · · −ap−1 −ap 0 0 · · · 0
0 0 1 · · · −ap−2 −ap−1 −ap 0 · · · 0
...
...

. . .
. . .

. . .
...

. . .
. . .

. . .
...

0 0 0 0 0 0 · · · 1 −a1 −a2
0 0 0 0 0 0 0 · · · 1 −a1
0 0 0 0 0 0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xt
xt−1

xt−2
...
x3
x2
x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 b1 b2 · · · bq 0 0 0 · · · 0
0 1 b1 · · · bq−1 bq 0 0 · · · 0
0 0 1 · · · bq−2 bq−1 bq 0 · · · 0
...
...

. . .
. . .

. . .
...

. . .
. . .

. . .
...

0 0 0 0 0 0 · · · 1 b1 b2
0 0 0 0 0 0 0 · · · 1 b1
0 0 0 0 0 0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ut
ut−1

ut−2
...
u3
u2
u1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4)

By defining the matrices

At =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −a1 −a2 · · · −ap 0 0 0 · · · 0
0 1 −a1 · · · −ap−1 −ap 0 0 · · · 0
0 0 1 · · · −ap−2 −ap−1 −ap 0 · · · 0
...

...
. . .

. . .
. . .

...
. . .

. . .
. . .

...
0 0 0 0 0 0 · · · 1 −a1 −a2
0 0 0 0 0 0 0 · · · 1 −a1
0 0 0 0 0 0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
t×t ,

(5)

and

Bt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 b1 b2 · · · bq 0 0 0 · · · 0
0 1 b1 · · · bq−1 bq 0 0 · · · 0
0 0 1 · · · bq−2 bq−1 bq 0 · · · 0
...
...

. . . . . . . . .
...

. . . . . . . . .
...

0 0 0 0 0 0 · · · 1 b1 b2
0 0 0 0 0 0 0 · · · 1 b1
0 0 0 0 0 0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
t×t ,

(6)

we can immediately write Atx1:t = Btu1:t , and thus,

x1:t = A−1
t Btu1:t , (7)
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where the time subscript t also indicates matrix dimen-
sionality.
In our problem of interest, the innovation process ut

is zero-mean Gaussian with an arbitrary autocovariance
function γu(τ ) = σ 2

uρu(τ ). The innovation process is cor-
related unless ρu(τ ) = δ(τ ), when we have i.i.d. noise.
The vector of innovations up to time instant t, i.e., u1:t ,
follows a zero-mean Gaussian multivariate density with
covariance matrix Cut = σ 2

uRut , where

Rut =

⎛
⎜⎜⎜⎜⎜⎝

ρu(0) ρu(1) · · · ρu(t − 2) ρu(t − 1)
ρu(1) ρu(0) · · · ρu(t − 3) ρu(t − 2)
...

...
. . .

...
...

ρu(t − 2) ρu(t − 3) · · · ρu(0) ρu(1)
ρu(t − 1) ρu(t − 2) · · · ρu(1) ρu(0)

⎞
⎟⎟⎟⎟⎟⎠
.

(8)

Note the symmetric Toeplitz structure of the matrix,
where the only required elements are the normalized
autocovariance values ρu(τ ), for lags τ = 0, 1, · · · , t − 1.
Based on these sufficient statistics of the correlated

innovation process and the formulation of the time-series
as in Eq. (7), we derive the densities of interest for our
model in Eq. (1).

3.1 Bayesian analysis: joint density of the time-series
Let us consider anARMA(p, q) time-series with correlated
innovations at time instant t, i.e.,

x1:t = A−1
t Btu1:t , u1:t ∼ N

(
0, σ 2

uRut
)
. (9)

One readily concludes that the joint density of the time-
series x1:t is a multivariate zero-mean Gaussian with a
covariance matrix dependent on the matrices At , Bt , and
Rut ; that is,

x1:t ∼ f
(
x1:t|σ 2

u
) = N

(
x1:t|0, σ 2

u�t
)
,

�t = A−1
t BtRutB�

t

(
A−1
t

)� ∈ R
t×t .

(10)

It is also of practical interest to consider the unknown
driving noise variance case. Instead of estimation of the
unknown σ 2

u , we hereby proceed by marginalizing it, i.e.,
we Rao-Blackwellize σ 2

u . To that end, we use conjugate
priors due to their convenient analytical properties on
deriving the marginalized density.
We start with a scaled inverse chi-squared prior for the

unknown σ 2
u ,

f
(
σ 2
u
) = χ−2 (

σ 2
u |ν0, σ 2

0
) =

(
σ 2
0

ν0
2
) ν0

2



(

ν0
2
) 1(

σ 2
u
)1+ ν0

2
e
− ν0σ20

2σ2u .

