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Abstract

We revisit the multiple importance sampling (MIS) estimator and investigate the bound on the efficiency
improvement over balance heuristic estimator with equal count of samples established in Veach’s thesis. We revise
the proof for this and come to the conclusion that there is no such bound and henceforth it makes sense to look for
new estimators that improve on balance heuristic estimator with equal count of samples. Next, we examine a recently
introduced non-balance heuristic MIS estimator that is provably better than balance heuristic with equal count of
samples, and we improve it both in variance and efficiency. We then obtain an equally provably better one-sample
balance heuristic estimator, and finally, we introduce a heuristic for the count of samples that can be used when the
individual techniques are biased. All in all, we present three new sampling strategies to improve on both variance and
efficiency on the balance heuristic using non-equal count of samples.
Our scheme requires the previous knowledge of several quantities, but those can be obtained in an adaptive way. The
results also show that by a careful examination of the variance and properties of the estimators, even better
estimators could be discovered in the future. We present examples that support our theoretical findings.

Keywords: Global illumination, Rendering equation analysis, Multiple importance sampling, Monte Carlo

AMS Subject Classification: primary Computer Graphics G.3 Mathematics of Computing/PROBABILITY AND
STATISTICS probabilistic algorithms; Computer Graphics G.3 Mathematics of Computing / PROBABILITY AND
STATISTICS probabilistic algorithms; secondary Computer Graphics G.3 Mathematics of Computing / PROBABILITY
AND STATISTICS probabilistic algorithms

1 Introduction
The multiple importance sampling (MIS) estimator [1, 2],
and in particular balance heuristic, which is equivalent to
the Monte Carlo estimator with a mixture of probabil-
ity density functions (pdfs), has been used for many years
with a big success, being a reliable and robust estimator
that allows an easy and straightforward combination of
different sampling techniques. MIS with balance heuris-
tic estimator has been almost exclusively used with equal
count of samples for each technique, mainly following the
recommendations based on certain quasi-optimality the-
orems in Veach’s thesis. Specifically, these theorems stated
that a balance heuristic estimator could not be worse
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than n times any other MIS estimator with equal count
of samples where n is the number of combined meth-
ods. In papers addressing the variance of MIS, strategies
were assumed to have equal number of samples [3, 4],
and the combination of MIS with jittered sampling was
studied in [5].
MIS is often used in rendering applications of computer

graphics [6] where the reflected illumination is the prod-
uct of the intensity in the illumination direction that can
be represented by an environment map, and the proba-
bility of the reflection from a surface. As it is not feasible
to sample with this product of two functions, sampling
mimics either directions from where reflection is likely or
directions of high intensity. The first approach is called
light source sampling and the second approach is called
BRDF sampling after the name of the bidirectional reflec-
tion distribution function (BRDF).
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Lu et al. [7] propose an improvement to balance heuris-
tic estimators for environment map illumination by using
a Taylor’s second order approximation of the variance
around the equal weights 1/2 to obtain the counts of
samples according to the BRDF and the environment
map, which is accurate only if the optimal sample num-
bers are not too far from equal sampling. Heuristics
have also been used that prefer certain sampling meth-
ods based on the local properties, for example, BRDF
sampling is advantageous on highly specular surfaces and
light source sampling on diffuse surfaces. Pajot et al. pro-
posed a framework, called representativity, to develop
such heuristic [8]. Havran and Sbert [9, 10] introduce
a heuristic for unbiased techniques based on assigning
a count of samples proportional to the inverse of the
variance of each technique that in some cases seemed
to put into question the quasi-optimality rules of equal
sampling. More recently, based on the analysis of the vari-
ance of MIS estimators, Sbert et al. [11] discovered a
MIS non-balance heuristic estimator that is provably bet-
ter than balance heuristic with equal count of samples.
The introduction of costs into those schemes allowed an
even bigger increase in efficiency. We improve on their
work by clarifying the quasi-optimality rules in Veach’s
thesis by introducing new balance heuristic estimators
that are provably better than balance heuristic with equal
count of samples, and by introducing a new heuristic valid
when the individual estimators are biased. We believe
that our work can inspire new provably better estima-
tors or at least sound heuristics for heuristically better
estimators.
Putting our results in a wider perspective, we should

consider adaptive variance reduction methods that learn
some properties of the integrand, e.g., the location of
its peak, and refine the sampling strategy on-the-fly by
analyzing the samples that have been already generated.
In case of mixing different pdfs with which sampling
is straightforward, the weights of the individual meth-
ods are the target of the adaptation. Adaptive methods
can be imagined as a sequence of Monte Carlo quadra-
ture steps and parameter estimation steps. Care should
be exercised to implement adaptive methods since mak-
ing the sampling pdf dependent on the generated samples
might make the estimator biased, which can be attacked
by freezing the adaptation after certain samples letting the
approach be consistent. Another challenge is the control
of the adaptation with randomly sampled, i.e., noisy data.
To handle this, adaptive MCMC approaches often choose
an artificial but robust criterion, like the acceptance rate,
instead of the variance of the estimation [12, 13]. In com-
puter graphics, this technique has been used to control
the mutation of MCMC methods [14, 15] and to dis-
tribute different numbers of samples among the different
techniques [16].

Owen and Zhou [17] survey the principles of adaptively
mixing different sampling strategies, including defensive
importance sampling and the simultaneous application
of control variates and importance sampling. They also
investigate MIS and point out that there is a room for
improvement. Douc et al. [18] investigated the population
Monte Carlo method and derived sufficient convergence
conditions for adaptive mixtures, and also iterative for-
mulae for the optimal weights [19]. As population Monte
Carlo explores the sampling space with a Markov stochas-
tic process, it uses the information of only the current
samples directly. Cornuet et al. [20] improve this in their
adaptive multiple importance sampling algorithm and
present optimal exploitation of previous samples, which
automatically stabilizes the process. Marin et al. [21] argue
that the Markov property is important to be able to prove
the consistency of the estimator, and the stability of the
process can be achieved by increasing the sample size in
each iteration.
In their recent work, Martino, Elvira et al. proposed

adaptive population importance sampling [22] and gra-
dient adaptive population importance sampling [23] that
adapt the mean and the covariance of proposal Gaussian
pdfs, and reported significant improvements with respect
to MIS that keeps the individual proposal pdfs fixed.
We note that in computer graphics the not continuous
integrands may pose problems to such gradient-based
methods. Elvira et al. also examined a discrete weight-
ing scheme [24] where only a subset of available sampling
strategies is selected with the aim of reducing the compu-
tational complexity of the sampling process.
The rest of the paper is organized as follows: In

Section 2, we review the basic formulae for the variance
of MIS. In Section 3, we discuss Theorem 9.5 of Veach’s
thesis and present a new proof for a slightly modified
theorem. In Section 4, we present a multi-sample balance
heuristic estimator that is provably better than multi-
sample balance heuristic with equal count of samples. In
Section 5, we obtain a provably better one-sample bal-
ance heuristic estimator, and in Section 6, we justify a new
heuristic for the count of samples that does not require
the individual techniques be unbiased. In Section 7, we
discuss the results, and in Section 8, summarize our con-
clusions. Some proofs are given in Appendices A and B,
and numeric 1D examples are presented in Appendix C.

