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Abstract

This paper presents a new time of arrival (TOA) estimation technique using an improved energy detection (ED)
receiver based on the empirical mode decomposition (EMD) in an impulse radio (IR) 60 GHz millimeter wave
(MMW) system. A threshold is employed via analyzing the characteristics of the received energy values with an
extreme learning machine (ELM). The effect of the channel and integration period on the TOA estimation is
evaluated. Several well-known ED-based TOA algorithms are used to compare with the proposed technique. It is
shown that this ELM-based technique has lower TOA estimation error compared to other approaches and provides
robust performance with the IEEE 802.15.3c channel models.

Keywords: Empirical mode decomposition (EMD), Impulse radio (IR), Energy detection (ED), Millimeter wave (MMW),
Time of arrival (TOA)

1 Introduction
Accurate estimation of the time of arrival (TOA) in wire-
less systems is a challenging problem due to inter-symbol
interference and multipath fading. Sixty gigahertz milli-
meter wave (MMW) is a promising technology for accur-
ate TOA estimation due to its unique advantages which
include high time resolution [1], high multipath resolution
[2], and robustness to interference [3]. In the 60-GHz fre-
quency band, an energy detector (ED) receiver is preferred
for TOA estimation because it can be implemented easily
in hardware and does not require precise channel estima-
tion and synchronization as with a matched filter (MF)
[4]. As shown in Fig. 1, a conventional ED only consists of
a band-pass filter (BPF), a squaring operator, an integrator,
and a decision device.
The TOA can be estimated based on the first energy

sample to exceed a threshold. Various ED-based TOA
estimation methods have been proposed [5–11]. Guvenc
first proposed a TOA estimation method via analyzing
the kurtosis characteristics of the energy of the received
pulses [6]. To account for signal variations, a normalized

threshold was employed in [7], which is based on the
maximum and minimum energy values. In [8], a fixed
threshold based on the maximum energy value was used.
The cell averaging constant false alarm rate (CA-CFAR)
method is developed for the TOA estimate by employing
the ED receiver in [9].A weighted ED receiver was
proposed in [10] to reduce the effects of noise. Although
an extreme learning machine was used to obtain the
threshold [11], this algorithm performs poorly with a con-
ventional ED in low signal-to-noise ratio (SNR) environ-
ments, particularly when there are noise-only energy
values. We can see all of these algorithms perform poorly
in low SNR environments because of the sensitivity of the
threshold to noise. Using a conventional ED, these
obtained energy samples are only noise which will have a
significant effect on the TOA estimation τ̂TOA.
To reduce the effects of noise and improve the estima-

tion accuracy, in this paper, (1) an improved ED receiver
was presented for TOA estimation which employs im-
pulse radio (IR) 60 GHz MMW signals. The received
signals were processed based on empirical mode decom-
position (EMD) [12]. This method has been used to
analyze non-stationary and nonlinear signals [13]. EMD
adaptively decomposes a signal into a series of intrinsic
mode functions (IMFs) in descending order of frequency
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and a residual trend mode [13]. The IMFs and residual
trend mode can be used to represent the noise which
can then be deleted, resulting in an improved SNR [14].
(2) An ED-based TOA estimation technique was pro-
posed which employs extreme learning machine (ELM).
ELM was used to resolve a regression problem with the
characteristics of the received ED values as inputs and
the detector threshold as the output. Results are pre-
sented which show that this de-noising approach pro-
vides superior performance with the IEEE 802.15.3c
channel models compared to several well-known tech-
niques. And the simulation results were presented which
show that ELM can provide robust and reliable TOA es-
timates. Further, the proposed approach can be used
with other wireless systems.
The remainder of this paper is organized as follows:

Section 2 presents the system model. An improved ED
receiver was discussed using EMD in Section 3. Section
4 discusses the signal characteristics, and the proposed
ED-based TOA estimation technique is introduced in
Section 5. Some performance results are given in Section
6, and Section 7 provides some conclusions.

2 System model
The IEEE 802.15.3c Line of Sight (LOS) and Non-line of
Sight (NLOS) channel models have been proposed by
the TG3c group for 60 GHz indoor residential, office,
and library environments [21]. Several types of signals
have been considered for 60 GHz systems [18]. Pulse
position modulation (PPM) with a truncated sinc pulse
has been shown to better conform to the Federal Com-
munications Commission (FCC) regulations and provide
a lower error probability than other signals. Thus, PPM
with a truncated sinc pulse is considered here.
The received 60-GHz MMW signal can be expressed

as:

r tð Þ ¼
ffiffiffiffiffiffi
Eb

Ns

r X
j¼‐∞

þ∞

p t−jT s−cjTc−ajβ
� �

cos 2πf ctð Þ
 !

