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Abstract

This paper extends the recently proposed and theoretically justified iterative thresholding and K residual means
(ITKrM) algorithm to learning dictionaries from incomplete/masked training data (ITKrMM). It further adapts the
algorithm to the presence of a low-rank component in the data and provides a strategy for recovering this low-rank
component again from incomplete data. Several synthetic experiments show the advantages of incorporating
information about the corruption into the algorithm. Further experiments on image data confirm the importance of
considering a low-rank component in the data and show that the algorithm compares favourably to its closest
dictionary learning counterparts, wKSVD and BPFA, either in terms of computational complexity or in terms of
consistency between the dictionaries learned from corrupted and uncorrupted data. To further confirm the
appropriateness of the learned dictionaries, we explore an application to sparsity-based image inpainting. There the
ITKrMM dictionaries show a similar performance to other learned dictionaries like wKSVD and BPFA and a superior
performance to other algorithms based on pre-defined/analytic dictionaries.

Keywords: Dictionary learning, Sparse coding, Sparse component analysis, Thresholding, K-means, Erasures, Masked
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1 Introduction
Many notable advances in modern signal processing are
based on the fact that even high-dimensional data fol-
lows a low complexity model. One such model, which has
become an important prior for many signal processing
tasks ranging from denoising and compressed sensing to
super resolution, inpainting and classification, is sparsity
in a dictionary [1–8]. In the sparse model, each datum
(signal) can be approximated by the linear combination
of a small (sparse) number of elementary signals, called
atoms, from a pre-specified basis or frame, called dictio-
nary. In mathematical terms, if we represent each signal
by a vector yn ∈ R

d and collect the entire dataset in the
matrix Y = (y1, . . . , yN ) ∈ R

d×N , the sparse model can be
formalised as

Y = �X and X is sparse. (1)

Here, the dictionarymatrix� containsK normalised vec-
tors (atoms) φk , stored as columns in � = (φ1, . . . ,φK ) ∈
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R
d×K , and each vector column xn ∈ R

K of the matrix
X = (x1, . . . , xN ) ∈ R

K×N contains only few non-zero
entries. Since the model expressed in Eq. (1) has proven
to be very useful in signal processing, the natural next
question is how to automatically learn a dictionary �,
providing sparse representations for a given data class.
This problem is also known as dictionary learning, sparse
coding or sparse component analysis. By now, there exist
not only a multitude of dictionary learning algorithms
to choose from [9–16] but also theoretical results have
started to accumulate [17–26]. As our reference list is nec-
essarily incomplete, we also point to the surveys [8, 27] as
trailheads for algorithms and theory respectively.
One common assumption on which all algorithms and

associated theories are based is that large numbers of
clean signals are available for learning the dictionary.
However, this assumption might not be valid in actual
applications. Therefore, in this paper, we consider the
following problem: How do we learn a dictionary when
there are only a few or no clean training signals avail-
able? This problem naturally arises in various application
domains from environmental surveillance, health care to
automotive manufacturing, where the data of interest are
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measured by sensors. As signals from sensors can often
be incomplete or contain erroneous measurements due
to sensor dropouts or need for recalibration respectively,
the amount of clean and reliable data for performing
predictive tasks becomes a real issue. As an illustrative
example, in Fig. 1, we provide examples of blood glucose
traces from two patients as measured by a commercially
available continuous glucose monitoring sensor. One can
observe that, despite mandatory calibration procedures
of the device several times a day, the device quite often
returns obviously wrong, e.g. rapidly oscillating, estima-
tions of the blood glucose level and suffers from frequent
signal dropouts [28].
To solve the problem of learning from incomplete data,

we propose an algorithm called Iterative Thresholding and
K residual Means for Masked data (ITKrMM). As the
name suggests, it is built upon the inclusion of a sig-
nal corruption model into the theoretically-justified and
numerically efficient Iterative Thresholding and K residual
Means (ITKrM) algorithm [29].
In order to model the data corruption/loss process, we

adapt the concept of the binary erasure channel. In this
model, the measurement device sends a value and the
receiver either receives the value or receives a message
that the value was not received (‘erased’). The model is
used frequently in information theory due to its simplic-
ity and its abstraction towards modelling various types of
data losses. At the same time, this setting provides infor-
mation on the location of the erasures and, thus, we can
employ the concept of a maskM to describe the corrupted
data as My. Without loss of generality, we will think of a
mask M as orthogonal projection onto the linear span of
vectors from the standard basis (ej)j or simply as diago-
nal matrix with M(j, j) ∈ {0, 1}. We further extend the

algorithm to account for the presence of a low-rank com-
ponent in the data. Such components appear in many
real-life signals and, as we will illustrate below, should be
treated cautiously in the considered context.
To evaluate the accuracy and efficiency of the algo-

rithm, we perform various numerical tests on synthetic
and image data. We also confirm the appropriateness of
the learned dictionaries by successfully using them for an
image inpainting task.
The dictionary learning community does not directly

address the problem under consideration. However, dic-
tionaries learned or refined from corrupted data appear
in the image processing community, where they, among
other tasks, are used for inpainting. Examples include
weighted KSVD (wKSVD) [30, 31], an adaption of the
KSVD algorithm to handling non-homogenous noise in
signals as well as missing values, and the Beta-Bernoulli
Process Factor Analysis (BPFA) [32], a parameter free
Bayesian algorithm, that learns dictionaries for inpaint-
ing also from corrupted data. As we will see, the main
advantage of ITKrMM over the wKSVD algorithm is a
significant reduction of computational cost, from around
3.5 h to 18 min in our experiments on image data, while
providing similar approximation power and inpainting
results. On the other hand, compared to BPFA, we observe
similar computational complexity but a much higher con-
sistency between the dictionaries learned from corrupted
and uncorrupted data, which is also reflected in the bet-
ter approximation power of the dictionary and inpainting
performance, especially for middle and low corruption
levels.
Contribution:This paper provides an efficient and sim-

ple algorithm for dictionary learning from incomplete
data and the recovery of the low-rank component also

Fig. 1 Examples of blood glucose profile of two patients (solid and dashed lines, respectively). Each curve represents a blood glucose profile for a
24-h period from 08:00 till 07:59 the next day during a 3-day inpatient stay. Notice signal dropouts of several hours for two out of six glucose traces
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from incomplete data. Compared to its closest dictionary
learning counterparts, wKSVD and BPFA, it combines
the best of both worlds, meaning consistent and perfor-
mant dictionaries like wKSVD at the computational cost
of BPFA.
Outline: The paper is organised as follows: Section 2

contains the complete problem setup, explaining the com-
bined low-rank and sparse model and as well as the
corruption model. The ITKrMM algorithm for dictionary
recovery is introduced in Section 3. An adaptation of
this algorithm for recovery of the low-rank component
from incomplete data together with a short discussion of
related works in the field ofmatrix completion and dimen-
sionality reduction is provided in Section 4. Section 5.1
contains extensive simulations on synthetic data, while
in Section 5.2, we compare the learned dictionaries to
those of wKSVD and BPFA for image data and use them
for inpainting. Finally, Section 6 offers a snapshot of the
main contributions and points out open questions and
directions for future work.
Notation: Before finally lifting the anchor, we provide

a short reminder of the standard notations used in this
paper. For a matrix A, we denote its (conjugate) trans-
pose by A� and its Moore-Penrose pseudo inverse by A†.
By P(A), we denote the orthogonal projection onto the
column span of A, i.e. P(A) = AA†, and by Q(A), the
orthogonal projection onto the orthogonal complement of
the column span of A, that is Q(A) = Id − P(A), where Id
is the identity operator (matrix) in R

d.
The restriction of the dictionary � to the atoms indexed

by I is denoted by �I , i.e. �I = (φi1 , . . . ,φiS ), ij ∈ I.
The maximal absolute inner product between two differ-
ent atoms is called the coherence μ of a dictionary, μ =
maxk �=j |

〈
φk ,φj

〉 |, and encapsulates information about the
local dictionary geometry.

2 Problem setup
Our goal is to learn a dictionary � from corrupted signals
Mnyn, under the assumption that the signals yn are sparse
in the dictionary �. There are some notable differences
in this problem setting compared to the uncorrupted sit-
uation. First, we cannot without loss of generality assume
that the corrupted signals are normalised, since the action
of the mask distorts the signal energy, ‖My‖2 ≤ ‖y‖2,
which makes simple renormalisation impossible.
Another issue in modelling a natural phenomenon is

that the signals might not be perfectly sparse but can
only be modelled as the orthogonal sum of low-rank
and sparse components. An example for such signals are
images, where one usually subtracts the foreground or, in
other words, the signal mean before learning the dictio-
nary, which consequently will consist of atoms with zero
mean [9]. Without taking into account the existence of
the low-rank component, one would likely end up with a

very ill-conditioned and coherent dictionary, where most
atoms are distorted towards the low-rank component.
Similarly, in the example of the blood glucose data (see

Fig. 1), we can observe that the signals vary around a
baseline signal and that imposing a sparse structure in a
dictionary makes sense only after subtracting this com-
mon component. As before, the atoms in this dictionary
should then be orthogonal to the baseline signal.
In the case of uncorrupted signals, one can simply deter-

mine the common low-rank component � = (γ1 . . . γL)
using one’s preferred method such as a singular value
decomposition and subtract its contribution from the sig-
nals via ỹn = Q(�)yn. Then, in a second separate step, one
can run the dictionary learning algorithm on the modified
signals ỹn and the resulting atoms will automatically be
orthogonal to the low-rank component �. However, in the
case of corrupted signals, the action of the masks destroys
the structure. So, while the dictionary is orthogonal to the
low-rank component, ��� = 0, this orthogonality is not
preserved by the action of the mask, that is ��M� �= 0.
As we will see later, the consequence of this effect is that
we have to take the presence of the low-rank component
into account when learning the sparsifying dictionary.
Moreover, before even going to the dictionary learning
phase, we have to find a strategy to recover the low-rank
component from the corrupted signals.
The third difference is that we get additional constraints

on the dictionaries in order for them to be recoverable.
In the case of uncorrupted signals, the main criterion for
a dictionary to be recoverable is that its coherence scales
well with the average sparsity level S of the signals (Sμ2 � 1,
[29]) and that all atoms are somewhat equally and inde-
pendently used. In our scenario, where we want to learn
a dictionary from corrupted data, we impose another cri-
terion for the recoverability of the dictionary, which is the
robustness of the dictionary to corruption. For instance,
we will not have a chance to recover an atom φk if its
presence in a signal always triggers the same corruption
pattern M0 which distorts the atom, M0φk �= φk . This
means that we have to assume some sort of independence
between the signals yn and the corruption, represented by
the masks Mn. Similarly, it will be very hard to recover
a dictionary, whose incoherence is not robust towards
corruption. To avoid this complication, we assume that
the dictionary and the low-rank component consist of
atoms, which are incoherent with the standard basis, that
is ‖φk‖∞ � 1 resp. ‖γ�‖∞ � 1. We will also refer
to these atoms, where the signal energy is well spread
over the coordinates, as flat atoms, as opposed to spiky
atoms, where the signal energy is concentrated on one (or
a few) coordinate(s), ‖φk‖∞ = 1. A more detailed dis-
cussion why this is a suitable assumption can be found
in Section 3. We point out, however, that this assump-
tion is in line with the potential application of the learned
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dictionaries to signal reconstruction tasks such as inpaint-
ing. There the information in the corrupted part of an
image needs to be encoded by the rest of the image, which
is the case if the image is sparsely represented by flat
atoms.
Incorporating these considerations into the signal

model previously used for the analysis of the ITKM algo-
rithms [29], we arrive at the following model, which will
be a foundation for the development and justification of
the algorithm and for a future theoretical analysis.