2 MIS variance analysis
We review here the variance of MIS estimators. The
naming convention for the estimators is given in Table 1.

2.1 General multi-sample MIS estimator
The MIS estimator introduced by Veach and Guibas [1]
to estimate the value of integral I = ∫

f (x)dx has the
following form:



Sbert et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:15 Page 3 of 15

Table 1 Naming convention for the MIS estimators in this paper.
We will drop the superindex 1 from primary estimators when not
strictly necessary

F Generic multi-sample MIS estimator

F Generic one-sample MIS estimator

F 1 Generic one-sample MIS primary estimator

F̂ Generic multi-sample MIS balance heuristic

estimator

F̂ Generic one-sample MIS balance heuristic

estimator

Feq, Feq, F 1
eq, F̂eq, F̂eq Equal count of samples estimators

F =
n∑

i=1

1
Ni

Ni∑

j=1
wi(Xij)

f (Xij)

pi(Xij)
, (1)

where the weights wi(Xij) are such that

f (x) �= 0 ⇒
n∑

i=1
wi(x) = 1 (2)

and

pi(x) = 0 ⇒ wi(x) = 0. (3)

In this combination scheme, sampling method i uses
probability density function pi(x) to generate Ni number
of random samples {Xij}, (j = 1, . . . ,Ni). If we have n
techniques, the total number of samples is

∑n
i=1Ni = N .

Integral estimator F is unbiased, as its expected value μ is
equal to integral I:

μ = E[F] =
n∑

i=1

1
Ni

Ni∑

j=1

∫ wi(x)f (x)
pi(x)

pi(x)dx (4)

=
∫ n∑

i=1
wi(x)f (x)dx =

∫
f (x)dx.

The variance of the estimator is given in the proof of
Theorem 9.2 of Veach’s thesis [2]. Define Fij as

Fij = wi(Xij)
f (Xij)

pi(Xij)
. (5)

For a fixed method i and all j values, the estimators {Fij}
are independent identically distributed random variables
with expected value μi:

μi = E[Fij]=
∫ wi(x)f (x)

pi(x)
pi(x)dx (6)

=
∫

wi(x)f (x)dx. (7)

Observe that

μ =
n∑

i=1
μi, (8)

and that the variance of Fij is

σ 2
i = E

[
F2
ij

]
− E2[Fij] (9)

=
∫ (

wi(x)f (x)
pi(x)

)2
pi(x)dx − μ2

i

=
∫ w2

i (x)f 2(x)
pi(x)

dx − μ2
i .

If samples are statistically independent, the variance of
the integral estimator is

V [F] =
n∑

i=1

1
N2
i

Ni∑

j=1
σ 2
i =

n∑

i=1

1
Ni

σ 2
i (10)

=
n∑

i=1

1
Ni

(∫ w2
i (x)f 2(x)
pi(x)

dx − μ2
i

)

=
n∑

i=1

∫ w2
i (x)f 2(x)
Nipi(x)

dx −
n∑

i=1

1
Ni

μ2
i .

There are two different components of a MIS estima-
tor that determine the variance of the estimates: weighting
scheme wi and the number of samples Ni allocated to
different methods. Weighting functions may or may not
depend on the number of samples. Additionally, the num-
ber of samples can be pre-determined, called the multi-
sample model, or selected also randomly, which leads to
the one-sample model.

2.2 Balance heuristic estimator
Veach defined a balance heuristic estimator setting the
weights as the following:

wi(x) = Nipi(x)∑n
k=1Nkpk(x)

. (11)

These weights lead to the following estimator:

F̂ =
n∑

i=1

1
Ni

Ni∑

j=1

Nif (Xij)∑n
k=1Nkpk(Xij)

(12)

=
n∑

i=1

Ni∑

j=1

f (Xij)∑n
k=1Nkpk(Xij)

.

Let us now consider the variance of the combined
estimator when method i takes Ni samples and predeter-
mining the number of samples in advance (multi-sample
model):
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V [F̂] =
n∑

i=1

1
Ni

σ 2
i (13)

=
n∑

i=1

1
Ni

(∫ N2
i f 2(x)pi(x)

(∑n
k=1Nkpk(x)

)2 dx − μ2
i

)

=
n∑

i=1

1
Ni

∫ N2
i f 2(x)pi(x)

(∑n
k=1Nkpk(x)

)2 dx −
n∑

i=1

1
Ni

μ2
i

=
∫ f 2(x)

∑n
k=1Nkpk(x)

dx −
n∑

i=1

1
Ni

μ2
i

= 1
N

(∫ f 2(x)
∑n

k=1 αkpk(x)
dx −

n∑

i=1

1
αi

μ2
i

)

,

where αk = Nk/N .