(11)

The derivation of the marginalized joint density is then
given by

f (x1:t) = ∫ ∞
0 f

(
x1:t|σ 2

u
)
f
(
σ 2
u
)
dσ 2

u

= ∫ ∞
0 (2π)− t

2
(
σ 2
u
)− t

2 |�t|− 1
2 e

− 1
2σ2u

x�
1:t�

−1
t x1:t

·
(
σ 2
0

ν0
2
) ν0
2



( ν0
2
) 1

(σ 2
u )

1+ ν0
2
e
− ν0σ20

2σ2u dσ 2
u

∝ ∫ ∞
0

(
σ 2
u
)−(

1+ ν0+t
2

)
e
− 1

2σ2u

(
ν0σ 2

0 +x�
1:t�

−1
t x1:t

)
dσ 2

u

∝
[(

ν0σ
2
0 + x�

1:t�
−1
t x1:t

)]− ν0+t
2

∝
[(

1 + 1
ν0
x�
1:t

(
σ 2
0 �t

)−1 x1:t
)]− ν0+t

2

= Tν0

(
x1:t|0, σ 2

0 �t
)
.

(12)

We conclude that the joint density of the time-series
at time instant t after marginalization of the unknown
variance is a multivariate Student t density

f (x1:t)=Tν (x1:t|μt ,�t)

= 
( ν+t
2 )


( ν
2 )π

t
2 ν

t
2 |�t |

1
2
·
(
1 + (x1:t−μt)��−1

t (x1:t−μt)
ν

)−( ν+t
2 )

,

(13)

where ν = ν0 represents the degrees of freedom, μt = 0 is
the location parameter, and�t = σ 2

0 �t is the scale matrix.

3.2 Bayesian analysis: transition density of the time-series
In time-series analysis, the transition density of the pro-
cess, which describes the dynamics of the state from time
t to the next time instant t + 1, is of practical interest.
To that end, we leverage the joint densities derived in
Subsection 3.1 for both the known and unknown innova-
tion variance cases.
Let us consider the statistical description of the time-

series at time instant t + 1, i.e.,

{
f
(
x1:t+1|σ 2

u
) = N

(
x1:t+1|0, σ 2

u�t+1
)
, if σ 2

u is known,
f (x1:t+1) = Tν0

(
x1:t+1|0, σ 2

0 �t+1
)
, if σ 2

u is unknown,
(14)

and rewrite the covariance matrix �t+1 in block form

�t+1 =
(
ht+1 λt
λ�
t �t

)
, where

⎧⎨
⎩
ht+1 ∈ R

1×1

λt ∈ R
1×t

�t ∈ R
t×t

. (15)

We can readily derive the transition density of the state
by using the expressions for the conditionals of the multi-
variate Gaussian and Student t distributions [39]. Namely,
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• if σ 2
u is known

f
(
xt+1|x1:t , σ 2

u
) = N

(
xt+1|μt+1, σ 2

t+1
)
,

with
{

μt+1 = λt�
−1
t x1:t ,

σ 2
t+1 = σ 2

u

(
ht+1 − λt�

−1
t λ�

t

)
.

(16)
• if σ 2

u is unknown

f (xt+1|x1:t)= Tνt+1

(
xt+1|μt+1,φ2

t+1
)
,

with

⎧⎪⎨
⎪⎩

νt+1=ν0 + t ,
μt+1=λt�

−1
t x1:t ,

φ2
t+1= ν0σ 2

0 +x�
1:t�

−1
t x1:t

ν0+t

(
ht+1−λt�

−1
t λ�

t

)
.

(17)

4 Proposed SMCmethod for inference of latent
time-series

Our objective is to sequentially infer the evolution of
a latent time-series with correlated innovations, as we
acquire new observations. In Bayesian terminology, one is
interested in updating the filtering density from f (xt|y1:t)
to f (xt+1|y1:t+1) as new data are observed. We do so by
using Eq. (2).
As previously pointed out, the analytical solution to

such equation is intractable for the most interesting cases
(models with nonlinearities and non-Gaussianities) and
thus, we resort to sequential Monte Carlo methods. We
briefly provide an overview of SMC methods in subsec-
tion 4.1, before explaining in detail our proposed method
in subsection 4.2.

4.1 Sequential Monte Carlo
Monte Carlo methods are a class of computational algo-
rithms that numerically approximate functions of inter-
est by random sampling. In particular, sequential Monte
Carlo methods recursively compute approximations to
relevant probability densities, by replacing the true densi-
ties with discrete random probability measures

f (x) ≈ f M(x) =
M∑

m=1
w(m)δ

(
x − x(m)

)
, (18)

where δ(·) is the Dirac delta function.
The points x(m) represent the support of the random

measure and are called particles. These particles are
assigned weights w(m), which are interpreted as probabil-
ity masses. The random measure is thus a weighted sum
ofM particles and their weights.
The key to SMCmethods is the sequential computation

of Eq. (2), which is done by updating the approximating
randommeasures at time instant t to the next time instant
t + 1. Let f M(xt) be the approximation of f (xt|y1:t) at time
instant t. The update of f M(xt) to f M(xt+1) is done in two
steps.

