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Abstract

In this paper, a novel consensus-based adaptive algorithm for distributed target tracking in large scale camera
networks is presented, aimed at situations characterized by limited sensing range, high-level clutter, and possibly
occulted targets. The concept of Integrated Probabilistic Data Association (IPDA) is introduced in the distributed
adaptive tracker design so that the proposed algorithm, named IPDA Adaptive Consensus Filter (IPDA-ACF),
incorporates probabilities of acquiring target-originated measurements, conditioned on either target perceivability or
target existence. A distributed adaptation scheme represents the core element of the algorithm, allowing fast
convergence under a large variety of operating conditions, emphasizing the influence of the nodes with the highest
probability of obtaining target-originated measurements. A theoretical analysis of stability and reduction of noise
influence allows getting an insight into the relationship between the local trackers and the global consensus scheme.
A comparison with analogous existing methods done by extensive simulations shows that the proposed method
achieves the best performance, in spite of lower communication and computation requirements.
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1 Introduction
Recent rapid improvement in quality and resolution of
imaging sensors and availability of low-cost smart cam-
eras, together with the development of sensor network
technology, have paved the way for creation of large scale
camera networks. Examples of very successful applica-
tions are more andmore numerous, especially in the fields
of wide-area surveillance, disaster response, and environ-
mental monitoring. Detection and tracking of objects of
interest is one of the fundamental functions of camera
networks, see, e.g., [1] and the references therein.
In this context, distributed estimation schemes are

becoming increasingly popular, due to their high preci-
sion and scalability to large number of sensors, with no
need for centralized actions, e.g., [2–4]. In spite of the fact
that the theoretical fundamentals of target tracking are
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basically the same for different types of sensors (radars,
sonars, cameras), camera networks impose some unique
and interesting challenges, arising from the fact that
(1) most of the cameras are directional and have lim-
ited sensing range (LSR) or field-of-view (FoV) so that
at each time instant there might be a significant share
of sensors that do not observe the target (see Fig. 1
as an illustration) and (2) environment is highly clut-
tered and targets can be temporarily occulted. Majority
of the existing distributed estimation algorithms of gen-
eral type based on consensus cannot be directly applied
in this context. The Kalman-consensus filter (KCF) [5]
has been applied to target tracking problems by sensor
networks with LSR in [6]. The algorithm assumes inter-
node exchange of local target state estimates, together
with the so-called information vectors and matrices,
which depend on local measurements and their covari-
ances. The information-weighted consensus filter (ICF)
has been found to outperform KCF under limited local
observability scenarios [4]. It uses the fact that the local
information contained in the nodes becomes correlated as
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Fig. 1 Camera network with seven nodes with limited sensing and
communication ranges. The dashed lines represent the communication
channels between different nodes. The target is observable by two
cameras at the given time instant

the state estimates converge. The communication require-
ments incorporate, besides those of KCF, the local error
covariance matrices. Both KCF and ICF have been applied
to distributed tracking problems in cluttered environ-
ment [7, 8], incorporating elements of the Probability
Data Association (PDA) methodology [9–11]. In [12],
an algorithm for decentralized state estimation has been
proposed, based on a combination of local estimators
of Luenberger type and a flexible dynamic consensus
strategy. It assumes exchange of only state estimates
between neighboring nodes. Its adaptive modification
has been proposed in [2] in the context of target track-
ing problems with sensors having limited sensing range,
but without assuming presence of clutter. We shall refer
to this algorithm as Adaptive Consensus Filter (ACF).
It has been demonstrated that ACF largely outperforms
KCF and slightly outperforms ICF, preserving, at the
same time, significantly lower communication bandwidth
requirements [3].
In this paper, we assume cluttered environment and

possibly temporarily occulted targets and propose a new
distributed adaptive tracking algorithm for camera net-
works, representing an extension of ACF from [2] based
on Integrated Probabilistic Data Association (IPDA); this
algorithm will be denoted further as IPDA-ACF. The con-
cept of IPDA has been introduced by Musicki, Evans,
and Stankovic in [13] and further extended in differ-
ent directions, see, e.g., [9–11, 14, 15]. The notion of
target perceivability [14, 15] has been utilized to con-
struct two distinct consensus-based tracking algorithms,
having the form of the basic Probabilistic Data Associ-
ation (PDA) recursion [9–11]. The algorithms deal with
two types of the so-called “β ′′-parameters, representing
probabilities of getting a target-originated measurement
conditioned either on target perceivability or on target