2.2.1 Balance heuristic with equal count of samples
Observe that if we take equal count of samples for each
technique, i.e., for all i, Ni = N/n or αi = 1/n, then the
weights become

wi(x) = pi(x)∑n
k=1 pk(x)

, (14)

the estimator is

F̂eq = n
N

n∑

i=1

N
n∑

j=1

f (Xij)∑n
k=1 pk(Xij)

, (15)

and the variance is equal to

V [F̂eq] = n
N

n∑

i=1
σ 2
i,eq (16)

= n
N

n∑

i=1

(∫ pi(x)f 2(x)
(∑n

k=1 pk(x)
)2 dx − μ2

i,eq

)

= n
N

(∫ f 2(x)
∑n

k=1 pk(x)
dx −

n∑

i=1
μ2
i,eq

)

,

where σ 2
i,eq is equal to

σ 2
i,eq =

∫ pi(x)f 2(x)
(∑n

k=1 pk(x)
)2 dx − μ2

i,eq, (17)

and μi,eq is

μi,eq =
∫ pi(x)f (x)∑n

k=1 pk(x)
dx. (18)

2.3 A provably better non-balance heuristic estimator
Sbert et al. [11] introduced an estimator provably better
than balance heuristic with equal count of samples. Taking
the weights as in Eq. 14, the estimator F in Eq. 1 is

F =
n∑

i=1

1
Ni

Ni∑

j=1

f (Xij)∑n
k=1 pk(Xij)

. (19)

The estimators Fij in Eq. 5 become

Fij = f (Xij)∑n
k=1 pk(Xij)

, (20)

and the variances σ 2
i defined by Eq. 9 are equal to σ 2

i,eq.
The variance, Eq. 10, is then

V [F] =
n∑

i=1

1
Ni

σ 2
i,eq (21)

=
n∑

i=1

1
Ni

(∫ pi(x)f 2(x)
(∑n

k=1 pk(x)
)2 dx − μ2

i,eq

)

.

Sbert et al. showed [11] that takingNi ∝ σi,eq guarantees
that we improve on balance heuristic with equal sampling
by using estimator Eq. 19, up to the statistical error in
estimating the σi,eq values.
Taking into account the cost ci of sampling with tech-

nique i, the sample numbers that guarantee that we
improve the efficiency (i.e., the inverse of cost times vari-
ance) over balance heuristic with equal sampling are

Ni ∝ σi,eq√ci
. (22)

3 Breaking the bounds for the relative
acceleration

In this section, we investigate the bounds for the improve-
ment on the variance of balance heuristic estimator with
equal count of samples.
This problem has been attacked by Veach establishing

an inequality (Theorem 9.5 of his thesis [2]) for the vari-
ance of the balance heuristic estimator with equal count
of sampling F̂eq:

V [F̂eq]≤ nV [F]+n − 1
N

μ2, (23)

where F is any multiple importance sampling estima-
tor using the same total number of samples N. Veach
interpreted Theorem 9.5 as a proof of quasi-optimality
of balance heuristic with equal count of samples, saying
“According to this result, changing the Ni can improve
the variance by at most a factor of n, plus a small addi-
tive term. In contrast, a poor choice of the wi can increase
variance by an arbitrary amount. Thus, the sample alloca-
tion is not as important as choosing a good combination
strategy.”
The proof of Eq. 23 is based on the following inequal-

ity, which compares a general multiple importance sample
estimator F with arbitrary number of samples {Ni} with
the same estimator (i.e., using the same weights wi) but
with equal count of samples, Feq as follows:

V [F]≥ 1
n
V [Feq] . (24)
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But this inequality is not valid when the weights wi(x)
depend on the number of samples Ni, see Appendix A for
a proof. Just to give a single counter example, let us con-
sider the case when zero variance estimator is possible
by properly setting the number of samples, making V [F]
zero, but the equal count of samples estimator will not
have zero variance. However, we show that Theorem 9.5
can be generalized to such cases as well, but it requires the
full reconsideration of the original proof.
The interpretation by Veach of Theorem 9.5 is based on

the assumption that additive term μ2(n − 1)/N is small
if the total number of samples, N, gets larger. However,
denominator N is implicitly included in the other terms
of Eq. 23 as well, thus the considered additive term is,
in fact, not negligible. As a result, the selection of Ni
sample numbers or weights αi can make a significant dif-
ference in the variance, which is worth examining and
opens possibilities to find better estimators.

3.1 One-sample balance heuristic
The general MIS one-sample primary estimator is

F1 = wi(x)f (x)
αipi(x)

, (25)

where technique i is selected with probability αi. It can be
easily shown that it is unbiased, i.e., its expected value is
μ. Using the balance heuristic weights,

wi(x) = αipi(x)∑n
k=1 αkpk(x)

, (26)

the estimator becomes the one-sample balance heuristic
estimator,

F̂1 = f (x)
∑

k αkpk(x)
. (27)

One-sample balance heuristic is the same as the
Monte Carlo estimator using the mixture of probabilities
p(x) = ∑n

k = 1 αkpk(x),
∑n

k = 1 αk = 1. The αi values
are called the mixture coefficients and represent the aver-
age count of samples from each technique. The variance
of this estimator can be obtained by the application of the
definition of variance,

V
[
F̂1

]
=

∫ f 2(x)
∑n

k=1 αkpk(x)
dx − μ2. (28)

Theorem 1 If V
[
F̂1
eq

]
is the variance of the one-

sample balance heuristic estimator with equal weights,
and V

[
F̂1

]
the variance of the one-sample balance heuris-

tic estimator with any distribution of weights {αk}, then the
following inequality holds:

V
[
F̂1
eq

]
≤ nαmaxV

[
F̂1

]
+ (nαmax − 1)μ2. (29)

Proof The variance of the one-sample balance heuristic
with equal weights is

V
[
F̂1
eq

]
=

∫ f 2(x)
1
n

∑
k pk(x)

dx − μ2. (30)

As αmax
∑n

k=1 pk(x) ≥ ∑n
k=1 αkpk(x) where αmax > 0

is the maximum of the values of αk and pk is not negative,
we have 1

nαmax
∑n

k=1 pk(x) ≥ 1
n

∑n
k=1 αkpk(x) and thus:

V
[
F̂1
eq

]
≤ nαmax

∫ f 2(x)
∑n

k=1 αkpk(x)
dx − μ2 (31)

= nαmax

(∫ f 2(x)
∑n

k=1 αkpk(x)
dx − μ2

)

+(nαmax − 1)μ2.

When for all i, αi = 1/n, Eq. 29 becomes an equality.
Observing that αmax ≤ 1, the following corollary is
immediate.