2.1 Signal model and assumptions
Given a d × L low-rank component � with ��� = IL and
a d × K dictionary �, where ��� = 0 and L � K , the
signals are generated as

y = s · �v + �x + r
√
1 + ‖r‖22

≈ s(�v + �IxI), (2)

where ‖v‖22 + ‖x‖22 = 1, |I| = S, and r = (r(1) . . . r(d)) is a
noise vector of a centred subgaussian random vector. The
scaling parameter s is distributed between smin and smax
and accounts for signals with different energy levels.
The low-rank component is assumed to be present in

every (most signals) and irreducible, meaning the coeffi-
cients v are dense and E(vv�) is a diagonal matrix. Also,
the average contribution of a low-rank atom should be
larger than that of a sparse atom, E(|v(�)|) 	 E(|x(k)|).
At the same time, the size of the low-rank compo-
nent is assumed to be much smaller than sparsity level,
which in turn is much smaller than the signal dimension,
L � S � d.
The sparse coefficients x should be distributed in a way

that for every single signal, only S entries in x are effec-
tively non-zero. All atoms φk should be irreducible and
on average contribute equally to the signals yn. Specifi-
cally, no two atoms should always be used together, since
in this case, they could be replaced by any other two atoms
with the same span. For a more detailed discussion of
admissible coefficient models, we refer to [29].
For those not intimately acquainted with dictionary

learning, it might be helpful to keep in mind the follow-
ing simple model for the subsequent derivations: constant
scale and no noise. The low-rank component is one-
dimensional, L = 1, and the low-rank coefficients are
equally Bernoulli distributed ±cv. The sparse coefficients
are constructed by choosing a support I of size S uni-
formly at random and setting x(k) = ±c, iid equally
Bernoulli distributed, for k ∈ I and x(k) = 0 else. In
other words, the coefficients restricted to the support are
a scaled Rademacher sequence. Following the above con-
siderations concerning the scalings, we have c2v +S ·c2 = 1
and cv 	 cS/K .

Similar to the signal model, we also discuss our corrup-
tion model.

2.2 Corruption model and assumptions
As mentioned above, the corruption of a signal y is mod-
elled by applying a mask M, where we assume that the
distribution of the mask is independent of the signal dis-
tribution. By receiving a corrupted signal, we understand
that we have access both to the corrupted signal My and
the location of the corruption in form of the mask M,
meaning we receive the pair (My,M).
For the development and later on testing of the algo-

rithms, we will keep two types of corruption in mind. The
first type are random erasures, where the jth coordinate
is received with probability ηj independently of the recep-
tion of the other coordinates, meaningM(j, j) ∼ B(ηj) are
independent Bernoulli variables.
The second type are burst errors or sensor malfunc-

tions. We model them by choosing a burst length τ and a
burst start t, according to a distribution ντ ,t . Based on τ

and t, we then setM(j, j)= 0 for t ≤ j < t+τ andM(j, j) = 1
else. One simple realisation of such a distribution would
be to have no burst, τ = 0, with probability θ and a burst
of fixed size, τ = T , which corresponds, for instance,
to the time the sensor needs to be reset, with probability
1 − θ . The burst start could be uniformly distributed, if
the sensor is equally likely to malfunction throughout the
measurement period or, for instance, with a higher weight
on part of the coordinates, if the sensor is more likely to
malfunction during part of the measurement period, for
instance, during the night.
Having defined our problem setup, we are now ready

to address the recovery of the dictionary from corrupted
data.

3 Dictionary recovery
We will use the iterative thresholding and K residual
means (ITKrM) algorithm [29], as a base for recover-
ing the dictionary. It belongs to the class of alternating
projection algorithms, which alternate between sparsely
approximating the signals in the current version of the
dictionary and updating the dictionary based on the
sparse approximations. As the name suggests, ITKrM
uses thresholding as sparse approximation algorithm and
residual averages for the dictionary update and as such has
the advantage of being computationally light and sequen-
tial. Further, there are theoretical results concerning its
local convergence and good experimental results con-
cerning its global convergence. Additionally, it is easier
to incorporate the information about corruption into a
dictionary update scheme that uses averages than into
one that uses higher order statistics such as singular
vectors. These observations make ITKrM a promising
starting point.
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Algorithm 1 (ITKrM - one iteration) Given an input dic-
tionary � , a sparsity level S and N training signals yn
do:

• For all n find Itn = argmaxI:|I|=S ‖��
I yn‖1.• For all k calculate

ψ̄k =
∑

n:k∈Itn

[
Id − P

(
�Itn

) + P(ψk)
]
yn ·sign(

〈
ψk , yn

〉
).

• Output �̄ = (
ψ̄1/‖ψ̄1‖2, . . . , ψ̄K/‖ψ̄K‖2

)
.

To see how we have to modify the algorithm to deal
with corrupted data, it will be helpful to understand how
ITKrM works. ITKrM can be understood as fixed point
iteration, meaning the generating dictionary � is a fixed
point and locally, around the generating dictionary, one
iteration of ITKrM is a contraction,

∥∥∥φk − ψ̄k
‖ψ̄k‖2

∥∥∥
2

<

κ‖φk − ψk‖2 for all k and some κ < 1. We refer to [29] for
details, but for the sake of completeness, we provide some
perhaps intuitive background for both the fixed point and
the contraction property.
Assume for a moment that the signals follow the sim-

plest sparse model, that is, they are perfectly S-sparse in
a generating dictionary �, meaning yn = �Inxn(In) for
some |In| = S and xn(i) ≈ ±c for i ∈ In, compared to the
model presented in Section 2. In particular, they all have
the same scaling and contain neither a low-rank compo-
nent nor are they contaminated by noise. If we are given
the generating dictionary as input dictionary,� = �, then
as long as the dictionary is not too coherent compared
to the sparsity level, μ2S � 1, thresholding will recover
the generating support, meaning Itn = In. Provided that
the generating support was always recovered, we have
P

(
�Itn

)
yn = P(�In)yn = yn and before normalisation the

updated atom takes the form

ψ̄k =
∑

n:k∈In
P(φk)yn · sign(

〈
φk , yn

〉
)

=
∑

n:k∈In
| 〈φk , yn

〉 | · φk .

This means that the output dictionary is again the gen-
erating dictionary �̄ = � or, in other words, that the
generating dictionary is a fixed point of ITKrM. Note also
that before normalisation, the updated atom consists of
roughly Nk = �{n : k ∈ In} scaled copies of itself because
| 〈φk , yn

〉 | ≈ |xn(k)| ≈ c and therefore

ψ̄k ≈
∑

n:k∈In
cφk = cNkφk . (3)

To provide insight why one iteration of ITKrM acts as
contraction, assume again that we know all generating

supports In and that our current estimate for the dictio-
nary consists of all generating atoms except for the first
one, ψk = φk for k ≥ 2. For the first atom, we only have
some (poor) approximation, which is, however, still inco-
herent with all other atoms, 1 > | 〈ψ1,φ1〉 | 	 | 〈ψ1,φk〉 |
≈ d−1/2 for k ≥ 2, or, in other words, the current estimate
ψ1 contains more of the first than of any other generating
atom. As before, one iteration of ITKrM will preserve all
atoms ψk = φk for k ≥ 2 and on top of that contract ψ1
towards φ1. To see this, observe that as long as the current
estimate contains more of the first than of any other gen-
erating atoms, | 〈ψ1,φ1〉 | 	 | 〈ψ1,φk〉 |, whenever 1 ∈ I
for y = �Ix(I), we have

P(ψ1)y = P(ψ1)�Ix(I) ≈ x(1)P(ψ1)φ1.

and, similarly,

y − P(�I)y = x(1) [φ1 − P(�I)φ1]
≈ x(1) [φ1 − P(ψ1)φ1] .

Combining the two estimates and noting that
sign(〈ψ1〉 yn) = xn(1), we get

ψ̄1 =
∑

n:1∈In

[
Id − P

(
�In

) + P(ψ1)
]
yn

× sign(
〈
ψ1, yn

〉
)

≈
∑

n:1∈In
xn(1)sign(

〈
ψ1, yn

〉
) · φ1

≈
∑

n:1∈In
|xn(1)| · φ1,

which shows that also, a poor approximation of ψ̄1 is
quickly contracted towards the generating atom φ1.
In summary, for our modifications, we have to ensure

that both the fixed point and the contraction prop-
erty are preserved. To start with, we again assume that
the corrupted signals have equal scale, contain no low-
rank component, and are not contaminated by noise but
are perfectly S-sparse, that is Mnyn = Mn�Inxn(In).
First, observe that a corrupted signal Mnyn is not sparse
in the generating dictionary � but in its corrupted
versionMn�,

Mnyn = Mn�Inxn(In) =
∑

i∈In
xn(i)Mnφi.

Still, we can recover the support In via thresholding
using the corrupted dictionaryMn� since we have access
to the mask Mn. However, we have to take into account
that, strictly speaking, the corrupted dictionary is not
actually a dictionary in the sense that its columns are not
normalised. Depending on the shape of the atoms, flat or
spiky, and the amount of corruption, ‖Mn‖2F , the norm of
the corrupted atoms ‖Mnφk‖2 can vary between 0 and 1
corresponding to the extreme cases of being completely
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destroyed, Mnφk = 0, or perfectly preserved, Mnφk =
φk . Therefore, the proper dictionary representation of the
corrupted signal is

Mnyn =
∑

i∈In :
Mnφi �=0

xn(i)‖Mnφi‖2 · Mnφi
‖Mnφi‖2 , (4)

and in order to recover the support In via threshold-
ing, we have to look at the inner products between the
corrupted signal and the renormalised non-vanishing cor-
rupted atoms,

Itn = arg max
I:|I|=S

∑

i∈I:
Mnφi �=0

| 〈Mnφi, yn
〉 |

‖Mnφi‖2

= arg max
I:|I|=S

∑

i∈I
‖P(Mnφi)Mnyn‖2.