� h t;ϕð Þ þ n tð Þ;
ð1Þ

where Eb is the energy per bit, (*) denotes convolution,
Ns is the number of pulses transmitted per data symbol,

j is the frame index, and Ts is the frame duration.
The time-hopping codes are cj ∈ (0, 1, .…,Nh − 1),
where Nh = Ts/Tc is the number of chip positions in
a frame and the chip duration is Tc, β is the PPM
time shift employed when aj = 1 and there is no
shift when aj = 0, n(t) is the additive white Gaussian
noise (AWGN) with zero mean and two-sided power
spectral density N0/2, and h(t, ϕ) is the channel
realization from the triple Saleh-Valenzuela model in
the IEEE 802.15.3c standard.
The transmitted pulse sequence in (1) is:

s tð Þ ¼
ffiffiffiffiffiffi
Eb

Ns

r X
j¼−∞

þ∞

p t−jT s−cjTc−ajβ
� �

cos 2πf ctð Þ; ð2Þ

where p(t) is the Gaussian pulse and fc is the carrier
frequency.
The channel realization can be given by:

h t;ϕð Þ ¼ αLOSδ t;ϕð Þ

þ
XL
l¼0

XKl

k¼0

αk;lδ t−Tl−τk;l
� �

δ ϕ−Θl−ωk;l
� �

ð3Þ
where δ(⋅) denotes the Dirac delta function, L denotes
the cluster number, and Kl denotes the rays number in
thelth lth cluster. The scalar αk, l denotes the complex
amplitude, αk, l and τk, l denote the TOA, and ωk, l de-
notes the azimuth of the kth ray in the lth cluster. The
average TOA and the average AOA of the lth cluster
can be expressed as Tl and Θl, respectively.
The first term in (4) denotes the LOS component with

αLOS ¼ 20 log10
μd
d

� � ffiffiffiffiffiffiffi
Gt1

p
Gr1 þ

ffiffiffiffiffiffiffi
Gt2

p
Gr2Γ0 exp j

4πh1h2
λd

� �				
				

� �
−PLd μdð Þ dB½ �

ð4Þ
where

PLd μdð Þ ¼ PLd d0ð Þ þ 10 � nd � log10
d
d0


 �
dB½ � ð5Þ

PLd d0ð Þ ¼ 20 log10
4πd0

λ


 �
þ ANLOS dB½ � ð6Þ

and PLd denotes the path loss, λ denotes the wavelength,
ANLOS denotes the attenuation caused due to the NLOS

Fig. 1 Block diagram of a conventional energy detector receiver
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propagation, μd denotes the average range, Γ0 denotes
the reflection coefficient, and h1 and h2 denote the
heights of the transmitted antenna and the received an-
tenna, respectively. Gt1, Gt2, Gr1, and Gr2 denote the
gains of the transmitted antenna for the path 1 and path
2 and the gains of the received antenna for the path 1
and path 2, respectively.
The ED integrator output for a received signal r(t) can

be expressed as:

z n½ � ¼
XNs

j¼1

Z j − 1ð Þ Ts þ cj þ nð Þ Tb

j − 1ð Þ Ts þ cj þ n − 1ð Þ Tb

r tð Þj j2 dt

ð7Þ
where Ns is the number of pulses per symbol, Tb is the
integration duration, 3 Ts/2 is the integration interval,
Nb = 3 Ts/2 Tb is the number of samples, j is the frame
index, and the frame duration is Ts. The TOA estimate
can be expressed as:

τ̂ ¼ arg min
1≤n≤Nb

n jz n½ � ≥ ηf g − 0:5

" #
Tb ð8Þ

where η is the threshold which is based on a normalized
threshold ηnorm given by:

ηnorm ¼ η − min z nð Þð Þ
max z nð Þð Þ − min z nð Þð Þ ð9Þ

As min(z[n]) is typically the integration of only noise,
this can have a detrimental effect on the receiver

performance due to it is sensitivity to noise. In this
paper, an extended threshold crossing (ETC) algorithm
is proposed where the threshold η can be expressed as:

η ¼ ηnorm � max z n½ �ð Þ −
1
Nb

XNb

n¼1

z n½ �
( )

þ 1
Nb

XNb

n¼1

z n½ �

ð10Þ
The problem is then how to obtain ηnorm. Both curve-

fitting and fixed threshold (FT) have been employed, but
these methods cannot provide precise TOA estimates
because the first arriving signal component cannot be
accurately determined. The simplest threshold selection
was the maximum energy selection (MES) method, i.e.,
the maximum energy was considered as the threshold.
As shown in Fig. 2, the actual TOA locates before the
maximum energy, which is challenging to acquire due to
the first arriving path which cannot be detected. As a re-
sult, the MES method cannot achieve precise TOA esti-
mations as shown in Fig. 2.