Corollary 1

V
[
F̂1
eq

]
≤ nV

[
F̂1

]
+ (n − 1)μ2. (32)

Equations 29 and 32 do not imply that the improvement
with respect to the equal count of samples is limited by a
factor of n, since μ can be large in comparison with the
variances. So, it is worth trying to obtain αi values that can
reduce the variance.
Equations 29 and 32 can be extended to the one-sample

MIS in general using Theorem 9.4 of Veach’s thesis, which
states that the variance of the one-sample MIS estimator
is minimal when it is a balance heuristic one, i.e., V [ F̂ ]≤
V [F ]. For instance, for Eq. 32

V
[
F̂1
eq

]
≤ nV

[
F1] + (n − 1)μ2. (33)

And for N samples,

V
[
F̂eq

]
≤ nV [F ]+ (n − 1)

N
μ2. (34)

Observe that Eq. 34 is similar to Eq. 23 except for the fact
that it holds for the one-sample estimator. Using V [F̂]≤
V [F̂ ] (as shown in [11]) we also have:

V
[
F̂eq

]
≤ nV [F ]+ (n − 1)

N
μ2. (35)

Finally, note that we do not state that Eq. 23 is invalid,
but that its proof by Veach in his thesis [2] is wrong
and also his interpretation is not correct. On the other
hand, we have proved a formally identical relationship,
Eq. 34, for the one-sample MIS estimator instead of the
multi-sample estimator.
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4 A provably better balance-heuristic
multi-sample estimator

In Section 1, we reviewed two strategies for the allocation
of samples to individual methods, balance heuristic with
equal count of samples (Section 2.2.1) and non-balance
heuristic with sample numbers proportional to the vari-
ance (Section 2.3). The variance of the latter is better than
that of the equal count estimator. This section shows that
we can do it even better if the sample allocation strategy
of Section 2.3 is applied to balance heuristic.
We can use Theorem 9.2 from Veach’s thesis, which

states that for any MIS estimator F , the balance heuris-
tic estimator F̂ with the same count of samples as F has
always less variance up to an asymptotically decreasing
factor, i.e.,

V [F̂]−V [F]≤
(

1
mini Ni

− 1
∑n

k=1Nk

)

μ2, (36)

to obtain a provably better estimator than the one
described in Section 2.3. Let us now take the estimator F
as Eq. 19 from Section 2.3 where Ni ∝ σi,eq. This is prov-
ably better than the balance heuristic with equal count of
samples, F̂eq, i.e., V [ F]≤ V [ F̂eq]. Thus,

V [F̂] ≤ V [F]+
(

1
mini Ni

− 1
∑n

k=1Nk

)

μ2 (37)

≤ V [ F̂eq]+
(

1
mini Ni

− 1
∑n

k=1Nk

)

μ2.

Observe that F̂ is the balance heuristic estimator defined
in Eq. 12 where the Ni ∝ σi,eq. Similar results can be
obtained for the case when the sampling cost is also taken
into account, i.e. consider now as F theMIS estimator with
Ni ∝ σi,eq/

√ci.

( n∑

k = 1
Nkck

)

V [F̂] ≤
( n∑

k = 1
Nkck

)

V [F]+
( n∑

k = 1
Nkck

) (
1

mini Ni
− 1

∑n
k = 1 Nk

)

μ2

≤ N
n

( n∑

k = 1
ck

)

V [F̂eq]+
( n∑

k = 1
Nkck

) (
1

mini Ni
− 1

∑n
k=1 Nk

)

μ2.

(38)

Estimator F̂ is now the balance heuristic estimator
defined in Eq. 12 with Ni ∝ σi,eq/

√ci.

4.1 Discussion
Let us re-write Eq. 37 with variances V1[F̂] ,V1[F], and
V1[F̂eq] normalized to N = 1, i.e., V [F̂]= V1[F̂] /N ,
V [F] = V1[F] /N ,V [F̂eq] = V1[F̂eq] /N :

V1[F̂] ≤ V1[F̂eq]+
(

1
mini αi

− 1
)

μ2. (39)

The efficiency in this case is
( n∑

k=1
αkck

)

V1[F̂] ≤ 1
n

( n∑

k=1
ck

)

V1[F̂eq] (40)

+
( n∑

k=1
αkck

) (
1

mini αi
− 1

)

μ2.

Thus, the relative difference between variances will be
constant disregarding N. This is a similar situation to that
encountered in Section 3.

5 A provably better one-sample balance heuristic
estimator

The variance of the estimator in Eq. 25 is the second
moment minus the square of μ:

V [F1] =
∫ n∑

i = 1

(
wi(x)f (x)
αipi(x)

)2
αipi(x)dx − μ2

=
n∑

i = 1

∫ w2
i (x)f 2(x)
αipi(x)

dx − μ2

=
n∑

i = 1

1
αi
M2

i − μ2, (41)

where the second momentsM2
i are defined as

M2
i =

∫ w2
i (x)f 2(x)
pi(x)

dx. (42)

Observe that, as μ2 is a constant, minimizing V [F1]
means minimizing the first term of the last equality in
Eq. 41. When the weights {wi(x)} are independent of the
coefficients {αi}, we get the following theorem:

Theorem2 When the weights {wi(x)} are independent of
the {αi}, the minimum variance in Eq. 41 is obtained when

αi ∝ Mi. (43)

Proof The proof fully given in Appendix B follows from
applying the Lagrange multipliers method to the target
function:
�(αi, λ) = ∑n

i=1
1
αi
M2

i − μ2 + λ
(∑n

k=1 αk − 1
)
.

Let us use the weights of Section 2.3, i.e., wi(x) =
pi(x)/

∑n
k=1 pk(x). These weights do not depend on the

{αi}, and thus we can apply Theorem 2. The minimum
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variance is then given by substituting the optimal {αi}
from Eq. 43 to Eq. 41, resulting in

Vmin
[
F1] =

( n∑

i = 1
Mi,eq

)2

− μ2, (44)

where theMi,eq values are the square root of

M2
i,eq =

∫ pi(x)f 2(x)
(∑n

k = 1 pk(x)
)2 dx, (45)

obtained by substituting the weights of Section 2.3 into
Eq. 42. As they correspond to the minimum variance,
the values obtained in Eq. 43 will provide a variance less
than using any other count of samples, in particular when
taking equal count of samples, thus we get

Vmin[F1] =
( n∑

i = 1
Mi,eq

)2

−μ2 ≤ n
n∑

i = 1
M2

i,eq − μ2.