First, one propagates the particles x(m)
t to x(m)

t+1 via a so-
called proposal density π(·),

x(m)
t+1 ∼ π

(
xt+1|x(m)

1:t , y1:t+1
)
, (19)

where one may use all or part of the available information
(that is, the history of observations and previous states).
Then, one computes the weights of each candidate sample
x(m)
t+1 according to

w(m)
t+1 ∝ w(m)

t

f
(
yt+1|x(m)

t+1

)
f
(
x(m)
t+1|x(m)

1:t

)

π
(
x(m)
t+1|x(m)

1:t , y1:t+1
) , (20)

where f
(
yt+1|x(m)

t+1

)
is the likelihood of the new observa-

tion given sample x(m)
t+1, and f

(
x(m)
t+1|x(m)

1:t

)
is the transition

density of the latent state. The computation of the weights
is followed by their normalization so that they sum up to
one and form a proper probability random measure.
SMC methods require an additional third step called

resampling [40]. If one proceeds with propagation and
weight computation only, the approximation f M(xt)
degenerates quickly, as only few of the particles are
assigned non-negligible weights. Resampling consists
on deciding which particles to propagate by select-
ing those with higher probability, i.e., bigger weights
w(m)
t . One prevents the quick deterioration of the SMC

method by resorting to resampling methods (see [40]
for an overview of the most common techniques).
These are often triggered based on the effective sample
size of the SMC approximation at every time instant [41].
The choice of the proposal density is critical for

any SMC method. It has been shown that the opti-
mal importance function is f (xt+1|xt , y1:t+1), which min-
imizes the variance of the resulting random measure.
However, this density is analytically intractable in our
problem of interest. We adopt the simpler, but yet effec-
tive, alternative known as Sequential Importance Resam-
pling (SIR) [23].
In summary, we sample new particle candidates from

the transition density of the latent states f (xt+1|x1:t). Such
proposal function entails that the weighting of the par-
ticles is proportional to their likelihood function, i.e.,
w(m)
t+1 ∝ w(m)

t f
(
yt+1|x(m)

t+1

)
. Details of the proposed SMC

method for inference of latent ARMA models with corre-
lated innovations follows.

4.2 Proposed SMCmethod
Wefirst present an SMCmethod for inference of an ARMA
process with correlated innovations, when the ARMA
parameters, i.e., θ = (a1 a2 · · · ap b1 b2 · · · bq)�,
are known. We later relax the assumptions for the case
when these parameters are unknown. In all the cases,
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the normalized autocovariance values ρu(τ ) for lags τ =
0, 1, · · · , t − 1, of the correlated innovation process must
be known.

4.2.1 Proposed SMCmethod: known ARMA parameters
Let us consider at time instant t the following probabil-
ity randommeasure approximation of the filtering density
f (xt|y1:t):

f M(xt) =
M∑

m=1
w(m)
t δ

(
xt − x(m)

t

)
. (21)

Upon reception of a new observation yt+1, the algorithm
proceeds as follows:

1. Compute the joint normalized covariance matrix
�t+1 at time instant t + 1.

�t+1 = A−1
t+1Bt+1RutB�

t+1

(
A−1
t1

)� =
(
ht+1 λt
λ�
t �t

)
.

(22)

2. Perform resampling of the state’s genealogical line by
drawing from a categorical distribution defined by
the random measure f M(xt).

x(m)
1:t ∼

{
x(m)
t ,w(m)

t

}
,wherem = 1, · · · ,M. (23)

3. Propagate the state particles by sampling from the
transition density, conditioned on the available
resampled streams x(m)

1:t .

• If σ 2
u is known

x(m)
t+1 ∼ N

(
xt+1|μ(m)

t+1, σ
2
t+1

)
,

where
{

μ
(m)
t+1 = λt�

−1
t x(m)

1:t ,
σ 2
t+1 = σ 2

u

(
ht+1 − λt�

−1
t λ�

t

)
.

(24)

• If σ 2
u is unknown

x(m)
t+1 ∼ Tνt+1

(
xt+1|μ(m)

t+1,φ
2(m)
t+1

)
,

where

⎧⎪⎪⎨
⎪⎪⎩

νt+1 = ν0 + t ,
μ

(m)
t+1 = λt�

−1
t x(m)

1:t ,

φ
2(m)
t+1 = ν0σ 2

0 +x(m)�
1:t �−1

t x(m)
1:t

ν0+t

(
ht+1− λt�

−1
t λ�

t

)
.

(25)

4. Compute the non-normalized weights for the drawn
particles according to

w̃(m)
t+1 ∝ f

(
yt+1|x(m)

t+1

)
, (26)

and normalize them to obtain a new randommeasure

f M(xt+1) =
M∑

m=1
w(m)
t+1δ

(
xt+1 − x(m)

t+1

)
. (27)