Looking back at the representation of a corrupted sig-
nal in the properly scaled corrupted dictionary (4), we can
also see why we assume flatness of the dictionary atoms,
i.e. ‖φk‖∞ � 1 for all k. In the ideal case where for all
atoms φk we have ‖φk‖∞ = 1/

√
d, the energy of the cor-

rupted atoms will be constant ‖Mnφk‖2 = ‖Mn‖F/
√
d so

the dynamic range of the corrupted signal with respect
to the corrupted normalised dictionary is the same as the
original dynamic range,

maxi∈In |x(i)| · ‖Mnφi‖2
mini∈In |x(i)| · ‖Mnφi‖2 = maxi∈In |x(i)|

mini∈In |x(i)|

However, the less equally distributed over the coor-
dinates the energy of the undamaged atoms is, the
more the energy of the corrupted atoms varies. This
leads to an increase of the dynamic range, which in
turn makes it harder for thresholding to recover the
generating support.
The second reason for assuming flat atoms is the

increase in coherence caused by the corruption. If the
coherence of two flat atoms is small, this means that
their inner product is a sum of many small terms with
different signs eventually almost cancelling each other
out. Such a sum is quite robust under (random) era-
sures, since both negative and positive terms are erased.
On the other hand, if the energy of two atoms is
less uniformly distributed, small coherence might be
due to one larger entry in the sum being cancelled out
by many small entries. Thus, the erasure of one large
entry can cause a large increase in coherence, which again

decreases the chances of thresholding recovering the gen-
erating support.
Finally, to see that the flatness assumption is not merely

necessary due to the imperfection of the thresholding
algorithm for sparse recovery, assume that the atoms of
the generating dictionary are combinations of two diracs
φi = (δi − δ(i+1))/

√
2, that the coefficients follow our sim-

ple sparse model and that the corruption takes the form
of random erasures, i.e.Mn(j, j) are iid Bernoulli variables
with P(Mn(j, j) = 0) = η. For large erasure probabilities,
η > 1/2, on average, about half of the maximally 2S non-
zero entries of the signals will be erased and so the Dirac
dictionary ψi = δi or rather its erased version will provide
as plausible an S-sparse representation to the corrupted
signals as the original dictionary �.
To see how to best modify the atom update rule, we first

consider the case, where the corruption occurs always in
the same locations, meaning Mn = M. Since we never
observe the atoms on the coordinates where M(k, k) =
0, we can only expect to learn the corrupted dictionary
M� = (Mφ1 . . .Mφk) or rather its normalised version
(Mφk/‖Mφk‖2). On the other hand, the problem reduces
to a simple dictionary learning problem forM� instead of
� with update rule,

Mψ̄k =
∑

n:k∈Itn

[
Id − P

(
M�Itn

) + P(Mψk)
]
Myn

× sign(
〈
ψk ,Myn

〉
),

where we have used the fact that the projection onto
a subdictionary is equal to the projection onto its nor-
malised version and that sign

(〈
Mψk ,Myn

〉
/‖Mψk‖2

) =
sign(

〈
ψk ,Myn

〉
). Provided that thresholding always recov-

ers the correct support In, we can conclude directly from
above that the normalised corrupted dictionary will be a
fixed point and that the update rule will contract towards
it. Indeed, for any corruption pattern M, we know that
before normalisation, an updated atom Mψ̄k will be con-
tracted towards Nk = �{n : k ∈ In} scaled copies of the
corrupted generating atomMφk ,

∑

n:k∈In

[
Id − P

(
M�In

) + P(Mψk)
]
Myn

× sign
(〈
ψk ,Myn

〉)

� Nk · cMφk = c ·
∑

n:k∈In
Mφk .

This suggests that for the case of different corruption
patterns Mn, we can simply replace M by Mn and the
updated atom will be contracted towards the sum of
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scaled copies of the generating atom, corrupted with the
different patterns,

∑

n:k∈In

[
Id − P

(
Mn�In

) + P(Mnψk)
]
Mnyn

× sign(
〈
ψk ,Myn

〉
)

� c ·
∑

n:k∈In
Mnφk .

Then, to reconstruct the generating atom from the sum
of its corrupted copies, we just need to count how often we
observe the atom on each coordinate. If each coordinate
has been observed at least once, we can obtain the gener-
ating atom simply by rescaling according to the number of
observations, meaning we calculate

ψ̄k =
∑

n:k∈Itn

[
Id − P

(
Mn�Itn

) + P(Mnψk)
]
Mnyn

× sign(
〈
ψk ,Mnyn

〉
)

and Wk =
∑

n:k∈Itn
Mn,

set ¯̄ψk = W †
k ψ̄k and output �̄ =

( ¯̄ψ1
‖ ¯̄ψ1‖2

, . . . ,
¯̄ψK

‖ ¯̄ψK‖2

)
.

The last detail we need to account for is the possible
existence of a low-rank component �; other than noise
or different signal scalings, its contribution cannot be
expected to average out once we have enough observa-
tions. Fortunately, removing the low-rank component is
quite straightforward, once we have a good estimate �̃

with P(�̃)� ≈ �. If a signal contains a low-rank com-
ponent, then the corrupted signal will contain the cor-
rupted component, My = M�v + M�Ix(I), and we can
remove its contribution by a simple projection Mỹ =
Q(M�̃)My. However, since the mask destroys the orthog-
onality between the dictionary and the low-rank compo-
nent, we do not get only the sparse contributionM�Ix(I)
but also a (small) contribution of the low-rank compo-
nent, Q(M�̃)M�Ix(I) = M�Ix(I) − P(M�̃)M�Ix(I).
Thus, to stably estimate which part of an atom in the
support has not been captured yet, we need to remove
also the low-rank contribution and in our update rule
replace the projection onto the current estimate of the
corrupted atoms in support with the projection onto
these and the (estimated) corrupted low-rank compo-
nent, P

(
Mn�Itn

) → P
(
Mn(�̃,�Itn)

)
. Further, to ensure

that the output dictionary is again orthogonal to the low-
rank component, we project the updated atoms onto the
orthogonal complement of the (estimated) low-rank com-
ponent. Putting it all together, we arrive at the following
modified algorithm. Before we can start testing the modi-
fied algorithm, we still need to develop amethod for actual
recovery of the low-rank component from the corrupted
data, which is presented in the next section.

Algorithm 2 (ITKrM for corrupted data - one iteration)
Given an estimate of the low-rank component �̃, an input
dictionary � with ���̃ = 0, a sparsity level S and N
corrupted training signals yMn = (Mnyn,Mn) do:

• For all n set Mnỹn = Q(Mn�̃)Mnyn.
• For all n find

Itn = arg max
I:|I|=S

∑

i∈I:Mnφi �=0

| 〈Mnφi,Mnỹn
〉 |

‖Mnφi‖2 .

• For all k calculate

ψ̄k =
∑

n:k∈Itn

[
Id − P

(
Mn

(
�̃,�Itn

))
+ P(Mnψk)

]
Mnỹn

× sign(
〈
ψk ,Mnỹn

〉
)

and Wk =
∑

n:k∈Itn
Mn.

• Set ¯̄ψk = Q(�̃)W †
k ψ̄k and output

�̄ =
( ¯̄ψ1/‖ ¯̄ψ1‖2, . . . , ¯̄ψK/‖ ¯̄ψK‖2

)
.

4 Recovery of the low-rank component
As already mentioned, in the case of uncorrupted sig-
nals, the low-rank component can be straightforwardly
removed, since � will correspond to the L left singular
vectors associated to the largest L singular values of the
data matrix. In the case of corrupted signals, this is no
longer possible since the action of the corruption will dis-
tort the left singular vectors in the direction of the more
frequently observed coordinates. To counter this effect,
one would have to include the mask information in the
singular value decomposition. This is, for instance, done
by Robust PCA which was developed for the related prob-
lem of low-rank matrix completion [33]. Unfortunately,
one of the main assumptions therein is that the corruption
is homogeneously spread among the coordinates, which
might not be the case in our setup. To recover the low-
rank component, we will, therefore, pursue a different
strategy.
Let us assume for a moment that we are looking for

only one low-rank atom, L = 1. One interpretation of
all (masked) signals having a good part of their energy
captured by the (masked) low-rank atom is to say that
all (masked) signals are 1-sparse in a dictionary of one
(masked) atom. Since we already have an algorithm to
learn dictionaries from corrupted signals, we can also
employ it to learn the low-rank atom. Moreover, since
we have an algorithm to learn dictionaries from cor-
rupted signals that contain a low-rank component, we can
iteratively learn the low-rank component atom by atom.
Adapting the algorithm also leads to some simplifications.
After all, we do not need to find the sparse support, since
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(almost) all signals are expected to contain the one new
atom. Summarising these considerations, we arrive at the
following algorithm.

Algorithm 3 (low-rank atom recovery from corrupted
data - one iteration) Given an estimate of the previously
recovered low-rank component �̃ = (γ̃1 . . . γ̃�−1), an input
low-rank atom γ̂� and N corrupted training signals yMn =
(Mnyn,Mn) do:

• For all n set Mnỹn = Q(Mn�̃)Mnyn.
• Calculate

γ̄� =
∑

n

[
Id − P(Mn(�̃, γ̂�)) + P(Mnγ̂�)

]
Mnỹn

× sign
(〈
γ̂�,Mnỹn

〉)

and W =
∑

n
Mn.

• Set ¯̄γ� = Q(�̃)W †γ̄� and output ¯̄γ�/‖ ¯̄γ�‖2.

Note that for the first low-rank atom in each itera-
tion, the update rule reduces to a summation of the
signals aligned according to sign

(〈
γ̂�,Mnyn

〉)
. Under the

assumption that the size of the low-rank component
is much smaller than the sparsity level, the proposed
iterative approach provides a simple tool for the low-
rank component reconstruction, which is stable under
non-homogenous corruption of the data. After having
presented both algorithms, we will turn to testing our
algorithms on synthetic and image data.

5 Results
5.1 Numerical simulations on synthetic data
In this section, we present two types of experiments on
synthetic data. In the first experiment, we test the perfor-
mance of the adapted version of the algorithms compared
to their original counterparts. In the second experiment,
we explore the connection between spikiness of the dic-
tionary and recoverability by ITKrM(M).