3 Proposed ED receiver
Figure 3 shows the energy values for a 60-GHz MMW
signal (1) with the 3c CM1.1 model for an SNR of 10 dB
and the signal without noise. These results indicate that
many energy values are only noise which will have a sig-
nificant effect on τ̂TOA . To reduce the effects of noise
and improve the estimation accuracy, an improved ED
receiver based on EMD will be presented in this section.
Figure 4 shows the proposed receiver with signal de-

noising using EMD. EMD adaptively decomposes the

Fig. 2 The relationship between the actual TOA and the maximum energy
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received signal into N IMFs, i.e., IMF1, ..., IMFN, in
descending frequency order and a residual trend
mode. The residual trend mode is the difference be-
tween the signal and the IMFs. The noise can be es-
timated using the first few IMFs and the residual
trend mode [17, 18].
To obtain the IMFs of a signal using EMD, let r(t) be

the received signal, α(t) the residual component, m(t)
the shifted component, IMFv(t) the vth IMF, and ru(t)
(rl(t)) the upper (lower) envelope using a cubic spline
function according to the local extrema.
The EMD algorithm is as follows [13]:

1) Set v = 0 and α(t) = r(t);
2) Let m(t) = α(t);
3) Determine the local extrema (maximum and

minimum) of m(t);
4) Construct the upper and lower envelopes of the

extrema using cubic spline functions;

5) Determine the average envelope given by [14]:

u tð Þ ¼ ru tð Þ þ rl tð Þ
2

ð11Þ

6) If the average envelope is zero or has only one
extrema or zero crossing, go to step 7. Otherwise,
calculate [15]:

m tð Þ ¼ m tð Þ−u tð Þ ð12Þ

and go to step 3.

a b

c

Fig. 4 Block diagram of the new energy detector receiver

Fig. 3 The energy values for a 60-GHz signal with the CM1.1 channel model. a 60 GHz signal without noise and b 60 GHz signal with AWGN and SNR=10 dB
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7) If α(t) is monotonic, stop. Otherwise, set v = v + 1,
IMFv(t) =m(t), and α(t) = r(t) − IMFv(t) and go to
step 2 [16].

A 60-GHz MMW signal (1) with the 3c CM1.1 model
and an SNR of 10 dB was decomposed using EMD into
11 IMFs and a residual trend mode. The first eight IMFs
are shown in Fig. 5.
The boundary between the noise and signal compo-

nents is determined as:

RPv ¼
Pv− 1

v−1

Pv−1
i¼1

Pi

1
v−1

Pv−1
i¼1

Pi

							
							; v≥2 ð13Þ

where

Pv ¼ EvT v ð14Þ

Ev ¼ 1
Nv

XNe

j¼1

Cv jð Þj j2 ð15Þ

T v ¼ 2Nv

Ov
ð16Þ

and Nv is the number of values in IMFv, Cv is the max-
imum value in IMFv, and Ov is the number of local ex-
trema in IMFv.
For a signal in AWGN, (14) is approximately a con-

stant [17, 18]. As a result, IMFv can be regarded as noise
when RPv < 1 [18]. It was determined by simulation that
IMFs 1 to 3 can be considered as noise. The histograms

of the first three IMFs of white Gaussian noise and the
60-GHz signal (1) with the CM1.1 model and SNR =
10 dB are shown in Fig. 6. IMF1 for the 60-GHz MMW
and AWGN follow the bimodal distribution, and the
other IMFs follow the Gaussian distribution. The corre-
sponding histograms are presented in Fig. 7. These re-
sults indicate that the first three IMFs have similar
distributions in both cases. Table 1 shows the means and
standard deviations of the first four IMFs, which confirm
that the first three can be considered as noise [18]. Note
that when v > 3 the IMFs differ significantly.
The received signal can be approximated as:

r̂ tð Þ ¼
X11
v¼4

IMFv tð Þ ð17Þ

And the noise estimated as:

n̂ tð Þ ¼
X3
v¼1

IMFv tð Þ þ h tð Þ ð18Þ

Thus, the noise energy is estimated in part B in Fig. 4
as:

z2 n½ � ¼
XM
m¼1

Z m−1ð ÞTsþ cmþnð ÞTb

m−1ð ÞTsþ cmþn−1ð ÞTb

X3
v¼1

IMFv tð Þ þ h tð Þ
					

					
2

dt

ð19Þ

And the signal energy values obtained in part C of
Fig. 4 as:

Fig. 5 The first seven IMFs of a received 60 MMW signal with the 3c CM1.1 model and AWGN with SNR = 10 dB. The other parameters are the
same as those in Section 4

Liang et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:83 Page 5 of 13



z n½ � ¼ z1 n½ �−z2 n½ � ð20Þ

Figure 8 shows the energy values after de-noising
using EMD with the 3c CM1.1 model and an SNR
of 10 dB. The similarity, i.e., the energy values with
strong amplitude between these results in Fig. 8
and Fig. 3a, confirms the effectiveness of EMD de-
noising.

4 Energy signal characteristics
In this section, the curl of the energy values is con-
sidered. The other characteristics including the

kurtosis, skewness, maximum slope, and the standard
deviation have been discussed in [11] in our previous
work. However, the proposed threshold selection
method cannot achieve accurate TOA estimations in
low SNR values.

4.1 Curl
In vector calculus, the curl is an operator that de-
scribes the infinitesimal rotation of a vector field.
The maximum curl of the received energy values is
obtained as follows. Let (U, V) be a 2D vector field
with U = V and

Fig. 7 Histograms of the energy value distributions for IMFs 1–3 of the AWGN and the 60-GHz signal plus noise in with the CM1.1 and SNR = 10 dB.
The other parameters are the same as those in Section 4

Fig. 6 Histograms of the IMFs for AWGN and a 60-GHz signal plus noise with the CM1.1 model and SNR =10 dB. The other parameters are the
same as those in Section 4. The superimposed red lines are the Gaussian line fits for each IMF
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U ¼ z 1½ �; z 2½ �; z 3½ �; …; z Nb−1½ �; z Nb½ �½ � ð21Þ

The arrays XU and YV are the coordinates of U and V,
respectively, and XU is an Nb ×Nb dimensional array
given by:

XU ¼

1; 2; 3; …; Nb−1; Nb

1; 2; 3; …;Nb−1; Nb

⋮ ⋮
1; 2; 3; …;Nb−1; Nb

1; 2; 3; …;Nb−1; Nb

2
666664

3
777775 ð22Þ

YV is also an Nb ×Nb dimensional array with YV

= (XU)
T. Let the γth difference of the matrix U in the

YV(:, γ) direction be ℜ(γ) and the γth difference of the
matrix V in the XU(γ, :) direction be ℑ(γ). The curl is
then given by:

C γð Þ ¼ ℑ γð Þ − ℜ γð Þ ð23Þ

The maximum curl is the maximum of C(γ).

4.2 Signal parameter characteristics
In this section, the characteristics of the parameters of the
energy values are investigated in indoor residential LOS
and NLOS scenarios for SNR within 4–30 dB. For each
SNR, 1000 channels were generated and the received sig-
nals sampled at 10 GHz. The system parameters are Ts
= 200ns, Tb = 4ns, Tc = 1ns and τ̂ � U 0;Tf

� �
, where

U(0,Tf ) denotes the uniform distribution.
Figure 9 shows the skewness and maximum curl of the

energy values. This figure also shows the kurtosis, max-
imum slope, standard deviation, the ratios of the kurtosis
to the skewness (K/S), the ratios of the maximum slope
to the standard, and the products of the maximum slope
and the standard deviation (MSD). These results show
that the skewness and kurtosis increase as SNR in-
creases, but the skewness changes more quickly. Con-
versely, the maximum curl, maximum slope, and
standard deviation decrease as SNR increases, but the
maximum curl changes more quickly. Moreover, the
skewness changes little while the maximum curl changes
quickly when SNR < 8 dB. On the other hand, when

Fig. 8 The energy values of the received signal after de-noising with the CM1.1 and SNR = 10 dB. The other parameters are the same as those in
Section 4

Table 1 The parameters for the acquired IMFs

IMF AWGN 60 GHz

Mean (× 10−4) Standard deviation Energy Mean (× 10−4) Standard deviation Energy

IMF1 6.99 0.0905 0.088 7.01 0.0905 0.088

IMF2 − 0.80 0.0546 0.032 − 0.71 0.0546 0.032

IMF3 2.36 0.0369 0.015 1.85 0.0366 0.019

IMF4 − 7.33 0.0279 0.007 0.92 0.0271 0.019
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SNR > 8 dB, the skewness changes rapidly but the max-
imum curl has little change. As a result, these parame-
ters cannot reflect a wide range of SNRs.