For the above method to be applicable, one needs to
have full knowledge of the parameters in the transition
density. That is, the matrices At+1, Bt+1, and Rut+1 must
be known for the covariance matrix �t+1 to be computed
for propagation of the state particles.
One can efficiently compute �t+1 by leveraging alge-

braic tricks prompted by the structural properties of the
involved matrices (Toeplitz and upper triangular). On
the one hand, the upper triangular nature of At and Bt
simplify the number of computations considerably (the
inverse of an upper triangular matrix is also upper tri-
angular). The product A−1

t Bt is a matrix with a struc-
ture similar to At and Bt : an upper triangular matrix
with elements of its first row shifted to the right. On
the other hand, due to the Toeplitz structure of the Rut
matrix, one can resort to a Levinson-Durbin type tech-
nique [42] to recursively compute the necessary matrix
product operations.
The assumption that knowledge of the parameters

within At+1 and Bt+1 exists, however, is often not sub-
stantiated. Therefore, we resort to a parameter sam-
pling scheme when the ARMA parameters are not
known. We augment the state vector with the unknown
parameters ρt = (xt θt)�, similar to the work in [43,
44]. Note that the subscript t in θt does not imply
that the parameter evolves over time. It is there only
to signify that we obtain samples of the unknowns at
time t.
The full parameter posterior for the model in Eq. (1) is

analytically intractable, and thus, we cannot draw samples
from the true parameter posterior. Furthermore, as the
parameters do not change over time, their particle prop-
agation becomes troublesome and various methodologies
have been suggested to overcome these challenges. Some
include the use of artificial parameter evolution [23], while
others resort to kernel smoothing [43] or density-assisted
(DA) particle filtering techniques [45].
In this paper, we explore and compare two sampling

alternatives, one based on the principles of DA-SMC
methods and another where importance sampling (IS) of
the parameters is carried out. In the former, one approx-
imates the posterior of the unknown parameters with a
density of choice; in the latter, one draws from a proposal
density for the parameters and later adjusts by computing
the appropriate weights.
These proposed methods are the first approximation to

dealing with unknown ARMA parameters. We acknowl-
edge that any of the advanced SMC techniques that mit-
igate the challenges of estimating constant parameters
(e.g., parameter smoothing [29, 46, 47] or nested SMC
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methods [30, 31]) can only improve the accuracy of the
proposed SMC methods.

4.2.2 Proposed SMCmethod: DA-SMC for unknown ARMA
parameters

We now propose an SMC method for the case where
the parameters of the latent ARMA model, i.e., θ =
(a1 a2 · · · ap b1 b2 · · · bq)�, are unknown. This
first alternative follows the principles of density-assisted
SMCmethods. Because the true posterior of the unknown
parameters is analytically intractable, it approximates
such posterior with a density of choice.
In particular, we propose to approximate the posterior

of the unknown parameter θ , given the current time-series
x1:t , with a Gaussian distribution, i.e.,

f
(
θ

(m)
t+1 |x(m)

1:t

)
≈ N

(
θt+1|μθt ,�θt

)
, (28)

where the sufficient statistics are computed based on
samples and weights available at this time instant

μθt = ∑M
i=1 w

(m)
t θ

(m)
t ,

�θt = ∑M
i=1 w

(m)
t

(
θ

(m)
t − μθt

) (
θ

(m)
t − μθt

)�
.

(29)

One uses this approximation to propagate parameter
samples from this time instant to the next. As a result, the
overall weight computation of the SMCmethod simplifies
to

w̃(m)
t+1 ∝ f

(
yt+1|x(m)

t+1

)
· f

(
x(m)
t+1|x(m)

1:t ,θ(m)
t+1

)
π(xt+1)

· f
(
θ

(m)
t+1 |x(m)

1:t

)
π(θt+1)

∝ f
(
yt+1|x(m)

t+1

)
.

(30)

In summary, the proposed DA-SMC for the unknown
parameter case considers a joint state and parameter ran-
dom measure at time instant t of the following form

f M(ρt) =
M∑

m=1
w(m)
t δ

(
ρt − ρ

(m)
t

)
, (31)

and, upon reception of a new observation yt+1, proceeds
as follows:

1. Estimate the sample mean and covariance of the
parameter vector θt .⎧⎨

⎩
μθt = ∑M

i=1 θ
(m)
t w(m)

t ,

�θt = ∑M
i=1

(
θ

(m)
t − μθt

) (
θ

(m)
t − μθt

)�
w(m)
t .

(32)

2. Draw new parameter samples from the Gaussian
approximation to the posterior density with the
newly computed sufficient statistics.

θ
(m)
t+1 ∼ f

(
θt|x(m)

1:t

)
≈ N

(
θt+1|μθt ,�θt

)
. (33)

3. Compute the joint covariance matrix for each
parameter sample θ

(m)
t+1 .

�
(m)
t+1 = A(m)−1

t+1 B(m)
t+1RutB

(m)�
t+1 A(m)−1�

t1 =
(
h(m)
t+1 λ

(m)
t

λ
(m)�
t �

(m)
t

)
.

(34)

4. Perform resampling of the state’s genealogical line by
drawing from a categorical distribution defined by
the random measure f M(xt).

x(m)
1:t ∼

{
x(m)
t ,w(m)

t

}
,wherem = 1, · · · ,M. (35)

5. Propagate the state particles by sampling from the
transition density, conditioned on available
resampled streams x(m)

1:t .

• If σ 2
u is known

x(m)
t+1 ∼ N

(
xt+1|μ(m)

t+1, σ
2(m)

t+1

)
,

where

⎧⎨
⎩

μ
(m)
t+1 = λ

(m)
t �

(m)−1

t x(m)
1:t ,

σ 2(m)

t+1 = σ 2
u

(
h(m)
t+1 − λ

(m)
t �

(m)−1

t λ
(m)�
t

)
.