5.1.1 Gains of incorporatingmask information
We first compare the performance of the adapted algo-
rithms to their original counterparts on synthetic signals.
The original counterpart, which does not use mask infor-
mation, performs singular value decomposition for low-
rank recovery and uses ITKrM for dictionary learning.We
look at two representation pairs, consisting of a low-rank
component and a dictionary, and test the recovery using
6-sparse signals with corruptions of two types, random
erasures and burst errors.

Dictionary and low-rank component: The first repre-
sentation pair corresponds to the discrete cosine trans-
form (DCT) basis in R

d for d = 256. As low-rank
component, we choose the first twoDCT atoms, that is the
constant atom and the atom corresponding to an equidis-
tant sampling of the cosine on the interval [ 0,π), while
the remaining basis elements form the dictionary. For the
second pair, we construct the low-rank component by
choosing two vectors uniformly at random on the sphere
in R

d for d = 256 and setting � the closest orthonor-
mal basis as given by the singular value decomposition.
To create the dictionary, we then choose another 1.5d
random vectors uniformly on the sphere, project them
onto the orthogonal complement of the span of � and
renormalise them. These two representation pairs exhibit
different complexities. The first forms an orthonormal
basis, thus is maximally incoherent, and every element has
‖γ�‖∞ = ‖φk‖∞ = √

2/d ≈ 0.088. The second dictionary
is overcomplete with coherence 0.2788 and the supremum
norm of both the low-rank and the dictionary atoms varies
between 0.1529 and 0.2754 and averages at 0.1897.
Signals:To create our signals, we use the signalmodel in

(2) with a particular choice of distributions for the sparse
and low-rank coefficients, the scaling factor and the noise,
described in Table 1. For the first experiment, we set the
parameters to e� = 1/3, b� = 0.15, S = 6, bS = 0.1,
ρ = 1/(4

√
d) and sm = 4, resulting in 6-sparse signals

with dynamic coefficient range between 1 and 0.9−6 ≈
1.88 and the low-rank component containing a third of the
energy. The signal-to-noise ratio is 16, and the scaling is
uniformly distributed on [0,4].
Corruption: We consider two types of corruptions,

whose distributions are described in Table 2. The random
erasure patterns depend on four parameters determining
(the difference in) the erasure probabilities of the first and
second half of the coordinates (p1, p2) and one half and the
other half of the signals (q1, q2). The expected average cor-
ruption corresponds to 1 − E

(∑
k M(k, k)

) = 1 − (p1 +
p2)(q1 + q2)/4 and in our experiments varies between 10
and 90%.
The burst error patterns also depend on four parameters

determining the burstlength T, the probability of no burst
and a burst of size T or of size 2T occurring (p0, pT , p2T
where p0 = 1 − pT − p2T ), as well as the probability
of the burst occurring among the first half of the coor-
dinates (q). In our experiments, we consider burstlengths
T = 64, 96 with varying burst location and occurrence
probabilities, leading to an empirical average corruption
varying between 10 and 60%.
Experimental setup: We first learn the low-rank com-

ponent and then the dictionary always using random
initialisations. In particular, to learn the low-rank com-
ponent with the adapted algorithm, we use 10 iterations
for every atom and 30,000 (new) signals per iteration. As



Naumova and Schnass EURASIP Journal on Advances in Signal Processing  (2018) 2018:12 Page 9 of 21

Table 1 Signal model

Signal model

Given the generating low-rank component � and dictionary �, our signal model further depends on six coefficient parameters,

e� - the energy of the low-rank coefficients,

b� - defining the decay factor of the low-rank coefficients,

S - the sparsity level,

bS - defining the decay factor of the sparse coefficients,

ρ - the noise level and

sm - the maximal signal scale.

Given these parameters, we choose a low-rank decay factor c� uniformly at random in the interval [ 1 − b� , 1]. We set v(�) = σ�c��
for 1 ≤ � ≤ L, where σ� are iid uniform ± 1 Bernoulli variables, and renormalise the sequence to have norm ‖v‖2 = e� . Similarly, we
choose a decay factor cS for the sparse coefficients uniformly at random in the interval [ 1 − bS , 1]. We set x(k) = σkckS for 1 ≤ k ≤ S,
where σ� are iid uniform ± 1 Bernoulli variables, and renormalise the sequence to have norm ‖x‖2 = 1 − e� . Finally, we choose a
support set I = {i1 . . . iS} uniformly at random as well as a scaling factor s uniformly at random from the interval [ 0, sm] and according
to our signal model in (2) set

y = s · �v+�Ix+r√
1+‖r‖22

,

where r is a Gaussian noise vector with variance ρ2 if ρ > 0.

initialisation, we use a vector drawn uniformly at ran-
dom from the sphere in the orthogonal complement of the
low-rank component recovered so far. For the unadapted
low-rank recovery, we use a singular value decomposition,
where the low-rank component corresponds to the first
L left singular vectors of the 30,000 signals generated for
the adapted algorithm. As measure for the final recovery
error, we use the operator norm of the difference between
the generating low-rank component � and its projection
onto the recovered component �̃, that is ‖� − P(�̃)�‖2,2.

This corresponds to the worst-case approximation error
of a signal in the span of the generating low-rank compo-
nent by the recovered one.
We then learn the dictionary using 100 iterations of

ITKrM(M) and 100,000 (new) signals per iteration from
a random initialisation, where the initial atoms are drawn
uniformly at random from the sphere in the orthogonal
complement of the respective low-rank component. We
measure the recovery success by the percentage of recov-
ered or rather not recovered atoms, where we use the

Table 2 Mask models

Erasuremodel

Our erasure model depends on four parameters,

p1 - the relative signal corruption of the first half of coordinates,

p2 - the relative signal corruption of the second half of coordinates,

q1 - the corruption factor of one half of the signals and

q2 - the corruption factor of the other half of the signals.

Based on these parameters, we generate a random erasure mask as follows. First, we choose q ∈ {q1, q2} uniformly at random and
determine for every entry the probability of being non-zero as ηj = qp1 for j ≤ d/2 and ηj = qp2 for j > d/2. We then generate a mask
as a realisation of the independent Bernoulli variablesM(j, j) ∼ B(ηj), that is P(M(j, j) = 1) = ηj .

Burst error model

Our burst error model depends on four parameters,

pT - the probability of a burst of length T,

p2T - the probability of a burst of length 2T ,

T - the burst length and

q - the probability of the burst starting in the first half of the coordinates.

Based on these parameters, we generate a burst error mask as follows. First, we choose a burstlength τ ∈ {0, T , 2T} according to the
probability distribution prescribed by {p0, pT , p2T }, where p0 = 1 − pT − p2T . We then decide according to the probability q whether
the burst start t occurs among the first half of coordinates, t ≤ d/2, or the second half, t > d/2. Finally, we draw the burst start t
uniformly at random from the chosen half of coordinates and in a cyclic fashion setM(j, j) = 0 whenever t ≤ j < t+ τ or j < t+ τ − d
andM(j, j) = 1 else.
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convention that a generating atom φk is recovered if there
exists an atom ψ̃j in the output dictionary �̃ for which
|
〈
φk , ψ̃j

〉
| ≥ t for t = 0.99.

Figure 2 shows the recovery results for various cor-
ruption levels using the corruption-adapted algorithms
(ITKrMM) and their unadapted counterparts (ITKrM).
We can see that for both representation pairs, incorpo-
rating the corruption information into the learning algo-
rithms clearly improves the performance. Another fact
immediately visible is that for the adapted algorithms, the
success rates differ for the two erasure modalities and
decrease with increasing corruption level. However, the
success rates do not depend much on the particular dis-
tribution of the erasures or bursts as long as they lead to
the same average corruption level. In contrast, the suc-
cess rates of the unmodified algorithms depend verymuch
on the corruption distribution, and signals with similar
average corruption can lead to very different error rates.
We also observe that corruption can improve the recov-

ery rates of both the unmodified and the modified algo-
rithms. A similar phenomenon has already been observed
for ITKrM in connection with noise and a lower sparsity
level [29]. While one might expect the global recovery

rates to decrease with increasing noise and increasing S,
they actually increase. The reason for this is that a lit-
tle bit of noise or lower sparsity, like a little bit of
corruption, breaks symmetries and suppresses the fol-
lowing phenomenon. Two atoms converge to the same
generating atom, and therefore, another atom has to do
the job (is a 1:1 linear combination) of two generat-
ing atoms. For uncorrupted signals, there are ongoing
efforts to alleviate this phenomenon with replacement
strategies, which will have a straightforward extension to
corrupted signals.
To find out when we gain most from incorporating the

mask information, let us have a more detailed look at
the recovery rates for different types of parameter set-
tings. Among the random erasures, we distinguish 4 types.
‘type00’ indicates that p1 = p2 with p1 varying between
0.2 and 0.8 and q1 = q2 = 1, leading to a uniform erasure
probability for all coordinates and all signals. ‘type20(30)’
indicate that p2 = p1 + 0.2(0.3) with p1 varying between
0.1 and 0.7(0.6) and again qi = 1, leading to higher erasure
probabilities for the first half of the coordinates, which are
however uniform across signals. Finally, ‘type22’ indicates
that p2 = p1 + 0.2 and qi = pi for p1 varying between 0.4

Fig. 2 Recovery performance of the corruption adapted versus the unadapted learning algorithms for the DCT (left) and the random (right)
representation pair. The recovery performance is measured in terms of the low-rank recovery error (top) and the percentage of unrecovered
dictionary atoms from a random initialisation (bottom)
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and 0.8, leading to different erasure probabilities across
coordinates and across signals.
Among the burst errors, we distinguish between ‘type5’

corresponding to a uniform burst distribution and ‘type7’
corresponding to a 0.7 probability of the burst occur-
ring in the first half of the coordinates. For each type,
we consider the burstlength T = 64 with probabili-
ties (pT , p2T ) ∈ {(0.5, 0.3), (0.7, 0.3), (0.5, 0.5)} leading to
corruptions between 20 and 40% and the burstlength
T = 96 with the same pairs and additionally (p0, pT ) ∈
{(0.3, 0.7), (0.1, 0.9)} leading to corruptions between 40
and 75%.
For conciseness, we focus on the random low-rank com-

ponent and dictionary (Fig. 3). Distinguishing between the
different types, we can now see that incorporating the cor-
ruption information gives the highest benefits when the
corruption is most unevenly distributed over the signal
coordinates. So, for the evenly distributed random era-
sures and burst errors, ‘type00’ and ‘type5’, the low-rank
component is still recovered by both the unadapted and
the adapted algorithm, but as soon as there is interco-
ordinate variance in the corruption level, type20/22/30’
and ‘type7’, the unadapted algorithm starts to lag behind.
For the dictionary recovery, the unadapted algorithm

only does well for homogeneous corruption, ‘type00’ and
‘type5’, until about 50% corruptions but breaks down for
higher corruption levels or for intercoordinate variance of
the corruption, ‘type20/22/30’ and ‘type7’.