5 TOA estimation using machine learning
In this section, a new metric was proposed using the
skewness and maximum curl of the energy samples. This
metric can provide a better indication of the changes in
SNR than the parameters considered in the previous sec-
tion. Then, ELM is used to determine the relationship
between this metric and the threshold values.

5.1 The new metric
The parameters presented in Section 3 are not suffi-
ciently sensitive to changes over a wide range of SNRs.
Thus, a new matric is presented in this section. The
mean absolute error (MAE) of the TOA estimates is
used to evaluate the TOA algorithms and is given by:

τMAE ¼ 1
Nm

XNm

m¼1

τm−τ̂m½ � ð24Þ

where τm and τ̂m are the mth propagation time and

Fig. 10 Average metric values with respect to SNR

Fig. 9 The normalized parameters with respect to SNR
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TOA estimate, respectively, and Nm is the number of
TOA estimates.
The MAE of the TOA estimation presented in [7] is

less than that in [6] because the skewness changes more
rapidly than the kurtosis when SNR > 12 dB. However,
neither of these approaches can provide good perform-
ance over a wide range of SNRs. Thus, a new metric is
proposed which is given by:

J ¼ K=Sð Þ− K=Sð Þmin

K=Sð Þmax− K=Sð Þmin
� Q−

C−Cmin

Cmax−Cmin
� R ð25Þ

where S is the skewness of the energy values and C is
the maximum curl of these values. Smax and Smin are the
maximum and minimum values of the skewness and
Cmax and Cmin are the maximum and minimum values
of the curl, respectively. Based on the extensive

Fig. 12 Optimum threshold with respect to the best threshold with different models and Tb

Fig. 11 The MAEs of TOA estimations with respect to the normalized threshold. The arrow denotes the direction of the metric decreases
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simulation results, Q and R should be less than 20 and
satisfy Q ≥ 3 R. In this paper, Q = 20 and R = 2.
To test the sensitivity of J with respect to SNR, the

average value of J was determined for the CM1.1 and
CM1.2 channel models with Tb = 1 and 4 ns. Figure 10
shows that J is a monotonic function of SNR and is
more sensitive to SNR than the other parameters over
the range of SNRs.

5.2 Threshold determination
To find the best normalized threshold ηbest, the relation-
ship between MAE and ηnorm with respect to J, the
channel, and the integration period are examined. Ex-
cept for small values of J, the MAE decreases with in-
creasing J and the minimum MAE decreases with
increasing J. Figure 11 shows the relationship between
the normalized threshold and the MAEs. Usually, the
normalized threshold with the minimum MAE was

referred as the best normalized threshold. The value of
ηnorm for the minimum MAE is defined as the best nor-
malized threshold ηbest. As shown in Fig. 12, the average
ηbest is defined as:

ηopt Jð Þ ¼ 1
Ni

XNi

i¼1

η Tb ¼ i nsð Þ
opt Jð Þ ð26Þ

where

ηTb¼i ns
opt Jð Þ ¼ ηbest

CM1:1; Tb ¼ i nsð Þ
Jð Þ þ ηbest

CM2:1;Tb ¼ i nsð Þ
Jð Þ

2
ð27Þ

Ni is the number of integration periods and i is the in-
tegration period in nanosecond.
The integration periods considered are 1 and 4 ns, so