existence; in this sense, we have the algorithms denoted
as IPDA-ACF1 and IPDA-ACF2, respectively. The core
element of the proposed algorithm, making it compet-
itive and even superior to the algorithms with higher
communication requirements proposed in [7, 8], is the
distributed adaptation scheme, developed as a substan-
tial generalization of the adaptation strategy originally
described in [2, 3] (see also [16]). The adaptation scheme,
aiming at giving emphasis to the nodes with the highest
probability of obtaining target-originated measurements,
is based on the locally obtained “β ′′-parameters as indi-
cators of target observability in cluttered environment;
these parameters are used to improve both tracking accu-
racy and convergence rate of achieving consensus among
the nodes. Stability and noise immunity of the whole
distributed tracking method are also theoretically ana-
lyzed in detail, by applying the methodology introduced in
[2, 12], as well as the recent results concerning prop-
erties of the modified deterministic discrete Riccati
Eq. [12, 17, 18]. The paper also introduces appro-
priate modifications of the original versions of KCF
and ICF incorporating IPDA methodology [7, 8], nec-
essary for a fair comparison with the proposed algo-
rithm (IPDA-KCF and IPDA-ICF). Tracking quality
of the proposed algorithm has been analyzed in
detail by simulation. The presented results give an
insight into the main properties of the algorithm and
show that it outperforms both alternative algorithms,
in spite of lower communication and computation
requirements.
The outline of the paper is as follows. Section 2 is

devoted to the problem definition and the basic notions
related to the IPDA methodology. Section 3 contains
a description of the new distributed tracking algorithm
(IPDA-ACF), including the algorithm definition and pre-
sentation of the adaptation strategy. A theoretical analysis
of stability of the proposed adaptive tracking algorithm,
as well as of the reduction of noise influence is given
in Section 4. Section 5 is devoted to the formulation
of IPDA-KCF and IPDA-ICF algorithms. Section 6 con-
tains the results of simulation analysis, and Section 7
concluding remarks.
Notation. In the paper, we shall use t for discrete time

and subscript i to indicate ith node (sensor) in a network;
more specifically, we shall use the following notations:

x Target state vector
F State transition matrix
e Process noise vector
G Process noise covariance matrix
G Directed graph reflecting the

network communication topology
Ni In-neighborhood of ith node
Ji Closed in-neighborhood of ith node
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zi,j j-th measurement
vi Measurement noise vector
Hi Measurement noise covariance matrix
Zi(t) Set of all measurements at time t
Zt
i Set of all measurements up to time t

Ot
i Event that the target

is perceivable at time t
πi(t|t − 1) Predicted probability

of target perceivability
πi(t|t) Updated probability

of target perceivability
PDi Probability of detection
Pgi Probability of

target-originated measurement
falling inside the gate (FoV)

z̃i,j Residual of the jth measurement
Si Covariance of z̃i,j
λi Clutter spatial density
Vi Gate volume
θi,j Event that the j-th measurement

is target originated
θi,0 Event that

the target-originated measurement
is not in the gate or nonexistent

β
[1]
i,j Probability of θi,j, j = 0, 1, . . . ,mi,

conditioned on Ot
i and on Zt

i
β
[2]
i,j Probability of θi,j, j = 0, 1, . . . ,mi,

conditioned on the event that the target
is present and on Zt

i
ξi(t|t − 1) Predicted state estimate
ξi(t|t) Updated state estimate
Pi(t|t − 1) Predicted estimation error

covariance matrix
Pi(t|t) Updated estimation error

covariance matrix
Li Kalman gain matrix
C,A Single step consensus operators
ωi Scalar defining node importance
ui Information vector
Ui Information matrix
yi Sum of information vectors