5.1.2 Spikiness and recoverability
The second experiment explores the sensitivity of the

adapted algorithms to the flatness/spikiness of the repre-
sentation pairs, measured by ‖γ�‖∞ and ‖φk‖∞. This is
done by looking at the recovery of representation pairs,
which form orthonormal bases and whose atoms have
their energy concentrated on supports of size m for m =
4, 8, 16, 32, 64, 128, 256.
Dictionaries and low-rank components: For a given

support size m, we choose d vectors zk from the unit
sphere in R

m and d supports Ik = i1 . . . im of size m
uniformly at random and set B(Ik , k) = zk and zero
else. We then calculate the closest orthonormal basis to
B using the singular value decomposition. The first two
elements of this orthonormal basis are chosen as the low-
rank component, while the remaining elements form the
dictionary.
Signals, corruptions and setup: For the signal genera-

tion, we use the same parameters as in the last experiment,

Fig. 3 Detailed recovery performance of the corruption adapted versus the unadapted learning algorithms for the random low-rank component
(top) and dictionary (bottom) for random erasures (left) and burst errors (right)
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and for the corruption, we use the random erasure masks
of ‘type22’ with p1 = q1 = 0.5/0.7 and p2 = q2 = 0.7/0.9
corresponding to 36 and 64% of corruption. The experi-
mental setup for the recovery of each representation pair
is again as in the previous experiment. Figure 4 shows the
spikiness of the representation pairs for various support
sizes as well as the corresponding recovery results for the
two corruption types. Let us first point out that our con-
struction based on decreasing atom support sizes indeed
leads to representation pairs with increased spikiness. As
usual, the recovery errors incurred by the modified algo-
rithms are much lower than those of the unmodified ones.
For the low-rank component, the recovery error is very
stable and only starts to deteriorate for m = 4, when
the low-rank atom carrying less energy is indeed almost
a spike, ‖γ2‖∞ = 0.8997, meaning 80% of its energy are
concentrated on one coordinate. Also, for the dictionary
recovery, the robustness to spikiness of the adapted algo-
rithms is quite surprising. So, for the low corruption level
(36%), we always recover more than 95% of the dictionary
atoms, and for the higher corruption level (64%), recov-
ery only fails for m = 4. As in the previous experiment,
we observe the effect that spikiness like corruption can
lead to better global recovery rates. The effect is more pro-
nounced for the higher corruption level (64%), where for
m = 16, we even have 100% recovery.
Before turning to experiments on image data, let us

mention that we also briefly investigated the effect of
the signal scaling on the recovery rates of the modi-
fied algorithms for the DCT representation pair and the
‘type22’ erasure mask with 36% corruption, with the same
setup as in the first experiment, but found that there
was no strong influence. That is, for sm varying between
2 and 128, the low-rank recovery error varies between
0.031 and 0.036 and the atom recovery rates stay
between 95 and 96%.

Similarly, exploring the effect of the sparsity level S,
we do not gain much more insights over the exper-
iments already conducted in the uncorrupted case
[29]. So, fixing all mask and signal parameters except
for the sparsity parameter S, which increases from
4 to 16, the low-rank recovery error stays con-
stant while the number of recovered dictionary atoms
increases.
In order not to overload the paper, we do not detail

these experiments here but refer the interested reader to
the ITKrMM MATLAB toolbox1, which can be used to
reproduce all the presented experiments and many more.
5.2 Numerical simulations on image data
In this section, we will learn dictionaries on image data,
more precisely on image patches, and compare the learned
dictionaries to those learned by wKSVD and BPFA as well
as to analytic dictionaries. The first subsection consists
of a comparison of the learned dictionaries and low-
rank components in terms of coherence, supremumnorm,
sparse approximation qualities and the computational
cost of the algorithms, while in the second subsection, we
will use them for inpainting, meaning the reconstruction
of the missing part in an image.

5.2.1 Dictionaries for image data
In the first experiment, we compare the ITKrMM dictio-
naries to those learned with wKSVD and BPFA. Weighted
KSVD [30, 31] is an adaption of the original KSVD algo-
rithm [9], intended to refine a prelearned dictionary based
on available corrupted data that can be then used for
inpainting, which we will discuss in more details in the
next subsection. Similarly, BPFA [32], which is a nonpara-
metric Bayesian method, can be used to learn dictionaries
both from corrupted and uncorrupted data, where in
the case of corrupted data, the dictionary is used for
inpainting.

Fig. 4 Atom spikiness (left) as well as recovery of the random low-rank component (middle) and random dictionary (right) of the corruption
adapted versus the unadapted learning algorithms with varying atom support sizes. Two types of random erasure patterns leading to 36 and 64%
corruption are used
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Data: For our experiments, we consider the grayscale
images Barbara and Peppers of size 256 × 256, which we
corrupt by erasing each pixel independently with proba-
bility 0.3 or 0.5 resulting in 30 resp. 50% erased pixels on
average. We then extract all available 8 × 8 patches from
the corrupted image as well as the corresponding mask
and give the vectorised corrupted patch/mask pairs to the
learning algorithms.
Algorithmic setup: Via ITKrMM, we first learn the

low-rank component of size L = 1, 3, 7, and a dictionary of
size K = 2d − L, resulting in a system with redundancy 2.
We set the sparsity level in the dictionary learning to
S = 8 − L for L = 1, 3 corresponding to an overall spar-
sity L + S = 8 and to S = 5 for L = 7, corresponding to
an overall sparsity L + S = 12. For wKSVD, we use the
setup corresponding to ITKrMM with L = 1 and learn
a dictionary of size K = 2d with the option of keeping
the first atom always equal to the constant atom φ1 ≡ c.
Since within wKSVD the contribution of the constant low-
rank atom counts in the sparse approximation step, we use
input sparsity level S = 8. We use the same initialisation
strategies as for the synthetic experiments, i.e. random
vectors that are orthogonal to the low-rank component
resp. low-rank atoms that have already been learned. This
means that before subtracting the low-rank component,
the initial dictionaries for ITKrMM and wKSVD are the
same. For learning a low-rank atom, we use 10 itera-
tions on all available patch/mask pairs, whereas for the
dictionary learning step, we use 40 iterations on all avail-
able patch/mask pairs for both algorithms. For BPFA, we
use the out-of-the-box version provided on the authors’
website to learn 128 atoms from corrupted data using
150 iterations either with the recommended initialisation
based on SVD or a random one. Since BPFA is a Bayesian

method, it has the advantage that no sparsity level has to
be defined. Note also that the SVD initialisation makes
sense in this context since due to the patch structure, the
corruption is evenly spread over all patch coordinates.
Comparison: For comparison, we also learn dictionar-

ies on the uncorrupted images. For KSVD with L = 1
and BPFA, we use the same setup as described above. For
KSVD with L > 1 and ITKrM, we use a similar setup as
in the synthetic experiments. This means that we choose
as low-rank component the first L principal components
(left singular vectors of the data matrix), project all train-
ing signals on the orthogonal complement of the low-rank
component and then learn a dictionary of size K = 2d−L
with sparsity level S = 5 for L = 3, 7 as well as S = 7 for
L = 1 for ITKrM, on the projected signals.
Consistency: Figures 5 and 6 show the dictionaries and

if applicable low-rank components for L = 1 learned by
ITKrM(M), (w)KSVD and BPFA with SVD initialisation
from uncorrupted and corrupted data. The first impres-
sion is that on uncorrupted data, the three algorithms
produce quite similar dictionaries, even though ITKrM
produces more high-frequency atoms than KSVD and the
first BPFA atoms clearly have the structure of the principle
components used in the initialisation. The next obser-
vation is that ITKrMM and wKSVD are consistent, in
the sense that most of the atoms learned on corrupted
data have a corresponding atom in the dictionary learned
on uncorrupted data. This is not true for BPFA, where
the dictionaries learned from uncorrupted and corrupted
data are markedly different, the latter containing many
copies of the constant atom or slight variations thereof.
This is naturally reflected in the coherence and spiki-
ness of the dictionaries. Figure 7 shows the coherence of
the dictionary atoms μk = maxj �=k | 〈ψk ,ψj

〉 | and their

Fig. 5 Dictionaries and low-rank atom (left upper corner) learned with ITKrM(M) (left), (w)KSVD (middle) and BPFA (right) algorithms on all 8 × 8
patches of Barbara without corruption (top), 30% erasures (middle) and 50% erasures (bottom)
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Fig. 6 Dictionaries and low-rank atom (left upper corner) learned with ITKrM(M) (left), (w)KSVD (middle) and BPFA (right) algorithms on all 8 × 8
patches of Peppers without corruption (top), 30% erasures (middle) and 50% erasures (bottom)

supremumnorm ‖ψk‖∞ sorted and averaged over five dif-
ferent random mask realisation/initialisations for 0 and
50% corruption. ITKrM(M) produces themost incoherent
and spikiest dictionaries, while BPFA produces the flattest
dictionaries and on corrupted data also the most coher-
ent ones. The reason for this might be that BPFA was
not designed for consistency, but primarily for image pro-
cessing tasks, such as inpainting, where flatness can be of
advantage.
Approximation quality and low-rank components:

To illustrate the importance of integrating low-rank com-
ponents into dictionary learning on real data, we test how
sparsely the various representation systems learned on
Barbara approximate all image patches of Barbara. For
every dictionary—low-rank—component pair, containing
128 atoms, learned either on clean or corrupted data, we

calculate the mean square error achieved by approximat-
ing all clean patches, using orthogonal matching pursuit
(OMP) and different sparsity levels from 8 to 20. Figure 8
shows the results averaged over five different initialisa-
tions and corruption patterns where applicable. Our first
observation is that the dictionaries learned by KSVD and
ITKrM on clean data with S = 5 and after removing
a low-rank component of size L = 3 or L = 7 per-
form best, indicating the importance of removing the
low-rank component to get a well-conditioned dictionary.
Similarly, the BPFA dictionary with SVD initialisation per-
forms much better than the randomly initialised one. We
also see that the advantage of the learned dictionaries over
the overcomplete DCT for small S gradually decreases
and vanishes at S = 20. Comparing to the dictionar-
ies learned from corrupted data, we see that the wKSVD