(36)
• If σ 2

u is unknown

x(m)
t+1 ∼ Tνt+1

(
xt+1|μ(m)

t+1,φ
2(m)

t+1

)
,

where

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

νt+1 = ν0 + t ,
μ

(m)
t+1 = λ

(m)
t �

(m)−1

t x(m)
1:t ,

φ2(m)

t+1 = ν0σ 2
0 +x(m)�

1:t �
(m)−1
t x(m)

1:t
ν0+t

×
(
h(m)
t+1 − λ

(m)
t �

(m)−1

t λ
(m)�
t

)
.

(37)

6. Compute the non-normalized weights for the drawn
particles according to

w̃(m)
t+1 ∝ f

(
yt+1|x(m)

t+1

)
, (38)

and normalize them to obtain a new probability
random measure

f M(ρt+1) =
M∑

m=1
w(m)
t+1δ

(
ρt+1 − ρ

(m)
t+1

)
. (39)

4.2.3 Proposed SMCmethod: IS-SMC for unknown ARMA
parameters

We now propose an alternative SMC method for the
unknown ARMA parameter case too, based on impor-
tance sampling principles. Instead of approximating the
analytically intractable parameter posterior, one can
choose a proposal density and apply IS to jointly adjust the
state and parameter samples.
Specifically, we use a Gaussian proposal density to draw

samples for the unknown ARMA parameters θ . At every
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time instant, one propagates parameter particles by sam-
pling from the proposal

π(θt+1) = N
(
θt+1|μθt ,�θt

)
, (40)

with sufficient statistics as in Eq. (29). The corresponding
weight computation results in

w̃(m)
t+1 ∝ f

(
yt+1|x(m)

t+1

)
· f

(
x(m)
t+1|x(m)

1:t θ
(m)
t+1

)
π(xt+1)

· f
(
θ

(m)
t+1 |x(m)

1:t

)
π(θt+1)

= f
(
yt+1|x(m)

t+1

)
· f

(
θ

(m)
t+1 |x(m)

1:t

)
N(θt+1|μθt ,�θt )

.

(41)

Since the posterior of the parameters is analytically
intractable, we have

f
(
θ

(m)
t+1 |x(m)

1:t

)
=

f
(
x(m)
1:t |θ(m)

t+1

)
f
(
θ

(m)
t+1

)

f
(
x(m)
1:t

) ∝
f
(
x(m)
1:t |θ(m)

t+1

)

f
(
x(m)
1:t

) ,

(42)

which results in⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f
(
θ

(m)
t+1 |x(m)

1:t

)
∝ N

(
x(m)
1:t

∣∣∣0,σ 2
u�

(m)
t

)

N
(
x(m)
1:t

∣∣∣∣0,σ 2
u�

(μθt )
t

) , if σ 2
u is known,

f
(
θ

(m)
t+1 |x(m)

1:t

)
∝ Tν0

(
x(m)
1:t

∣∣∣0,σ 2
0 �

(m)
t

)

Tν0

(
x(m)
1:t

∣∣∣∣ν0,0,σ 2
0 �

(μθt)
t

) , if σ 2
u is unknown.

(43)

With �
(μθt )
t , we describe the covariance matrix com-

puted using the parameter estimates μθt as in Eq. (29),
while with �

(m)
t , we refer to the covariance matrix evalu-

ated per drawn parameter sample θ
(m)
t+1 .

Therefore, the proposed IS-SMC for the unknown
parameter case at time instant t starts with a joint state
and parameter random measure

f M(ρt) =
M∑

m=1
w(m)
t δ

(
ρt − ρ

(m)
t

)
, (44)

and, upon reception of a new observation yt+1, proceeds
as follows:

1. Estimate the sample mean and covariance of the
parameter vector θt .

μθt = ∑M
i=1 θ

(m)
t w(m)

t ,

�θt = ∑M
i=1

(
θ

(m)
t − μθt

) (
θ

(m)
t − μθt

)�
w(m)
t .

(45)

2. Draw new parameter samples from the Gaussian
proposal with the newly computed sufficient
statistics.

θ
(m)
t+1 ∼ π(θt+1) = N

(
θt+1|μθt ,�θt

)
. (46)

3. Compute the joint normalized covariance matrix for
each parameter sample θ

(m)
t+1 .

�
(m)
t+1 = A(m)−1

t+1 B(m)
t+1RutB

(m)�
t+1 A(m)−1�

t1 =
(
h(m)
t+1 λ

(m)
t

λ
(m)�
t �

(m)
t

)
.

(47)

4. Perform resampling of the state’s genealogical line by
drawing from a categorical distribution defined by
the random measure f M(xt).

x(m)
1:t ∼

{
x(m)
t ,w(m)

t

}
,wherem = 1, · · · ,M. (48)

5. Propagate the state particles by sampling from the
transition density, conditioned on available
resampled streams x(m)

1:t .