across neighbors
Bi Sum of information matrices

across neighbors
‖ · ‖ Spectral norm

2 Problem definition; Integrated Probabilistic
Data Association

Consider a target modeled as a dynamic stochastic linear
time-invariant discrete-time system, given by

x(t + 1) = Fx(t) + Ge(t), (1)

where t ∈ I+, I+ is the set of nonnegative integers, x ∈
R
n is the target state vector, e zero-mean white Gaussian

noise with covariance matrix Q, and F and G constant
matrices with appropriate dimensions (see, e.g., [19]).
Assume that we have N intelligent sensors forming a

network, formally represented by a directed graph G =
(N , E), where N is the set of nodes and E the set of arcs.
Assume also thatNi is the in-neighborhood of the node i,
containing the head nodes of the arcs entering the node i;
define also Ji = Ni ∪ {i}. Each node (camera) is supposed
to have, in general, limited sensing and communication
ranges, which determine at each t the set of nodes that
can observe the target and the sets of neighboring nodes
exchanging messages (these sets may contain, in general,
low percentage of the total number of nodes). We assume
that real measurements are cluttered, i.e., in addition to
data originating from the target, a set of measurements
corresponds to no targets [9–11, 19]. At time t, node i gets
mi(t) measurements, denoted as zi,j(t), j = 1, . . . ,mi(t).
Under the hypothesis that the measurement zi,j(t) origi-
nates from the target, the sensing model for the ith node is
given by

zi,j(t) = Hix(t) + vi(t), (2)

where zi,j(t) ∈ R
pi is the measurement vector, Hi a con-

stant output matrix, and vi zero-mean white Gaussian
measurement noise with covariance matrix Ri. Let Zi(t) =
{zi,1(t), zi,2(t), . . . , zi,mi(t)(t)} denotes the set of allmi(t) =
mT

i (t)+mf
i (t) measurements obtained by node i at time t,

where mT
i (t) is the number of target-originated measure-

ments, and mf
i (t) the number of false clutter-originated

measurements. Let Zt
i = {Zi(1), . . . ,Zi(t)}.

The purpose of tracking is to estimate the state of a tar-
get in real time, based on a set of current measurements.
For tracking in clutter, conventional state estimation tech-
niques cannot be used because several measurements are
available at every scan, and at most, one measurement can
arise from the target. The elegant Probabilistic Data Asso-
ciation (PDA) methodology has been successfully applied
in this case, including a variety of very successful appli-
cations to radars, sonars, and electro-optic systems, e.g.,
[9–11, 20–25]. This methodology is based on the implicit
strong assumption that the target is always perceivable.
The concept of target perceivability is a part of the general
methodology of Integrated Probabilistic Data Association
(IPDA) and represents a refinement of the concept of
track existence (which does not address the possibility
that a target cannot be detected) and of target observ-
ability (which presumes the presence of a target) [13–15].
According to [15], a target is perceivable if it is present and
can be detected by the sensors used. If Ot

i and Ōt
i denote

the events that the target is perceivable and not perceiv-
able, respectively, at time t by node i, we shall follow [13]
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and assume that the target perceivability can be modeled
by a first order Markov model, with p11i = P

(
Ot
i |Ot−1

i

)

and p21i = P
(
Ot
i |Ōt−1

i

)
, see [14, 15]. If πi(t|t − 1) and

πi(t|t) are the predicted and updated probabilities of tar-
get perceivability for a given track, respectively, the total
probability theorem gives

πi(t|t−1) = p11i πi(t−1|t−1)+p21i [1−πi(t−1|t−1)] .
(3)

According to the basic references related to the IPDA
methodology [13–15], the updated and predicted target
perceivability probabilities are connected by

πi(t|t) = [1 − φi(t)]πi(t|t − 1)
1 − φi(t)πi(t|t − 1)

, (4)

where

φi(t) = PDi P
g
i

[
1 − m−1σi(t)Vi(t)

μi(t,m − 1)
μi(t,m)

]

formi(t) = m �= 0, and

φi(t) = PDi P
g
i

for mi(t) = 0, PDi is the detection probability (assuming
that the target is perceivable), Pgi is the probability that a
target-originated measurement falls inside the gate (FoV)
of the sensor i,