Fig. 7 Average coherence (left) and spikiness (right) of the dictionary atoms learned on Barbara by BPFA, (w)KSVD and ITKrM(M) on uncorrupted
data and 50% corrupted data
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Fig. 8 Approximation quality of dictionaries with low-rank components of various sizes on Barbara, DCT144 as well as BPFA, (w)KSVD and ITKrM(M)
learned on uncorrupted data (left) and on 50% corrupted data (right)

and ITKrMM dictionaries perform almost equally to their
counterparts KSVD and ITKrM, the ITKrMM dictionar-
ies giving the best performance, as the algorithm can also
handle low-rank components with L > 1. In contrast, the
performance of the BPFA dictionaries degrades quite a lot,
regardless of the initialisation. This is to be expected as the
many copies of the flat atom, we have seen in Figs. 5 and 6,
essentially reduce the size and with it the approximation
power of the dictionary.
Computation time:As both ITKrMMandwKSVDpro-

duce consistent and incoherent dictionaries with good
approximation properties also from corrupted data, which
is themain interest of this paper, we further compare them
with respect to computational cost and memory require-
ments. The cost per training signal of one iteration of
ITKrMM consists of the inner product between the dic-
tionary and signal, O(dK), the pseudo-inverse of a d × S
matrix together with some matrix vector multiplications
for calculating the residual, O

(
S2d + Sd

)
, and the update

of S atoms based on the residual resp. S weight vectors
based on the mask, O(Sd). All in all for N training signals,
this amounts to a computational cost of O

(
dKN + S2dN

)

operations per iteration.
On the other hand, the cost per iteration of wKSVD

consists of sparsely approximating N signals with masked
OMP (see Algorithm 4) and the dictionary update. The
cost of OMP per signal is lower bounded by the cost
of the inner products between K atoms and the resid-
ual for S iterations, O(SdK), which dominates the cost of
the residual updates, O

(
S2d + Sd

)
. The update of each

atom involves the calculation of the largest left singu-
lar value of a matrix Yk of approximate size d × SN

K for
several iterations. Using in turn an iterative procedure
for the singular vector, we can lower bound the cost of
one atom update by calculating the matrix vector prod-
ucts Yk

(
Y �
k v

)
, O(dSN/K). Thus, for N training signals,

the cost per iteration of wKSVD can be lower bounded
by O(SdKN), meaning that ITKrMM is at least by a fac-
tor min{S,K/S} cheaper. Note also that contrary to KSVD,
the weighted version cannot be accelerated using batch
OMP [34], as every mask changes the geometry of the
dictionary. Both algorithms could be further optimised
noting that amasked signal is projected ontomn = ‖Mn‖2F
coordinates. This means that all sparse approximation
procedures could be done inRmn instead ofRd , and so set-
tingm = 1

N
∑

mn, the cost estimate for ITKrMM reduces
toO

(
mKN + S2mN

)
and for wKSVD toO(SmKN). In our

implementations, we refrain from this option, since we
doubt that in MATLAB, the multiplications by zero in full
space are costlier than locating and accessing the correct
coordinates.
Further comparing the memory requirements of the

two algorithms, we see that ITKrMM needs about twice
the size of the dictionary matrix O(dK). The memory
requirements for wKSVD are much larger and corre-
spond to the entire matrix of training signals, O(dN) or
O(mN), since the iteratively weighted dictionary update
repeatedly accesses residuals, coefficients andmasks. This
also means that wKSVD cannot be used sequentially like
ITKrMM.
This significant reduction in computational cost and

memory requirements represents the main advantage
of ITKrMM over wKSVD. In order to exemplify it, we
present in Table 3 the average speed-up of ITKrMM over
wKSVD for Barbara and Peppers on corrupted data as
well as the speed-up of the original ITKrM over KSVD,
as available on the authors’ homepage. The results are
averaged over 5 runs, using the setup described above.
All calculations were carried out in single thread mode
on the UIBK LEO3 computing cluster consisting of 1944
Intel Xeon (Gulftown) computing cores each equipped
with 24GB RAM. For completeness, we also include a
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Table 3 Speed-up of ITKrM(M) over (w)KSVD and BPFA,
corresponding to the average runtime of wKSVD/BPFA divided to
that of ITKrMM using all available (corrupted) image patches of
Barbara and Peppers

Corr. (%)
BPFA (w)KSVD

Barb. Pepp. Barb. Pepp.

0 1.75 1.94 10.61 11.46

30 1.02 1.20 11.07 11.50

50 1.53 1.92 11.30 12.35

comparison to BPFA. We see that both on uncorrupted
and corrupted data, ITKrMM is about 11 times faster than
wKSVD, i.e. wKSVD takes about 3.5 h, while ITKrMM
takes only about 18 min to learn a dictionary.

5.2.2 Inpainting
To demonstrate the practical value of the ITKrMM algo-
rithm, we here conduct an image inpainting experiment.
Inpainting is the process of filling in missing information
or holes in damaged signals, and our motivating task, the
prediction of blood glucose levels, can be cast as inpaint-
ing problem. Image inpainting, in particular, is used for
restoration of old analogue paintings, denoising of digi-
tal photos, and for removal of objects like text or date
stamps from images and has become an active field of
research in the mathematical and engineering commu-
nities, with a variety of specifically developed methods
and approaches [35]. Most of the existing approaches
for inpainting are based on either variational approaches
pioneered by Sapiro [36] or exploit image statistical and
self-similarity priors as introduced by Efros [37]. With the
advent of sparse representations and compressed sens-
ing, sparsity-based inpainting has gained popularity in the
recent years.
Since the primary goal of this paper is to evaluate the

ITKrMM algorithm as a consistent and computationally
efficient method for dictionary learning from incom-
plete data, we perform a thorough comparison of the
ITKrMM-based inpainting algorithm with other sparsity-
based inpainting methods. In particular, we compare to
the inpainting schemes based on wKSVD and BPFA dic-
tionaries as well as analytic dictionaries such as the DCT
basis and the overcomplete DCT frame with 144 atoms.
In all cases, we show that our results are mostly better
than the ones of BPFA and wKSVD, with a large reduc-
tion of the computational costs with respect to the latter.
We also show that ITKrMM-based inpainting leads to bet-
ter results compared to the ones obtained with the DCT
dictionaries or more advanced methods, also based on
analytic dictionaries, such as morphological component
analysis (MCA)[6]. Last, we briefly compare our results to
PLE [38], a state-of-the-art inpainting method for natural

images. PLE is based both on structured sparsity and sta-
tistical priors on the sparse coefficient distribution and is
known to outperform all simple sparsity based schemes.
Sparsity-based inpainting: Sparsity-based inpainting

relies on the concept that the signal y is S-sparse in a dic-
tionary �, and therefore, the damaged signalMy is sparse
in the damaged dictionaryM�, that is for |I| ≤ S

y ≈ �IxI ⇒ My ≈ M�IxI . (5)

To reconstruct the original signal one therefore simply
needs to recover coefficients x̃I ≈ xI by sparsely approx-
imating My in M� and to set ỹ = �x̃I . However, for the
sparse approximation of My to recover the correct sup-
port I, we do not only need that the signal is very sparse
S � d but also that damaged dictionary M� remains
incoherent, which translates to the original atoms hav-
ing small supremum norm, ‖φ‖∞ � 1. In summary, the
sparser the representation provided and the flatter the
atoms, the better the dictionary is suited for inpainting.
This means that BPFA dictionaries, which have very flat
atoms, as discussed in Section 5.2.1, might be better suited
for inpainting than the wKSVD or ITKrMM dictionaries,
which have comparatively spiky atoms, despite the fact
that the latter provide sparser representations.
For sparse approximation of the coefficients, we use a

slightly modified version of the well-known greedy algo-
rithm, OMP [39, 40], which takes into account masked
data. In particular, as the damaged dictionary is not nor-
malised, we need to account for this in the OMP selection
step and rescale by 1/‖Mφk‖2, similar to thresholding
in the ITKrMM algorithm. Without this renormalisation,
less damaged atoms take precedence over better fitting
ones. The algorithm to which we refer as mOMP is
described in Algorithm 4.

Algorithm 4 (Masked OMP for Inpainting (mOMP))
Given a damaged signal My together with the mask M, a
dictionary� and a sparsity level S, initialise r = My, I = ∅
and while |I| < S and ‖r‖2 > 10−3do

• Atom selection: find

j = arg max
Mφk �=0

| 〈r,Mφk〉 |
‖Mφk‖2.

• Approximation: Set

I = I∪{j}, xI = (M�I)
†My and r = My−M�IxI .

Output ỹ = �IxI .

The inpainted image is obtained by first reconstructing
every damaged image patch via mOMP and then recon-
structing the complete image by averaging every pixel over
all reconstructed patches in which it is contained.
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Images: We consider six grayscale images, Barbara,
Peppers, House, Cameraman, Mandrill and Pirate, of size
256×256. The images are corrupted by erasing each pixel
iid with probability 0.3, 0.5 or 0.7, resulting in 30, 50 or
70% erased pixels on average.
Learning setup: The dictionary learning setup is the

same as in the experiments for 30 and 50% corruption
levels in Section 5.2.1, where for ITKrMM, we consider
low-rank components of size L = 1 and L = 3, abbre-
viated as ITKrMM1 and ITKrMM3 respectively. For 70%
corruption, we reduce the sparsity level of ITKrMM and
wKSVD in the learning stage to S = 3 and S = 4,
respectively, and use only L = 1. This reduction is nec-
essary because sparse approximation becomes difficult if
the dictionary is coherent μ � 1/S. In effective dimen-
sion (average number of uncorrupted pixels per signal)
64 · 0.3 ≈ 19, a perfectly incoherent dictionary with 128
atoms already has coherence of at least 0.19 > 1/8, due to
the Welch bound μ ≥

√
K−d

d(K−1) . A randomly erased dic-
tionary adapted to the data will be even more coherent,
which renders learning with S = 7/8 risky.
Inpainting sparsity level: We perform sparsity-based

inpainting using mOMP with sparsity levels 4:4:24 and
dictionaries learned by ITKrMM and wKSVD, the DCT
basis, as well as an overcomplete DCT frame with 144
atoms. For BPFA, we report the results of both the accom-
panying inpainting procedure as provided in [32], as well
as the mOMP-based scheme used for the other dictionar-
ies, abbreviated as BPFAomp. In the case of 70% erasures,
we also include results of sparsity-based inpainting with
a slight twist to deal with spikiness of the atoms. In par-
ticular, to prevent inpainting with unreliable, ill-preserved
atoms, we modify the mOMP selection step, so for m =
‖M‖2F , we find

max
k

| 〈r,Mφk〉 |
‖Mφk‖2 over k : ‖Mφk‖2 ≥ m

d
‖φk‖2.

The results in Tables 4 and 5 achieved with this mod-
ification are marked with an asterisk (*), for example
ITKrMM*. We further compare the methods to MCA [6]
as it is based on sparsity in a dictionary made of two ana-
lytical orthonormal bases, such as wavelets, curvelets and
DCT, for instance. Specifically, after comparing the per-
formance of different combinations of bases for MCA, we
present only the best results achieved by the undecimated
discrete wavelet transform and curvelets. This combina-
tion has also been used by the authors for one of the
inpainting examples in the original code.
The results of wKSVD are generated with our own

implementation modified from the original KSVD algo-
rithm, as there is no MATLAB version openly available,
while those of BPFA and MCA are produced by the origi-
nal software and the authors’ recommended settings.