• If σ 2
u is known

x(m)
t+1 ∼ N

(
xt+1|μ(m)

t+1, σ
2(m)

t+1

)
,

where

⎧⎨
⎩

μ
(m)
t+1 = λ

(m)
t �

(m)−1

t x(m)
1:t ,

σ 2(m)

t+1 = σ 2
u

(
h(m)
t+1 − λ

(m)
t �

(m)−1

t λ
(m)�
t

)
.

(49)

• If σ 2
u is unknown

x(m)
t+1 ∼ Tνt+1

(
xt+1|μ(m)

t+1,φ
2(m)

t+1

)
,

where

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

νt+1 = ν0 + t ,
μ

(m)
t+1 = λ

(m)
t �

(m)−1

t x(m)
1:t ,

φ2(m)

t+1 = ν0σ 2
0 +x(m)�

1:t �
(m)−1
t x(m)

1:t
ν0+t

×
(
h(m)
t+1 − λ

(m)
t �

(m)−1

t λ
(m)�
t

)
.

(50)

6. Compute the non-normalized weights for the drawn
particles.

• If σ 2
u is known

w̃(m)
t+1 ∝

f
(
yt+1|x(m)

t+1

)
· N

(
x(m)
1:t

∣∣∣∣∣0, σ 2
u�

(
θ

(m)
t+1

)
t

)

N
(
θ

(m)
t+1

∣∣μθt ,�θt

)
N

(
x(m)
1:t

∣∣∣0, σ 2
u�

(μθt )
t

) .

(51)

• If σ 2
u is unknown

w̃(m)
t+1 ∝

f
(
yt+1|x(m)

t+1

)
· Tν0

(
x(m)
1:t

∣∣∣∣∣0, σ 2
0 �

(
θ

(m)
t+1

)
t

)

N
(
θ

(m)
t+1

∣∣μθt ,�θt

)
Tν0

(
x(m)
1:t

∣∣∣ν0, 0, σ 2
0 �

(μθt )
t

) .

(52)
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and normalize them to obtain a new probability
random measure

f M(ρt+1) =
M∑

m=1
w(m)
t+1δ

(
ρt+1 − ρ

(m)
t+1

)
. (53)

5 Practical application
We now illustrate the applicability of the proposed SMC
methods and evaluate their performance. We do so by

considering the stochastic log-volatility (SV) state-space
framework. That is, the observations are a zero-mean
process with time-varying log-variance that one wants to
estimate.
The SV model is popular in the study of nonlinear

state-space models (due to the estimation challenges that
it presents [15, 48–50]) and is of interest in finance (due to
its applicability in the study of stock returns [17, 51–53]).
It has been established that Kalman filter (KF)-based

methods fail to accurately estimate the latent state for
SV models. In principle, for the nonlinearities in the SV
model observation equation, extensions to the popular
KF, such as the extended Kalman filter (EKF) [19], the

a b c

d e f

g h i

Fig. 2 True (black) andestimated state (red) for the proposed SMCmethodwith known ARMA parameters and unknown σ 2
u a AR(1), a1 = 0.85,H = 0.5.

b AR(1), a1 = 0.85,H = 0.7. c AR(1), a1 = 0.85,H = 0.9. dMA(1), b1 = 0.8,H = 0.5. eMA(1), b1 = 0.8,H = 0.7. fMA(1), b1 = 0.8,H = 0.9.
g ARMA(1, 1), a1 = 0.85, b1 = 0.8,H = 0.5. h ARMA(1, 1), a1 = 0.85, b1 = 0.8,H = 0.7. i ARMA(1, 1), a1 = 0.85, b1 = 0.8,H = 0.9.
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Table 1 MSE performance of the proposed SMC methods for
ARMAmodels (known a and b) with fGn, known and unknown σ 2

u

PF type
State estimation error (MSE)

Known σ 2
u Unknown σ 2

u

AR(1), H = 0.5 1.1081 1.1945

AR(1), H = 0.7 1.3946 1.4397

AR(1), H = 0.9 1.1195 1.1970

MA(1), H = 0.5 1.0223 1.0686

MA(1), H = 0.7 1.0585 1.1136

MA(1), H = 0.9 0.87374 0.94053

ARMA(1,1), H = 0.5 1.5947 1.6197

ARMA(1,1), H = 0.7 1.7852 1.8516

ARMA(1,1), H = 0.9 1.7214 1.7362

unscented Kalman filter (UKF) [54], and other Sigma-
Point Kalman filters [55] should be applicable. However,
as reported in [56], these methods fail when addressing
the SV model since they are unable to update their prior
beliefs for such model (the Kalman gain is always null).
Alternatives based on transformations of the model have
been suggested ([15, 50]) but, as reported in [33], they fall
short when compared to SMC methods.
Furthermore, the SV model has been in use in econo-

metrics for a long time [53], as it is of interest in estimat-
ing the risk involved in financial transactions. There, the
observations describe the price evolution of an asset, for
which estimating its volatility is critical. This is not an easy
task, and many efforts have been reported, where the risk
is described with diverse memory properties [7, 14, 57].
Motivated by its practical application and the challenges

it poses to the inference problem, we focus on the SV
model, where the log-volatility is described by a latent
ARMA(p, q) model with correlated innovations.
Without loss of generality, we focus on ARMA mod-

els with fractional Gaussian noise. With this modeling, we
accommodate a wide range of memory properties: from

uncorrelated to long-memory processes. This is a natu-
ral extension of the classical ARMAmodel, where instead
of i.i.d. Gaussian innovations, the ARMA(p, q) filters a
fractional Gaussian process with Hurst parameter H. The
properties of such model are equivalent to those of the
FARIMA(p, d, q), when d = H − 1