(46)

Observe that the right side in Eq. 46 also corresponds to
the variance of the one-sample balance heuristic estimator
with equal count of samples, i.e., for all i, αi = 1/n. Thus,
we can guarantee that the one-sample estimator given by
Eq. 25 using weights of Section 2.3 is better than the one-
sample balance heuristic estimator with equal count of
samples. Applying now Theorem 9.4 of Veach’s thesis, that
reads

V [ F̂ ]≤ V [F ] , (47)

we have that the one-sample balance heuristic estimator

F̂1 =
(∑

k Mk,eq
)
f (x)

∑
i Mi,eqpi(x)

, (48)

using αi ∝ Mi,eq weights is guaranteed to have less vari-
ance than the one-sample balance heuristic estimator with
equal count of samples. If we take into account the costs,
we have the following theorem:

Theorem 3 When the weights {wi(x)} are independent
of the {αi}, the maximum efficiency of MIS one-sample
estimator is obtained when

αi = Mi
√
CT√

ciV [F1]+CTμ2
. (49)

See Appendix B for a proof. Observe, however, that
Eq. 49 is not an explicit expression for αi since it contains
these values in the right hand side, as CT = ∑n

k = 1 αkck .
Thus, some approximation is needed in practice. One
possibility is to take

αi ∝ Mi√ci
, (50)

another is to substitute in the right side of Eq. 49 the
optimal values independent of the costs, i.e., αi ∝ Mi.
Under certain circumstances, we can guarantee that the
one-sample balance heuristic estimator using the values

αi ∝ Mi,eq√ci
, (51)

is more efficient than the one-sample balance heuristic
with equal count of sampling.

Theorem 4 The one-sample balance heuristic estimator
using the {αi} values in Eq. 51 is more efficient than the
one-sample balance heuristic estimator with equal count
of sampling when the {αi} values are decreasing with costs
{ci}.

A proof can be found in Appendix B. The estimator
would be now

F̂1 =
(∑n

k = 1Mk,eq/ck
)
f (x)

∑n
i = 1

Mi,eq
ci pi(x)

. (52)

When the variation of Mi,eq values is small relatively to
the variation of ci values, then we can consider that αi ∝
Mi,eq/

√ci values are decreasing with ci, and the efficiency
of MIS estimator using αi ∝ Mi,eq/

√ci would be better
than taking αi = 1/n.

5.1 Discussion
One might ask why we are interested in the one-sample
estimator when its variance is always higher than its
multi-sample version due to the additional randomiza-
tion. In addition, as the costs CT are the same, as we
use on average the same number of samples from each
technique for both the one-sample and the multi-sample
estimators, we also have CTV [F]≤ CTV [F ], this is, given
a one-sample estimator, its corresponding multi-sample
counterpart will always be more efficient. However, there
might be cases where only the one-sample estimator is
applicable, e.g., when we do not know a priori the number
of samples or we need just a single sample.

6 A new heuristic
In [9, 10] the heuristic αi ∝ 1/vi was presented, where
vi = ∫ f 2(x)

pi(x)dx − μ2 is the variance of technique i. This
heuristic is only valid when all techniques pi(x) are unbi-
ased. We will present here a generalized heuristic that is
valid even when the techniques are biased and based on
the following theorems.

Theorem 5 The variance V [ F̂1] is bounded by

V [ F̂1]≤
n∑

k=1
αkm2

k − μ2, (53)
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where m2
k = ∫ f 2(x)

pk(x)dx is the secondmoment of technique k.

Proof Using the inequality between harmonic and arith-
metic means, we get

V [ F̂1] =
∫ f 2(x)

∑n
k=1 αkpk(x)

dx − μ2 (54)

≤
∫ n∑

k=1

αk
pk(x)

f 2(x)dx − μ2

=
n∑

k=1
αk

∫ f 2(x)
pk(x)

dx − μ2.

Observe that we do not require the {pk} techniques be
unbiased.

If all techniques are unbiased, then

V
[
F̂1

]
≤

n∑

k = 1
αkvk , (55)

which follows from that μ2 can be written as
∑

k αkμ
2.

Note that from V [F̂]≤ V [F̂ ], the bound in Eqs. 53 and 55
also holds for V [F̂].

Observe also that if m2
max = maxk

{
m2

k
}
and vmax =

max2k{vk}, then from Eq. 53

V
[
F̂1

]
≤ m2

max − μ2,

and in case of unbiased techniques from Eq. 55

V
[
F̂1

]
≤ vmax.

That is, whichever combination {αk} is taken, we cannot
make it worse than just using the worst technique.
Let us use Theorem 5 to obtain a heuristic valid for

biased techniques.

Theorem 6 Consider a function f (x) and n not necessar-
ily unbiased Monte Carlo integration techniques, {pi(x)},
with second moments

{
m2

i
}
, and the sequence of n positive

values {αi}, ∑i αi = 1. The rearrangement that minimizes
the bound in Eq. 53 happens when the {αi} are ordered
inversely to

{
m2

i
}
.

Proof As μ is a constant value only depending on f (x),
the rearrangement that minimizes the bound in Eq. 53 is
the one that minimizes

∑n
k=1 αkm2

k , and by virtue of the
rearrangement inequality [25, page 261][26], it happens
when the {αi} are ordered inversely to

{
m2

i
}
.

Theorem 6 justifies the introduction of the new heuris-
tic αi ∝ 1/m2

i . We can extend this heuristic to take the

costs of the techniques into account, in the same way as in
[9] and [10] by using αi ∝ 1/

(
cim2

i
)
.

7 Results
7.1 1D functions
We have compared the following estimators: equal count
of samples with balance heuristic, count inversely propor-
tional to variances of independent techniques with bal-
ance heuristic [9, 10], optimal count non-balance heuristic
in [11], and the new balance heuristic estimators defined
in Sections 4, 5, and 6 using values αk ∝ σk,eq,αk ∝
Mk,eq, and αk ∝ 1

m2
k
for equal cost of sampling, and

αk ∝ σk,eq√ck ,αk ∝ Mk,eq√ck , and αk ∝ 1
ckm2

k
for unequal cost

of sampling. The new estimators are tried for both the
one-sample and the multi-sample case. The results for
1D example functions and pdfs of Fig. 1 are presented in
Appendix C and summarized in Tables 2, 3, 4, 5, and 6.We
additionally provide in supplemental material the Math-
ematica code to try any function with any pdfs. In the
obtained results, we can see the following patterns:

• As expected [11] multi-sample estimators are always
better than the corresponding one-sample estimators
with the same distribution of samples

• As expected the multi-sample estimators defined in
[11] (Section 2.2.1) are better than balance heuristic
with equal count of samples, both in variance and
efficiency.

• The new multi-sample estimators defined in
Section 4 have similar variance values than balance
heuristic with equal number of samples, but have
better values for efficiency, both for the one-sample
and the multi-sample estimator.