σi(t) = (
Pgi

)−1

m

j=1N (z̃i,j(t); 0, Si(t))

formi(t) �= 0, and
σi(t) = 0

for mi(t) = 0, where z̃i,j(t) = zi,j(t) − ẑi,j(t) is the resid-
ual of the jth measurement by node i (ẑi,j(t) denotes the
optimal estimate of zi,j(t)), and Si(t) its covariance,

μi(t,m) = (λi(t)Vi(t))m

m!
e−λi(t)Vi(t),

μi(t,m) = P
{
mf

i (t) = m|Zt−1
i

}
, λi(t) is the clutter spa-

tial density and Vi(t) the gate volume (under the classical
Gaussian assumption for the target and the Poisson model
for clutter [14, 15]).
Let θi,j be the event that the jth measurement of the

ith node is target originated, and θi,0 that the target-
originated measurement is not in the gate (FoV) or nonex-
istent. Define

β
[1]
i,j (t) = P

{
θi,j|Ot

i ,Zt
i
}
, j = 0, 1, . . . ,mi(t). (5)

It is possible to show that the probabilities β
[1]
i,j (t) are

identical to the well-known weights (“β ′′-parameters) of
the classical PDA filter [10, 11]:

β
[1]
i,0 (t) = λi(t)

λi(t) + σi(t)qi
,

β
[1]
i,j (t) = qi

(
Pgi

)−1N (z̃i,j(t); 0, Si(t))
λi(t) + σi(t)qi

,
(6)

for j = 1, . . . ,mi(t), where qi = PDi P
g
i /

(
1 − PDi P

g
i
)
. Proba-

bilities β
[1]
i,j (t) are used within the formulation of the target

perceivability-based PDAF in [15].
In general, it can be of interest to estimate the state of a

target that is present no matter whether it can be detected
or not. One may define the following probabilities [15]:

β
[2]
i,j (t) = P

{
θi,j|T ,Zt

i
}
, j = 0, 1, . . . ,mi(t), (7)

where T stands for the event that a target is present.
Following [15], one can show that

β
[2]
i,0 (t) = λi(t)

λi(t) + σi(t)ri(t)
,

β
[2]
i,j (t) = ri(t)

(
Pgi

)−1N (z̃i,j(t); 0, Si(t))
λi(t) + σi(t)ri(t)

, (8)

for j = 1, . . . ,mi(t), where ri(t) = PDi P
g
i πi(t|t −

1)/
[
1 − PDi P

g
i πi(t|t − 1)

]
. The probabilities (8) represent

a part of the target existence-based PDAF formulated in
[15] and depend on the probabilities (6) and the perceiv-
ability probabilities (4). Recently, the concept of target
existence probability has been used in the context of
multi-target tracking in multi-static passive radar systems
[26]. Notice that β

[2]
i,j (t) ≤ β

[1]
i,j (t), j = 1, . . . ,mi(t) and

that, consequently, β
[2]
i,0 (t) ≥ β

[1]
i,0 (t) (see [14, 15] for a

more complete discussion).
In the context of distributed target tracking by sensor

networks considered in this paper, all the above state-
ments hold locally, for each sensor. It will be seen below
that the choice between β

[1]
i,j (t) and β

[2]
i,j (t) offers an addi-

tional possibility for adaptation to the current situation
concerning the target, the entire sensor network, and its
environment.

3 Adaptive consensus filter: IPDA-ACF
3.1 Tracking algorithm
In this subsection, we shall present the main IPDA-ACF
algorithm, with its two versions (IPDA-ACFl, l = 1, 2),
depending on the choice of the “β ′′-parameters: for l = 1,
one assumes target perceivability (IPDA-ACF1) and for
l = 2 target existence (IPDA-ACF2). The algorithm has
the following form:

ξi(t|t) = ξi(t|t − 1) + Li(t)z̃i(t),
ξi(t + 1|t) = FC(ξi(t|t)), (9)

i = 1, . . . ,N , where ξi is an estimate of x generated by
the ith node, z̃i(t) = ∑mi(t)

j=1 β
[l]
i,j (t)z̃i,j(t), z̃i,j(t) = zi,j(t) −

Hiξi(t|t − 1), l = 1, 2, C(·) is a single step consensus
operator

C(ξi(t|t)) =
∑
j∈Ji

cij(t)ξj(t|t), (10)
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where cij(t), i, j = 1, . . . ,N , are (generally) time varying
weights, such that N ×N matrix C(t) =[ cij(t)] (consensus
matrix) is row-stochastic for all t, and