Comparison/error: We measure the recovery success
of the schemes by the peak signal-to-noise ratio (PSNR)
and the similarity index (SSIM) between the original
image Y and the recovered version Ỹ . For two images
Yand Ỹ of size d1 × d2, the PSNR in dB is defined as

log10

(
(maxi,j Y (i, j) − mini,j Y (i, j))2

1
d1d2

∑
i,j(Y (i, j) − Ỹ (i, j))

)

.

The SSIM index is defined as
(2μỸμY + c1)(2σỸY + c2)

(μ2
Ỹ + μ2

Y + c1)(σ 2
Ỹ + σ 2

Y + c2)
,

where μỸ ,μY , σỸ , σY and σỸY are the local means, stan-
dard deviations, and cross-covariance for images Ỹ and Y.
For the similarity index, we take the default settings for c1
and c2 with maximal image value 1. The results are aver-
aged over 5 runs, each with a different mask and in case of
ITKrMM and wKSVD different initialisations, to account
for the variability between different mask realisations. For
all OMP-based schemes, we only report the values corre-
sponding to the sparsity level that gives the best result on
average over the 5 trials.
Table 4 provides the PSNR values generated by all

algorithms on the considered images. Inpainting with
the DCT dictionaries gives relatively good results, even
though the data-learned dictionaries like BPFA, wKSVD
and ITKrMM outperform the DCT dictionaries all but
once, the exception being Barbara with 30% erasures,
where the very flat DCT basis is quite well suited to
capture the textures.
On all other images with 30% corruptions the ITKrMM

dictionaries provide the best results. In case of 50 and
70% random erasures, the wKSVD and ITKrMM dic-
tionaries tend to divide the best performance between
themselves. In particular, for more textured images like
Barbara, Mandrill, and Pirate, ITKrMM, which tends
towards high-frequency atoms, has a slight advantage,
while for the smooth images like Cameraman, House,
and Peppers, wKSVD is slightly better. We also see that
BPFA with the sparse inpainting scheme improves over
the original BPFA inpainting procedure for 30 and 50%
corruption. For 70% corruption, this trend is reversed and
BPFA even takes home the win once. Another observa-
tion is that for large corruption, even the slight twist in
inpainting to balance for spikyness already improves the
performance both of the ITKrMM and wKSVD dictionar-
ies. This is especially interesting in view of comparison to
state-of-the-art inpainting methods designed for images,
such as the PLE algorithm [38]. On top of using a learned
dictionary made of two PCA bases, PLE employs the con-
cepts of block sparsity and some weights capturing the
probability of an atom being used. Using this more refined
sparsity-based inpainting procedure, PLE outperforms the
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Table 4 Comparison of the PSNR (in dB) for inpainting of images with various corruption levels based on analytic dictionaries, DCT,
MCA, and dictionaries learned on all available corrupted image patches, BPFA, BPFAomp, wKSVD, and ITKrMM (modified inpainting is
marked with a *)

Algorithm Bar. Cam. Hou. Man. Pepp. Pir.

30% corruption Noisy Im. 11.17 10.81 10.11 10.82 11.18 11.70

DCT64 37.49 32.66 41.89 30.60 39.12 35.40

DCT144 37.08 32.41 41.49 30.86 38.90 35.42

MCA 35.89 32.45 39.62 28.38 35.59 33.35

BPFA 34.76 32.08 39.76 29.58 37.92 34.38

BPFAomp 35.36 32.23 41.09 30.81 38.66 35.42

wKSVD 35.87 32.62 41.42 30.41 38.64 35.09

ITKrMM1 36.12 32.80 41.97 30.85 39.20 35.60

ITKrMM3 37.16 33.04 42.30 30.92 39.80 36.08

50% corruption Noisy Im. 8.95 8.59 7.88 8.60 8.96 9.47

DCT64 32.72 28.56 36.65 26.99 34.01 31.10

DCT144 32.46 28.46 36.40 27.25 33.93 31.17

MCA 32.50 28.99 36.54 25.34 32.35 29.86

BPFA 32.97 28.89 37.71 27.25 35.29 31.89

BPFAomp 32.98 28.87 37.88 27.29 35.41 32.18

wKSVD 33.23 29.55 38.21 27.79 35.41 32.12

ITKrMM1 33.28 29.44 37.75 27.96 35.31 32.14

ITKrMM3 33.82 29.48 38.04 27.97 35.30 32.26

70% corruption Noisy Im. 7.48 7.13 6.42 7.13 7.50 8.01

DCT64 28.21 24.86 31.49 24.29 29.05 27.21

DCT144 28.09 24.81 31.37 24.44 28.81 27.32

MCA 28.74 25.71 33.42 23.29 28.56 26.55

BPFA 29.40 25.74 33.56 24.93 31.43 28.77

BPFAomp 29.22 25.61 33.05 25.10 31.12 28.63

BPFAomp* 29.23 25.60 33.04 25.11 31.18 28.74

wKSVD 29.70 25.89 33.96 25.09 31.17 28.76

wKSVD* 29.74 26.02 34.09 25.09 31.32 28.84

ITKrMM1 29.48 25.84 33.26 25.11 29.64 28.53

ITKrMM1* 29.93 26.34 33.65 25.12 31.26 28.83

The results are averaged over 5 randommasks and initialisations. The best result for each setting is marked in bold

generic sparsity-based scheme using ITKrMM or wKSVD
by about 1dB on House with 50 or 70% corruption and by
about 3 dB on Barbara 50% or corruption 70%.
For a more comprehensive comparison, we also present

the average SSIM values of the reconstructed images for
the various schemes in Table 5. The SSIM results are
in general consistent with the ones for PSNR. However,
for the 30% corruption level, inpainting with the DCT
basis/frame provides slightly better values, followed by
ITKrMM. Moreover, one can observe that for 50% cor-
ruption, the SSIM values for the ITKrMM algorithms are
slightly better than for all other algorithms—for 70% cor-
ruption, they are better 4 out of 6 times. Compared to

the PSNR results for the same level of corruption, this
essentially supports our previous conclusions that the
tendency of ITKrMM algorithm towards high-frequency
atoms allows to recover fine details, without too much
oversmoothing. In contrast, the wKSVD algorithm, which
sometimes has better PSNR values but worse SSIM values,
leads to smoother images.
Figure 9 shows an inpainting example on Barbara with

50% corruption. All learned dictionaries under consid-
eration are able to inpaint the image with similar visual
quality, while inpainting with the DCT basis produces
a slightly blurry image. ITKrMM generates the highest
PSNR, followed by wKSVD, BPFA and DCT64, which, for



Naumova and Schnass EURASIP Journal on Advances in Signal Processing  (2018) 2018:12 Page 19 of 21

Table 5 Comparison of the SSIM value (0.−) for inpainting of images with various corruption levels based on analytic dictionaries, DCT
and MCA, and dictionaries learned on all available corrupted image patches, BPFA, BPFAomp, wKSVD and ITKrMM (modified inpainting
is marked with a *)

Algorithm Bar. Cam. Hou. Man. Pepp. Pir.

30% Corr. Noisy Im. 1689 2367 0831 1604 1630 1619

DCT64 9822 9638 9813 9373 9859 9691

DCT144 9812 9629 9814 9413 9858 9698

MCA 9695 9500 9658 9218 9654 9552

BPFA 9438 9388 9608 8855 9710 9452

BPFAomp 9590 9564 9771 9400 9820 9688

wKSVD 9659 9551 9772 9341 9812 9662

ITKrMM1 9719 9597 9819 9418 9840 9701

ITKrMM3 9798 9612 9823 9428 9852 9729

50% Corr. Noisy Im. 1002 1617 0478 0899 1015 0946

DCT64 9503 9207 9542 8469 9647 9215

DCT144 9486 9194 9548 8566 9645 9239

MCA 9424 9173 9484 8408 9511 9157

BPFA 9284 9141 9508 8187 9612 9171

BPFAomp 9384 9222 9607 8782 9686 9377

wKSVD 9439 9257 9607 8786 9683 9363

ITKrMM1 9514 9281 9651 8816 9688 9374

ITKrMM3 9588 9281 9657 8825 9695 9392

70% Corr. Noisy Im. 0552 0981 0268 0459 0575 0515

DCT64 8703 8411 8976 6950 9115 8224

DCT144 8682 8389 8982 7081 9098 8275

MCA 8807 8592 9070 7056 9152 8363

BPFA 8783 8587 9231 7104 9366 8604

BPFAomp 8828 8600 9235 7614 9374 8713

BPFAomp* 8834 8602 9238 7615 9387 8740

wKSVD 8877 8648 9286 7616 9380 8750

wKSVD* 8885 8676 9290 7615 9392 8757

ITKrMM1 8937 8661 9306 7582 9222 8720

ITKrMM1* 9002 8749 9323 7583 9404 8753

The results are averaged over 5 randommasks and initialisations. The best result for each setting is marked in bold

instance, manifests itself in the slightly better recovery of
the texture on the trousers.