• The new multi-sample estimators defined in
Section 4 provide similar variance as the ones in [11]
but better efficiency, except in the fourth example
where the efficiency is slightly worse.

• The optimal distribution of samples obtained in
Section 5 performs always better for both the
one-sample and the multi-sample estimator cases
than the balance heuristic estimator with equal count
of samples, in both variance and efficiency. This
improvement is notable, especially when we consider
that example 4 is particularly well suited for the equal
count of sampling.

• The multi-sample estimators using the optimal
distribution of samples obtained in Section 5 perform
better than the multi-sample estimators defined in
[11], in both variance and efficiency.

• The heuristically based estimators defined in [9] and
in Section 6 give the best results for the first three
examples, but are by far the worst for the fourth
example.
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a

c

b

d

Fig. 1 From left to right and from top to bottom: The four functions (in black) used in the four examples, f1(x) (example 1), f2(x) (example 2), f3(x)
(example 3), f4(x) (example 4), as combination of the three functions x (red), x2 − x/π (green), and sin(x) (blue)

• The heuristically based estimators for unbiased
techniques defined in [9] and [10] give better results
than the one defined in Section 6 for possibly biased
techniques, except for the third example, where the
new heuristic performs much better.

• We obtain in one case an acceleration of more than
30 times over the variance of the balance heuristic
estimator with equal count of samples.

Table 2 Variances for multi-sample estimator for the four
examples in Appendix C and the environment map example
(× 10−3) for balance heuristic using equal count of samples, for
the count inversely proportional to the variances of independent
estimators [9] and [10], for the provably better, non-balance
heuristic, estimator defined in [11], and for the three new
estimators defined in this paper

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. EM

αk ∝ 1
n 29.16 4.91 10.68 28.14 4.63

αk ∝ 1
vk

[9, 10] 24.11 4.55 2.02 330.85 1.47

αk ∝ σk,eq [11] 29.09 4.90 10.61 27.94 4.61

αk ∝ 1
m2

k
26.55 4.77 0.37 809.28 3.16

αk ∝ σk,eq 29.90 4.99 9.48 6.61 4.36

αk ∝ Mk,eq 28.24 4.83 7.05 18.04 3.87

7.2 Adaptive results for 1D functions
We present also results for the four 1D examples
computed with adaptive sampling algorithms. A first
batch using equal number of samples from each tech-
nique computes order 1 approximation of the different
quantities, which in turn allows us to obtain a first
approximation of the α values needed for the second
batch. The samples of batch N + 1 are obtained with
the order N approximation of the α values, and incre-
mentally update the N -order quantities. We provide
in supplemental material the C++ code to compute all
estimators adaptively. The pseudo-code for the estimators

Table 3 Variances for one-sample balance heuristic for the four
examples in Appendix C and the environment map example
(× 10−3) for balance heuristic using equal count of samples, for
the count inversely proportional to the variances of independent
estimators [9] and [10], and for the three new estimators defined
in this paper

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. EM

αk ∝ 1
n 30.16 5.02 13.35 35.16 5.14

αk ∝ 1
vk

[9, 10] 24.22 4.60 2.05 332.97 1.50

αk ∝ 1
m2

k
27.04 4.85 0.39 863.50 3.46

αk ∝ σk,eq 31.03 5.10 11.67 57.38 4.84

αk ∝ Mk,eq 29.07 4.92 8.72 22.59 4.28
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Table 4 Variance times cost (i.e., inefficiency, the smaller the better) for multi-sample estimator for the four examples in Appendix C
and the environment map example (× 10−3) for balance heuristic using equal count of samples, for the count inversely proportional to
the variances of independent estimators [9] and[10], for the provably better, non-balance heuristic, estimator defined in [11], and for
the three new estimators defined in this paper

Example 1 Example 2 Example 3 Example 4 Example EM

αk ∝ 1
n 102.26 17.24 37.47 98.68 13.41

αk ∝ 1
ckvk

[9, 10] 40.41 9.28 4.03 300.12 1.31

αk ∝ σk,eq√
ck

[11] 89.40 15.44 31.80 83.78 11.31

αk ∝ 1
ckm2

k
43.06 9.82 3.12 534.37 1.68

αk ∝ σk,eq√
ck

81.43 13.54 28.68 91.01 5.88

αk ∝ Mk,eq√
ck

79.73 13.08 25.74 31.77 4.92

defined in [9] and [10] can be found in the supplementary
material of [10]. The charts with variances normalized
to 1 sample, (i.e., variance times the number of samples),
and variances times cost (i.e., inefficiencies) for specific
costs as described in the Appendix C, and averaged for
100 runs are shown in Figs. 2 and 3 for samples count
from 35 to 5000.

7.3 2D analytical environment map example with
Lafortune-Phong BRDFmodel

Let us consider here the BRDF formula for the physically
based variant of the Phong model presented by Lafortune
[27], assuming the case when the outgoing direction ωo is
the surface normal:

fr(ωo,ωi) = ρd
π

+ ρs
m + 2
2π

cosm θ (56)

where ρd is the diffuse albedo, ρs is the specular albedo,
m is the shininess, and θ is the angle between incident
direction ωi and the surface normal.
Let us consider also an environment map of intensity

R(ωi) = R · cos θ . As dω = sin θdθdφ the outgoing radi-
ance is given then by the integral for the hemisphere in
spherical parametrization θ ,φ of the incident direction

R
∫ ∫

θ ,φ

(
ρd
π

+ ρs
m + 2
2π

cosm θ

)

cos θ cos θ sin θdθdφ (57)

and integrating over φ we get

2πR
π/2∫

θ=0

(
ρd
π

+ ρs
m + 2
2π

cosm θ

)

cos θ cos θ sin θdθ . (58)

By the variable substitution of x = cos θ , we obtain

2πR
1∫

x=0

((
ρd
π

+ ρs
m + 2
2π

xm
)

x
)

xdx. (59)

We have thus the integral of the product p1(x)p2(x),
where p1(x) corresponds to the BRDF times x = cos θ ,

p1(x) =
(

ρd
π

+ ρs
m + 2
2π

xm
)

x, (60)

and p2(x) = x is the environment map.
We used typical values, m = 5, ρd = ρs = 0.5, and

compared for equal cost and for the empirically obtained
sampling costs, c1 = 1, c2 = 4.8. The detailed results
are in the last columns of Tables 2, 3, 4, 5, and in the last
two columns of Table 6. The results confirm the patterns
found in our 1D examples.