Li(t) = Pi(t|t − 1)HT
i Si(t)

−1 (11)

is the local Kalman gain obtained from (1) and (2), using

Pi(t|t) = Pi(t|t − 1)

+
[
β
[l]
i,0(t) − 1

]
Li(t)Si(t)Li(t)T + P̃i(t, t),

P̃i(t, t) = Li(t)

⎡
⎣
mi(t)∑
j=1

β
[l]
i,j (t)z̃i,j(t)z̃i,j(t)

T −z̃i(t)z̃i(t)T
⎤
⎦Li(t)T ,

Pi(t + 1|t) = FPi(t|t)FT + GQGT ,
Si(t) = HiPi(t|t − 1)HT

i + Ri.
(12)

The above algorithm follows structurally the consensus-
based overlapping estimation algorithm proposed in [12].
Instead of the local estimators of Luenberger type from
[12], we have here trackers of PDA type [10]. The algo-
rithm contains two main parts:

1) The filtering part, in which the local measurements
are processed

2) The prediction part, in which the agreement between
the nodes is enforced through a convex combination
of the estimates communicated by the neighboring
nodes C(ξi(t|t)).

Obviously, the algorithm requires only the exchange of
state estimates (size n×1). The choice of l in β

[l]
i,j (t) results

from a predefined setting. For l = 1, one obtains the
estimation scheme resulting directly from the PDAF [10],
while for l = 2, the algorithm follows the existence-based
PDAF from [15] and becomes more capable of coping
with high level of clutter and possible target occlusions
(typical for camera networks - see, e.g., [27] for a general
discussion).
The choice of the consensus matrix C(t) can be based, in

general, on different principles, including the well-known
standard Metropolis weights (see, e.g., [28] and the ref-
erences therein) and optimization procedures providing
the fastest convergence to consensus [29, 30]. However, in
the above context (limited FoV, clutter, target occlusions),
such approaches provide insufficient tracking accuracy
of the proposed algorithm in real-time applications. One
should bear in mind that we have, in the context of the
proposed algorithm, the so-called “running consensus”
[31, 32], consisting of an inseparable pair estimation algo-
rithm - consensus algorithm, each possessing its own
dynamics. It would be possible, in principle, to formulate
the problem of defining the consensus matrix in a theoret-
ically unified way, including both the estimation algorithm
and the consensus scheme; however, such methodologies

can hardly provide results applicable in real time. In order
to provide a practically efficient solution, the next subsec-
tion contains a presentation of a distributed adaptation
applicable in real time, aiming at providing adequate time-
varying consensus weights in (10), using the locally avail-
able realizations of the β-parameters, in accordance with
the basic principles of the IPDA methodology.

3.2 Distributed adaptation strategy
Distributed adaptation strategy represents the core ele-
ment of the IPDA-ACF algorithm. In the context of the
scenario considered in this paper, we follow the basic line
of thought from [2, 3, 12] and construct a novel-improved
fully distributed adaptation procedure generating C(t) in
(10), dynamically giving more importance to the nodes
with higher probability of receiving target-originated mea-
surements, enabling, at the same time, fast information
flow through the network. In the sequel, we shall first give
a short outline of the original adaptive scheme from [2],
and then, we shall present the general adaptation strategy
for the tracking algorithm presented above.
1) Basic adaptation scheme: no clutter
The distributed adaptive tracking algorithm ACF in [2]

has been derived from [12]; it requires additional inter-
node communication of β

[1]
i,0 (t) ∈ {0, 1} that are available

locally (indicators of measurement availability at time t).
Using this information, each node computes |Ji| scalars
χ i
j (t), representing observation histories of the neighbor-

ing nodes. The nonnormalized consensus gains are given
by cχij (t) = cχij (0)k

χ i
j (t), for χ i

j (t) ≥ 0, and cχij (t) =
cχij (∞) −

(
cχij (∞) − cχij (0)