2 .
Mathematically, the SV model, where the latent time-

series is an ARMA(p, q) with fractional Gaussian noise, is
written as{

xt = ∑p
i=1 aixt−i + ∑q

j=1 bjut−j + ut ,
yt = e

xt
2 vt ,

(54)

where vt is a standard Gaussian variable and the state
innovation ut is a zero-mean Gaussian process with
known autocovariance function γu(τ ). In particular, for
the fractional Gaussian process,

γu(τ ) = σ 2
u
2

[|τ − 1|2H − 2 |τ |2H + |τ + 1|2H]
, (55)

which is parameterized by the Hurst parameter H and
variance σ 2

u . When H = 0.5, the process is uncorrelated,
while the memory of the innovations increases as H → 1.
We illustrate in Fig. 1 the dependency of the normalized
autocovariance function

(
i.e., σ 2

u = 1
)
with respect to the

parameter H.
We evaluated the proposed method in this nonlinear

model, first under the known ARMA parameter case, and
then, under unknown parameters. We show in Fig. 2 how
the proposed method is able to accurately track differ-
ent latent processes with diverse memory properties, even
when the innovation variance σ 2

u is unknown. The SMC
methods were run with M = 1000 particles for different
values of the Hurst parameter.
We further studied the filtering performance of the

methods described in Subsection 4.2.1 and conclude,
based on results summarized in Table 1, that the proposed
SMC method successfully estimates the latent state, both
for the known and unknown innovation variance cases,
for any given memory.

a b c

Fig. 3 True (black) and estimated (red) scale factor for the proposed SMC method with known ARMA parameters. a AR(1), H = 0.9. bMA(1), H = 0.9.
c ARMA(1,1), H = 0.9
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Table 2 MSE performance of the proposed SMC methods for ARMA models (unknown a and b) with fGn, known and unknown σ 2
u

PF type

State estimation error (MSE)

Known a, b Known a, b Unknown a, b, DA Unknown a, b, , IS Unknown a, b, DA Unknown a, b IS

Known σ 2
u Unknown σ 2

u Known σ 2
u Known σ 2

u Unknown σ 2
u Unknown σ 2

u

AR(1), H = 0.5 1.0991 1.127 1.6689 1.7337 1.4549 1.5903

AR(1), H = 0.7 1.4077 1.4375 2.5759 5.9889 1.9272 3.191

AR(1), H = 0.9 1.1336 1.1774 2.4334 6.5974 1.7795 6.4853

MA(1), H = 0.5 1.0348 1.0758 1.1033 1.185 1.1384 1.3831

MA(1), H = 0.7 1.0878 1.1138 1.1857 1.2688 1.1884 1.3748

MA(1), H = 0.9 0.88045 0.90841 0.96348 1.1124 0.97747 1.2517

ARMA(1,1), H = 0.5 1.638 1.6512 2.8563 3.6266 2.3157 2.3619

ARMA(1,1), H = 0.7 1.7452 1.7926 3.0939 4.1174 2.7807 2.4627

ARMA(1,1), H = 0.9 1.7374 1.7533 4.3466 20.617 2.5818 2.569

Note that the unknown σ 2
u case induces a slight loss in

accuracy. However, the estimation performance is compa-
rable. The justification relies on the form of the derived
marginalized density. Asmore data are observed, the tran-
sition density for the unknown variance case (i.e., Eq. (17))
becomes very similar to the one in the known case (i.e.,
Eq. (16)). This occurs because a Student t distribution
with high degrees of freedom is very similar to a Gaussian
distribution. Thus, the proposal densities in both SMC
methods become almost identical with time.
To get further insight on the impact of not knowing the

innovation variance σ 2
u , we study the evolution of the scale

factor in Eq. (17) over time. We plot (see Fig. 3) the scale
factor

ν0σ
2
0 + x�

1:t�
−1
t x1:t

ν0 + t
(56)

as we get more data and observe that the estimate
approaches the true σ 2

u value. The estimation accuracy

improves with time for all the evaluated ARMA param-
eterizations and memory properties of the innovation
process.
We now turn our attention to the more challenging

scenario where the ARMA parameters are unknown. We
evaluate both proposed approaches, i.e., the DA- and IS-
based SMC methods from subsections 4.2.2 and 4.2.3,
respectively.
Once again, we study the performance of the method

for latent processes with different memory properties. In
Table 2, we provide averaged state mean squared error
(MSE) results for AR(1), MA(1), and ARMA(1,1) mod-
els with uncorrelated (H = 0.5), short- (H = 0.7), and
long-memory (H = 0.9) fractional Gaussian innovations.
The state filtering results allow us to conclude that both

proposed approaches are suitable solutions for inference
of latent processes with unknown ARMA parameters.
Besides, it is noticeable that the impact on state estimation
accuracy of not knowing the parameters a and b is more
pronounced than not knowing the innovation variance σ 2

u .