8 Conclusions
This paper discussed an important topic of MIS esti-
mators and the limited acceleration over equal count of

Table 5 Variance times cost (i.e., inefficiency, the smaller the better) for one-sample estimator for the four examples in Appendix C and
the environment map example (× 10−3) for balance heuristic using equal count of samples, for the count inversely proportional to the
variances of independent estimators [9] and[10], and for the three new estimators defined in this paper

Example 1 Example 2 Example 3 Example 4 Example EM

αk ∝ 1
n 105.78 17.60 46.82 123.30 14.90

αk ∝ 1
ckvk

[9, 10] 40.89 9.37 4.04 300.48 1.32

αk ∝ 1
ckm2

k
44.43 9.93 3.18 545.53 2.30

αk ∝ σk,eq√
ck

83.82 13.27 33.36 105.80 6.39

αk ∝ Mk,eq√
ck

81.66 13.08 30.11 37.57 5.30
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Table 6 α
j
i : αi values for the j-th 1D example and for the environment map example

Example 1 Example 2 Example 3 Example 4 Example EM

α1
1 α1

2 α1
3 α2

1 α2
2 α2

3 α3
1 α3

2 α3
3 α4

1 α4
2 α4

3 α1 α2

α = 1
n 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.5 0.5

αk ∝ 1
vk

[9, 10] 0.42 0.48 0.10 0.35 0.21 0.44 0.90 0.10 0.00 0.95 0.04 0.00 0.93 0.07

αk ∝ 1
ckvk

[9, 10] 0.79 0.14 0.06 0.68 0.07 0.25 0.98 0.02 0.00 0.99 0.01 0.00 0.99 0.01

αk ∝ σk,eq[11] 0.33 0.31 0.35 0.34 0.34 0.31 0.37 0.32 0.30 0.37 0.32 0.30 0.52 0.48

αk ∝ σk,eq√
ck

[11] 0.51 0.19 0.29 0.52 0.21 0.26 0.55 0.19 0.25 0.55 0.19 0.25 0.70 0.30

αk ∝ 1
m2

k
0.38 0.39 0.23 0.35 0.29 0.36 0.53 0.46 0.01 0.60 0.36 0.04 0.66 0.34

αk ∝ 1
ckm2

k
0.52 0.16 0.32 0.69 0.09 0.22 0.87 0.12 0.00 0.56 0.19 0.25 0.90 0.10

αk ∝ Mk,eq 0.33 0.35 0.30 0.32 0.31 0.35 0.34 0.36 0.28 0.33 0.32 0.34 0.57 0.43

αk ∝ Mk,eq√
ck

0.52 0.21 0.25 0.50 0.19 0.30 0.52 0.22 0.24 0.50 0.19 0.29 0.75 0.25

samples balance heuristic. We have shown that in reality,
this bound on acceleration does not hold, which justifies
the search for better and more efficient estimators. We
have obtained, both without and with taking into account
the cost of sampling, new balance heuristic estimators

that are provably better than balance heuristic with equal
count of samples, and new heuristic estimators valid even
when the independent techniques are biased. We have
analyzed their behavior with 1D examples and with a 2D
environment map example.

a b

c d

Fig. 2 The variance for the estimators for adaptive sampling for different samples count and unit cost of sampling techniques. a Example 1,
b example 2, c example 3, and d example 4. Notation of lines 1 to 6 used in charts follows the order of row in Table 2
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a

c

b

d

Fig. 3 The inefficiency for the estimators for adaptive sampling for different samples count and specific costs of sampling techniques for examples
in Appendix C. a Example 1, b example 2, c example 3, and d example 4. Notation of lines 1 to 6 in charts follows the order of rows in Table 4

Appendix A: Inequality in Theorem 9.5 of Veach’s
thesis does not hold for balance heuristic
Let us repeat first the proof of Eq. 24 such as it appears in
Veach’s thesis

V [F] =
n∑

i=1

1
Ni

(∫ w2
i (x)f 2(x)
pi(x)

dx − μ2
i

)

(61)

≥
n∑

i=1

1
N

(∫ w2
i (x)f 2(x)
pi(x)

dx − μ2
i

)

= 1
n

n∑

i=1

1
N/n

(∫ w2
i (x)f 2(x)
pi(x)

dx − μ2
i

)

= 1
n
V [Feq] ,

where V [Feq] is computed assuming the same weights
as V [F] but with equal count of samples. Let us see
that inequality 61 does not hold when the weights wi(x)
depend on the Ni. We will see it for the balance heuristic
estimator, where the weights are defined by

wi(x) = Nipi(x)∑n
k=1Nkpk(x)

. (62)

Eq. 61 would be

V [F̂] =
n∑

i=n

1
Ni

(∫ N2
i f 2(x)pi(x)

(∑n
k=1Nkpk(x)

)2 dx − μ2
i

)

≥
n∑

i=1

1
N

(∫ N2
i f 2(x)pi(x)

(∑n
k=1Nkpk(x)

)2 dx − μ2
i

)

= 1
n

n∑

i=1

1
N/n

(∫ N2
i f 2(x)pi(x)

(∑n
k=1Nkpk(x)

)2 dx − μ2
i

)

�= 1
N

n∑

i=1

(∫ f 2(x)pi(x)
(∑n

k=1 pk(x)
)2 dx − μ2

i

)

= 1
n
V

[
F̂eq

]
, (63)

as the last but two expression is clearly not the variance of
a balance heuristic estimator with equal count of samples
(Eq. 16). Inequality 61 thus holds only when the weights
wi(x) do not depend on counts Ni, and thus the proof of
Theorem 9.5 is not valid in this case.
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Appendix B: Section 5 proofs
We present the proof of Theorem 2. This proof is similar
to the proof of Theorem 2 in [11].

Proof To optimize the variance V
[
F̂1] = ∑n

i=1
1
αi
M2

i −
μ2, we use Lagrange multipliers with the constraint∑n

i=1 αi = 1 and objective function

�(αi, λ) =
n∑

i=1

1
αi
M2

i − μ2 + λ

( n∑

i=1
αi − 1

)

.