6 Discussion and conclusions
Inspired by real-life problems and applications, where
data is incomplete and corrupted, we here extended the
iterative thresholding and K residual means (ITKrM)
algorithm for dictionary learning to learning dictionaries
from incomplete/masked data (ITKrMM). To account for
the presence of a low-rank component in the data, we fur-
ther introduced a modified version of the ITKrMM algo-
rithm to recover the low-rank component and adapted
the ITKrMM algorithm to the potential presence of such

a low-rank component. In extensive tests on synthetic
data, we demonstrated that incorporating information
about the corruption (missing coordinates) dramatically
improves the dictionary learning performance and that
ITKrMM is able to recover dictionaries from data with
up to 80% corruption. We further showed that the algo-
rithm learns meaningful dictionaries on corrupted image
data and demonstrated the importance of considering the
presence of a low-rank component for good approxima-
tion properties of the dictionary. We also showed that
ITKrMM provides significant improvements in terms of
dictionary quality and consistency compared to BPFA and
in terms of computation cost/time (e.g. 18 min vs. 3.5 h)
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Fig. 9 Inpainting example: Barbara. Top row, left to right: image with 50% erasures, original image and reconstruction based on the DCT basis.
Bottom row, left to right, reconstruction based on dictionaries learned by BPFA, ITKrMM (L = 3) and wKSVD

and memory requirements compared to wKSVD, a state-
of-the-art algorithm for dictionary learning/refinement
in the presence of erasures. Moreover, when used for
inpainting, the ITKrMM dictionaries often perform bet-
ter than their dictionary learning counterparts, wKSVD
and BPFA, analytic dictionaries like DCT or even more
advanced methods based on analytic dictionaries like
MCA, leading to notable improvements for images with
moderate to medium corruption level or textured images
with any corruption level.
All the experiments reported in this paper can be repro-

duced with the freely available ITKrMM Matlab toolbox
at the second author’s homepage.
One slight disappointment is that in synthetic exper-

iments with a random initialisation, ITKrMM does not
recover the full dictionary. Instead, it recovers some atoms
twice, and some atoms are 1:1 linear combinations of
two other ground truth atoms. This phenomenon has
already been observed in the case of ITKrM, and there are
ongoing efforts to counter it with replacement strategies.
Research in this direction goes hand in hand with increas-
ing the theoretical convergence radius of ITKrM derived
in [29] and further opens up the road to adaptively choos-
ing the sparsity level, the dictionary size and the size of
the low-rank component. Once these strategies and the
sharper analysis for ITKrM are finalised, we are planning
to extend both of them to the case of corrupted data, that
is ITKrMM. In particular, we want to further adapt the
choice of the sparsity level and the dictionary size to the
level of corruption and the amount of training data, which

we expect to improve the performance of the ITKrMM
algorithm for image inpainting both in terms of speed and
accuracy.
Another interesting direction would be to combine

ITKrMM-learned dictionaries with the inpainting scheme
of PLE [38], using structured sparsity and coefficient
statistics obtained in the learning. After all, one of the
motivations for relying on two PCA bases rather than a
dictionary seems to have been instability of dictionary
learning and a lack of theoretical support.
More generally, we are interested in extending the con-

cept of learning dictionaries from masked data to other
types of corruption such as, for instance, blurring, where
the resulting dictionaries can then be used for deblurring.

Endnote
1 https://www.uibk.ac.at/mathematik/personal/

schnass/code/itkrmm.zip

Acknowledgements
V. Naumova acknowledges the support of project no. 251149/O70
‘Function-driven Data Learning in High Dimension’ (FunDaHD) funded by the
Research Council of Norway, and K. Schnass is in part supported by the
Austrian Science Fund (FWF) under grant no. Y760. In addition, the
computational results presented have been achieved (in part) using the HPC
infrastructure LEO of the University of Innsbruck.

Authors’ contributions
Both authors contributed equally. Both authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

https://www.uibk.ac.at/mathematik/personal/schnass/code/itkrmm.zip
https://www.uibk.ac.at/mathematik/personal/schnass/code/itkrmm.zip


Naumova and Schnass EURASIP Journal on Advances in Signal Processing  (2018) 2018:12 Page 21 of 21

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Simula Metropolitan Center for Digital Engineering, Martin Linges 25, 1325
Fornebu, Norway. 2Department of Mathematics, University of Innsbruck,
Technikerstraße 13, 6020 Innsbruck, Austria.

Received: 12 July 2017 Accepted: 1 February 2018

References
1. DL Donoho, M Elad, VN Temlyakov, Stable recovery of sparse

overcomplete representations in the presence of noise. IEEE Trans. Inf.
Theory. 52(1), 6–18 (2006)

2. S Beckouche, JL Starck, JM Fadili, Astronomical image denoising using
dictionary learning. Astron. Astrophys. 556(A132), 1–14 (2013)

3. E Candès, J Romberg, T Tao, Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information. IEEE Tran.
Inf. Theory. 52(2), 489–509 (2006). others

4. DL Donoho, Compressed sensing. IEEE Tran. Inf. Theory. 52(4), 1289–1306
(2006)

5. J Yang, J Wright, T Huang, Y Ma, Image super-resolution via sparse
representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

6. M Elad, JL Starck, P Querre, DL Donoho, Simultaneous cartoon and
texture image inpainting using morphological component analysis
(MCA). Appl. Comput. Harmon. Anal. 19(3), 340–358 (2005)

7. J Wright, A Yang, A Ganesh, S Sastry, Y Ma, Robust face recognition via
sparse representation. IEEE Trans. Pattern. Anal. Mach. Intell. 31(2),
210–227 (2009)

8. R Rubinstein, A Bruckstein, M Elad, Dictionaries for sparse representation
modeling. Proc. IEEE. 98(6), 1045–1057 (2010)

9. M Aharon, M Elad, AM Bruckstein, K-SVD: An algorithm for designing
overcomplete dictionaries for sparse representation. IEEE Trans. Signal
Process. 54(11), 4311–4322 (2006)

10. K Engan, SO Aase, JH Husoy, in ICASSP99, vol 5. Method of optimal
directions for frame design (IEEE, Phoenix, 1999), pp. 2443–2446.
https://doi.org/10.1109/ICASSP.1999.760624

11. DJ Field, BA Olshausen, Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature.
381, 607–609 (1996)

12. K Kreutz-Delgado, JF Murray, BD Rao, K Engan, T Lee, TJ Sejnowski,
Dictionary learning algorithms for sparse representation. Neural Comput.
15(2), 349–396 (2003)

13. MS Lewicki, TJ Sejnowski, Learning overcomplete representations. Neural
Comput. 12(2), 337–365 (2000)

14. J Mairal, F Bach, J Ponce, G Sapiro, Online learning for matrix factorization
and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010)

15. K Skretting, K Engan, Recursive least squares dictionary learning
algorithm. IEEE Trans. Signal Process. 58(4), 2121–2130 (2010)

16. J Mairal, F Bach, J Ponce, Task-driven dictionary learning. IEEE Trans.
Pattern Anal. Mach. Intell. 34(4), 791–804 (2012)

17. R Gribonval, K Schnass, Dictionary identifiability—sparse
matrix-factorisation via l1-minimisation. IEEE Trans. Inf. Theory. 56(7),
3523–3539 (2010)

18. D Spielman, H Wang, J Wright, in COLT 2012 (arXiv:1206.5882). Exact
recovery of sparsely-used dictionaries (PMLR, Edinburgh, 2012)

19. S Arora, R Ge, A Moitra, in COLT 2014 (arXiv:1308.6273). New algorithms for
learning incoherent and overcomplete dictionaries (PMLR, Barcelona,
2014)

20. A Agarwal, A Anandkumar, P Jain, P Netrapalli, R Tandon, in COLT 2014
(arXiv:1310.7991). Learning sparsely used overcomplete dictionaries via
alternating minimization (PMLR, Barcelona, 2014)

21. K Schnass, On the identifiability of overcomplete dictionaries via the
minimisation principle underlying K-SVD. Appl. Comput. Harmon. Anal.
37(3), 464–491 (2014)

22. K Schnass, Local identification of overcomplete dictionaries. J. Mach.
Learn. Res. (arXiv:1401.6354). 16(Jun), 1211–1242 (2015)

23. R Gribonval, R Jenatton, F Bach, Sparse and spurious: dictionary learning
with noise and outliers. IEEE Trans. Inf. Theory. 61(11), 6298–6319 (2015)

24. B Barak, JA Kelner, D Steurer, in STOC 2015 (arXiv:1407.1543). Dictionary
learning and tensor decomposition via the sum-of-squares method
(ACM, New York, 2015)

25. J Sun, Q Qu, J Wright, in ICML 2015 (arXiv:1504.06785). Complete dictionary
recovery over the sphere (PMLR, Lille, 2015)

26. S Arora, R Ge, T Ma, A Moitra, in COLT 2015 (arXiv:1503.00778). Simple,
efficient, and neural algorithms for sparse coding (PMLR, Paris, 2015)

27. K Schnass, A personal introduction to theoretical dictionary learning. Int.
Math. Nachr. 228, 5–15 (2015)

28. M Schoemaker, C Parkin, in CGM - How good is good enough? ed. by H
Kirchsteiger, J Jørgensen, E Renard, and L del Re. Prediction methods for
blood glucose concentration (Springer, Cham, 2015), pp. 43–45

29. K Schnass, Convergence radius and sample complexity of ITKM
algorithms for dictionary learning. Appl. Comput. Harmon. Anal in press
(2016). https://doi.org/10.1016/j.acha.2016.08.002

30. J Mairal, M Elad, G Sapiro, Sparse representation for color image
restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008)

31. J Mairal, G Sapiro, M Elad, Learning multiscale sparse representation for
image and video restoration. Multiscale Model. Simul. 7(1), 214–241 (2008)

32. M Zhou, H Chen, J Paisley, L Ren, L Li, Z Xing, D Dunson, G Sapiro, L Carin,
Nonparametric bayesian dictionary learning for analysis of noisy and
incomplete images. IEEE Trans. Image Process. 21(1), 130–144 (2012)

33. E Candès, X Li, Y Ma, J Wright, Robust principle component analysis?
J. ACM. 58(3), 11:1–11:37 (2011)

34. R Rubinstein, M Zibulevsky, M Elad, Efficient implementation of the K-SVD
algorithm using batch orthogonal matching pursuit. Technical Report
40(8), Cs Technion (2008)

35. C Guillemot, O Le Meur, Image inpainting: overview and recent advances.
IEEE Signal Proc. Mag. 31(1), 127–144 (2014)

36. V Caselles, G Sapiro, C Ballester, M Bertalmio, J Verdera, Filling-in by joint
interpolation of vector fields and grey levels. IEEE Trans. Image Process.
10, 1200–1211 (2001)

37. A Efros, T Leung, in Proc. Int. Conf. Computer Vision. Texture synthesis by
non-parametric sampling (IEEE, Kerkyra, 1999), pp. 1033–1038

38. G Yu, G Sapiro, S Mallat, Solving inverse problems with piecewise linear
estimators: from Gaussian mixture models to structured sparsity.
IEEE Trans. Image Process. 21(5), 2481–2499 (2012)

39. GM Davis, S Mallat, Z Zhang, Adaptive time-frequency decompositions
with matching pursuits. SPIE Opt. Eng. 33(7), 2183–2191 (1994)

40. Y Pati, R Rezaiifar, P Krishnaprasad, in Asilomar Conf. on Signals Systems and
Comput. Orthogonal matching pursuit: recursive function approximation
with application to wavelet decomposition (IEEE, Pacific Grove, 1993)

https://doi.org/10.1109/ICASSP.1999.760624
https://doi.org/10.1016/j.acha.2016.08.002

	Abstract
	Keywords

	Introduction
	Problem setup
	Signal model and assumptions
	Corruption model and assumptions

	Dictionary recovery
	Recovery of the low-rank component
	Results
	Numerical simulations on synthetic data
	Gains of incorporating mask information
	Spikiness and recoverability

	Numerical simulations on image data
	Dictionaries for image data
	Inpainting


	Discussion and conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