a b

Fig. 4 True (black) and estimated (DA PF in red, IS PF in green) a1 and b1 for the proposed SMC methods with unknown ARMA(1,1) parameters. a a1
tracking (H = 0.7, unknown σ 2

u ). b b1 tracking (H = 0.7, unknown σ 2
u )
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a b c

Fig. 5 True (black) and estimated (DA PF in red, IS PF in green) scale factor for the proposed SMC methods with unknown ARMA(1,1) parameters.
a ARMA(1,1), H = 0.5. b ARMA(1,1), H = 0.7. c ARMA(1,1), H = 0 : 9

We also observe a slightly better filtering performance
of the DA-SMC when compared to the IS-SMC. However,
this improved state tracking accuracy comes with a cost,
as the estimation of the unknown parameters is worse for
the DA-based SMC. This effect is illustrated with some
parameter estimation realizations of an ARMA(1,1) pro-
cess with unknown parameters a1 and b1, with known
innovation variance σ 2

u in Fig. 4, and unknown variance
σ 2
u in Fig. 5.
We note that, for both proposed SMCmethods, estima-

tion of the AR parameters is more accurate than of theMA
parameters. Recall that, due to how these parameters are
used in our computations (inversion and multiplication
of matrices involved when evaluating the sufficient statis-
tics), identifiability and numerical issues may arise. In the
proposed method, particles that are result of numerical
instabilities are automatically discarded by their corre-
sponding weights, as they become negligible. In such
cases, we observe a reduced effective particle size, but the
method is still able to track the state.
Furthermore, the DA-based SMC overestimates the

unknown variance (see Fig. 5). Although this might seem

irrelevant for the filtering problem, variance overestima-
tion is critical when predicting future instances of the
time-series, as the density becomes too wide to be infor-
mative.
The poor parameter estimation accuracy for the DA-

based SMC can be understood by inspecting the weight
computation for each of the proposed alternatives. For
the DA-based approach (i.e., Eq. (30)), only state sam-
ples are accounted for, while for the IS-based approach as
in Eq. (41), both state and parameter samples are taken
into account. We further explain this effect with results in
Table 3 and interpret them as follows.
When applying IS, one explicitly computes weights

based on both the state and parameter samples, while
with the DA approach, one hopes that the best state par-
ticles are associated with good parameters too (although
this is not explicitly accounted for). As a result of the
parameter-explicit weight computation in IS-based meth-
ods, the number of particles with non-negligible weights
is much reduced at every time instant (as one looks for
both good state and parameter samples). Consequently,
the effective particle size of the IS-based SMC method

Table 3 Efficient particle sizeMeff of the proposed SMC methods for different ARMA models with fGn

PF type

Effective particle size (Meff )

Known a, b Known a, b Unknown a, b, DA Unknown a, b, , IS Unknown a, b, DA Unknown a, b IS

Known σ 2
u Unknown σ 2

u Known σ 2
u Known σ 2

u Unknown σ 2
u Unknown σ 2

u

AR(1), H = 0.5 737.19 710.72 753.00 210.89 619.77 173.54

AR(1), H = 0.7 712.37 696.36 750.13 194.98 606.86 207.05

AR(1), H = 0.9 734.99 724.64 772.48 199.88 628.91 179.13

MA(1), H = 0.5 766.83 745.32 784.75 219.95 711.18 193.41

MA(1), H = 0.7 753.40 746.07 785.24 209.51 709.84 205.89

MA(1), H = 0.9 791.34 779.44 835.39 229.24 741.39 202.39

ARMA(1,1), H = 0.5 653.89 662.80 668.61 84.061 530.88 86.080

ARMA(1,1), H = 0.7 610.05 605.56 626.75 78.602 466.84 83.643

ARMA(1,1), H = 0.9 645.51 638.31 673.09 62.790 504.69 93.404
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is quite low, and thus, the obtained results much more
volatile. Averaged effective particle sizes for the proposed
SMC methods are provided in Table 3.

6 Conclusions
In this paper, we proposed a set of SMCmethods for infer-
ence of latent time-series with innovations correlated in
time. This is achieved in a unified and consistent manner
for different types of models and for scenarios that include
known and unknown parameters. We mathematically
formulated the problem using the state-space method-
ology, where the latent time-series was modeled as an
ARMA(p, q) driven by innovations correlated in time. The
provided compact formulation allows for a Bayesian anal-
ysis of the model, which results in the derivation of the
key transition density for the proposed SMC methods.
Different parameter assumptions were considered and,
as shown by the presented extensive results, the SMC
methods are able to accurately infer the hidden states. The
proposed method is generic in that it addresses diverse
memory properties in a coherent manner and is accurate
in estimating latent time-series.

Endnote
1We use innovations to refer to the stochastic pro-

cess driving the time-series. Although a reader from
the signal-processing community might be more famil-
iar with the term noise, we prefer to use innovations as it
is most common in the statistical literature of stochastic
processes and time-series analysis.
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