Computing the partial derivatives and equating them to
zero, as theMi do not depend on the αi, we get

∂�(αi, λ)

∂αj
=

∂
(∑n

i=1
1
αi
M2

i − μ2
)

∂αj
(64)

+∂
(
λ(

∑n
i=1 αi − 1)

)

∂αj

= −M2
j

α2
j

+ λ = 0.

Thus for all j values λ = M2
j /α

2
j , which implies that

αj ∝ Mj. The Hessian matrix, obtained with the second
derivatives of V [ F̂1], is a diagonal matrix with positive
diagonal values

∂2V
[
F̂1

]

∂αj∂αj
= 2

M2
j

α3
j

(65)

and thus is positive-definite. The variance function is then
strictly convex in its convex domain

∑n
i=1 αi = 1, where

for all i, 0 < αi < 1, meaning that the critical point is
unique and a minimum.
Substituting the optimal values, i.e., αj ∝ Mj, we find the

minimum variance,

Vmin
[
F̂1

]
=

( n∑

i=1
Mi

)2

− μ2. (66)

We present now the proof of Eq. 49.

Proof Let us consider ci the cost of sampling with tech-
nique i. The average cost (or cost for one total sample)
is thus CT = ∑

i αici. We want to minimize now the
cost times variance, i.e., CT ×V

[
F1], which is the inverse

of efficiency. We use Lagrange multipliers with the con-
straint

∑n
i=1 αi = 1 and objective function

�(αi, λ) = CT × V
[
F1] + λ

( n∑

i=1
αi − 1

)

(67)

=
(

∑

i
αici

)( n∑

i=1

1
αi
M2

i − μ2
)

+λ

( n∑

i=1
αi − 1

)

.

Taking partial derivatives and equating them to zero, as
theMi do not depend on the αi,

∂�(αi, λ)

∂αj
= ∂

(∑n
i=1 αici

)

∂αj
V [F1] (68)

+CT
∂

(∑n
i=1

1
αi
M2

i

)

∂αj

+∂
(
λ

(∑n
i=1 αi − 1

))

∂αj

= cjV
[
F1] − CT

M2
j

α2
j

+ λ = 0.

Multiplying by αj and adding over j, we obtain
n∑

j=1
αjcjV

[
F1] −

n∑

j=1
αjCT

M2
j

α2
j

+
n∑

j=1
αjλ (69)

= V
[
F1]CT − CT

(
V

[
F1] + μ2) + λ

= −CTμ2 + λ

= 0

and thus λ = CTμ2. Substituting this value in Eq. 68
we find that the optimal sampling counts are the ones in
Eq. 49.

We present here the proof of Theorem 4.

Proof We compare first the efficiency of the general
one-sample MIS estimator with weights given by Eq. 14
and αi ∝ Mi,eq/

√ci, with the balance heuristic estimator
with equal count of samples. The inverse of efficiency, i.e.,
cost times variance, is given in both cases by Eq. 70:

( n∑

i=1
αici

)( n∑

i=1

M2
i,eq
αi

− μ2
)

(70)

=
( n∑

i=1
αici

)( n∑

i=1

M2
i,eq
αi

)

−
( n∑

i=1
αici

)

μ2

Let us compare first the terms corresponding to the sec-

ond moments, i.e., the term
(∑n

i=1 αici
)
(

∑n
i=1

M2
i,eq
αi

)

, for

αi = 1/n and αi ∝ Mi,eq/
√ci. Using Cauchy-Schwartz



Sbert et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:15 Page 14 of 15

inequality, we can easily check that Eq. 71 is true, where
the first term is the second moment for αi ∝ Mi,eq/

√ci
and the second term for αi = 1/n, because it holds that

( n∑

i=1

√
ciMi,eq

)2

≤
( n∑

i=1
ci

) ( n∑

i=1
M2

i,eq

)

. (71)

Let us consider now the term of Eq. 70 that contains μ2,
i.e.,

(∑n
i=1 αici

)
μ2.Whenever the αi values are decreasing

with ci, the following inequality can be proved [26, 28].

1
n

n∑

i=1
ci ≥

n∑

i=1
αici. (72)

Thus, we can guarantee that the general MIS estimator
with weights wi(x) given by Eq. 14 and αi ∝ Mi,eq/

√ci is
more efficient than the one-sample balance heuristic esti-
mator with equal count of samples whenever the αi values
are decreasing with ci. Considering now the one-sample
balance heuristic estimator with αi ∝ Mi,eq/

√ci, as the
costs are the same and the variance is less than the gen-
eral MIS estimator considered by virtue of Theorem 9.4 in
Veach’s thesis, its efficiency is higher, and in turn, higher
than the balance heuristic estimator with equal count of
sampling.

Appendix C: 1D examples
We compare the results for the functions and pdfs in Fig. 1
with the following estimators: equal count of samples,
count inversely proportional to variances of independent
techniques [9], the new heuristic defined in Section 6
of this paper, optimal count in [11], and the two new
balance heuristic provably better estimators defined in
Sections 4 and 5. These two new estimators are tried for
both one-sample and multi-sample.

Example 1
Suppose we want to solve the integral

μ = I =
∫ π

3
2π

x
(
x2 − x

π

)
sin(x)dx = 10.29 (73)

by MIS sampling on functions x,
(
x2 − x

π

)
, and sin(x),

respectively. We first find the normalization constants:∫ π
3
2π

xdx = 4.82,
∫ π

3
2π

(
x2 − x

π

)
dx = 8.76,

∫ π
3
2π

sin(x)dx =
1.89. We take into account the sampling costs given in [9],
i.e., c1 = 1, c2 = 6.24, c3 = 3.28.

Example 2
Let us solve the integral

μ = I =
∫ π

3
2π

(
x2 − x

π

)
sin2(x)dx = 3.60 (74)

using the same functions x,
(
x2 − x

π

)
, and sin(x) as before.

Example 3
As the third example, let us solve the integral

μ = I =
∫ π

3
2π

x +
(
x2 − x

π

)
+ sin(x)dx = 15.47 (75)

using the same functions as before.

Example 4
As the last example, consider the integral of the sum of the
three pdfs

μ = I (76)

=
∫ π

3
2π

30
x

4.82
+ 30

(
x2 − x

π

)

8.76
+ 40

sin(x)
1.89

dx

= 100.

In this case, we know the optimal (zero variance) α val-
ues: (0.3, 0.3, 0.4). This case should be most favorable to
equal count of samples.
Results are summarized in Tables 2, 3, 4, 5, and 6.
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