that

ηopt Jð Þ ¼ η Tb¼1 nsð Þ
opt Jð Þ þ η Tb¼4 nsð Þ

opt Jð Þ
2

ð28Þ

where

ηTb¼i ns
opt Jð Þ ¼ ηbest

CM1:1; Tb ¼ insð Þ
Jð Þ þ ηbest

CM2:1;Tb ¼ insð Þ
Jð Þ

2
ð29Þ

5.3 ELM-assisted TOA estimation
Artificial neural networks (ANN) such as the support
vector machine (SVM) and back propagation neural net-
work (BPNN) has been widely employed to solve regres-
sion problems [18–22]. ELM is a new and efficient
method to train a single-hidden-layer feedforward neural
networks (SLFNs) [23]. ELM has been applied in many
fields such as signal and information processing due to
the good general performance and fast learning with
minimal human intervention [23–33]. ELM has been
shown to provide better results than SVM and require
less training time than BPNN. The most important
property is that the parameters in the hidden layers can
be automatically determined and a simple generalized
inverse operation can be used to obtain the output
weight. Further, the only parameter that needs to be spe-
cified is the number of nodes in the hidden layer [24].
Due to the complexity of the indoor channel environ-
ment, it is very difficult to estimate TOA accurately
using traditional curve-fitting methods. ELM can be
used to resolve this problem by determining the rela-
tionship between the input and output parameters ac-
cording to the training results.
In ANN and SVM, the parameters in different layers

need to be tuned which can consume significant time.

Fig. 13 The MAEs of several well-known methods with respect to
SNR. a LOS scenes. b NLOS scene
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Further, the learning rate and learning epochs must
be tuned through an iterative procedure which makes
it difficult to obtain optimal values [23, 24]. Different
from NN and SVM solutions, ELM is a tuning-free
algorithm. The input weights and hidden bias can be
generated randomly before training the SLFN based
on the sample set.
In this paper, ELM is used to determine the relation-

ship between J and ηopt. The number of nodes in the
hidden layer is determined based on the training accur-
acy. The root mean square error (RMSE) was calculated
for 1000 training trials for each number of nodes. The
results obtained show that the RMSE is a decreasing

function of the number of nodes, but when this number
is 30, the RMSE is approximately constant. As a result,
the number of node in the hidden layer is set to 30. The
values J are rounded to the nearest integer or half inte-
ger, and these rounded values are used in training the
ELM. As ηopt varies from 0 to 1, the sigmoid function is
used as the activation function which is given by:

r ¼ 1
1þ e−x

ð30Þ

6 Results and discussion
In this section, the MAEs of several well-known TC
methods were examined for SNRs in the range 4 to
30 dB with the IEEE 802.15.3c channel models. Fig-
ure 13a shows the calculated MAEs of the obtained
TOA estimations with the LOS propagation including
the channel models CM 1.1 and CM 3.1, while the
MAEs of the obtained TOA over the channel models
CM 2.1 and CM 4.1 were shown in Fig. 13b.
Based on the obtained results, the following conclu-

sions can be obtained:

(1)The obtained MAEs of the new proposed ED
receiver with respect to each given SNR within
4–30 dB indicate the excellent capability of removing
the AWGN and show better performances on TOA
estimations compared with several well-known
algorithms based on the ED receiver whether in
LOS or NLOS scene for each given integration
period as shown in Fig. 14.

Fig. 15 MAEs of TOA estimation with respect to Tb

Fig. 14 MAEs of the improved ED receiver over different propagation
scenes with Tb = 4 ns
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(2)The obtained MAEs of the improved ED received
indicate that the ability to achieve TOA estimations
in LOS models is better than that in NLOS models
with regard to each given SNR within 4–30 dB. The
difference is 15 ns at best.

(3)Integration periods usually can cause bad effects on
TOA accuracy; the TOA estimation accuracy
increases with the increasing integration period
regardless of the propagation environment as shown
in Fig. 15. In the majority of cases, the MAEs with
Tb = 1 ns is less than that with Tb = 4 ns and the
difference is at most 2 ns.

(4)It was turned out that the new ED receiver was
independent of the propagation models and
integration periods.

Here, ELM denotes the new ED method with the
optimum thresholds acquired with the ELM algorithm,
MES denotes the maximum energy selection method, K
denotes the kurtosis based method, and FT denotes the
fixed normalized threshold. In all cases, the average
MAE of the improved ED receiver with the ELM algo-
rithm is the lowest among the above algorithms.

7 Conclusions
In this paper, an improved energy detector (ED)-based
TOA estimation method for impulse radio (IR) 60 GHz
wireless system was presented using the empirical mode
decomposition (EMD). The proposed solution employs
the curl, the kurtosis, and the skewness of the energy
values with an extreme learning machine (ELM). The
optimum thresholds were determined for the IEEE
802.15.3c channel models in both LOS and NLOS envi-
ronments. Results were presented which show that the
proposed ELM approach provides better performance
than other ED-based TOA estimation methods.
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