)
k|χ i

j (t)|, for χ i
j (t) ≤ 0, where

cχij (0) are the initial values and c
χ
ij (∞) the desired final val-

ues; parameter k ∈ (0, 1] determines the rate of change
of cχij (t). The normalized consensus gains, ensuring row

stochasticity, are obtained from cij(t) = cχij (t)∑
j∈Ji c

χ
ij (t)

, when
j �∈ Ji, cij(t) = 0. It has been found that the resulting ACF
algorithm from [2] outperforms KCF from [6].
2) General adaptation strategy
The adaptation procedure proposed in this paper essen-

tially extends and modifies the basic adaptation scheme
from [2] in two principal directions: (1) instead of binary
indicators of target presence, we utilize real numbers
β
[l]
i,0(t) defined by (6) or (8) since they reflect the uncer-

tainty of obtaining a target-originated measurement; (2)
in order to enable fast diffusion of the target state esti-
mates throughout the network, the adaptation scheme
incorporates its own, specially designed dynamics.
Formally, we introduce the node importance vector

ω(t) = (ω1(t), . . . ,ωN (t))T , generated by the following
recursion:

ω(t + 1) = αAω(t) + γ (t + 1), (13)
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which starts from ω(0) = (ω1(0), . . . ,ωN (0))T =
(0, . . . , 0)T , where γ (t) = (γ1(t), . . . , γN (t))T , γi(t) =
1 − β

[l]
i,0(t), A = (

I + Aadj
)
rs, where Aadj represents the

adjacency matrix of the underlying network graph, and
Y = (X)rs denotes, for N × N matrices X and Y, that Y
is obtained from X in such a way that the elements of its
rows are divided by the corresponding row-sums, while
α > 0 is a sufficiently small real number. Using the node
importance vector, the elements of the consensus matrix
C(t) are given by

cij(t) = ωj(t)∑
j∈Ji ωj(t)

(14)

for j ∈ Ji; cij(t) = 0 otherwise.
The algorithm requires that each node receives at each

t real numbers ωj(t) from its neighbors. It is obvious that
the recursion (13) is implementable in a distributed way,
having in mind that locally

ωi(t + 1) = α

1 + νi

∑
j∈Ji

ωj(t) + γi(t + 1), (15)

where νi is the number of nonzero elements of ith row
of Aadj.
The input vector γ (t + 1) in (13) reflects the current

network-wide perceivability, i.e., its elements represent the
local probabilities of getting target-originated measure-
ments (in the case of no clutter, γi(t) is a binary random
variable, equal to one when the target is observed, and
to zero otherwise [2]). It can be considered that γi(t)
provides a direct measure of “quality” of the current esti-
mate of the ith node, obtained after the local filtering
phase (prior to the application of the consensus scheme).
Namely, when a target is successfully being tracked and
ith node receives measurement from it, β[l]

i,j (t) connected
to that measurement has high values (close to one), while
all the other β

[l]
i,j (t) are generally small, as well as β

[l]
i,0(t)

(close to zero). On the other hand, if the ith node does
not receive measurement from the target, all β[l]

i,j (t)will be
generally close to zero and β

[l]
i,0(t) close to one. Obviously,

the difference between the choices l = 1 and l = 2 lies
in the fact that in the second case, the resulting tracking
algorithm is less sensitive to the availability of measure-
ments than in the case when l = 1; this choice is well
adapted to the high level of clutter and to the targets that
are temporarily not perceivable (as stated above). Another
choice for γi(t) could be γi(t) = maxj=1,...,mi(t) β

[l]
i,j (t),

which yielded in our experiments the results comparable
to those obtained by the above formulated algorithm.
The role of the first term at the right hand side of (13)

containing αA is to enable fast decentralized diffusion of
the local state estimates throughout the whole network.
Under the standard assumption that the graph G has a

center node (a node from which all the nodes are reach-
able), matrix A has one simple eigenvalue at one, while
the remaining ones are inside the unit circle. In this case,
we have that Ak converges, when k → ∞, to a constant
matrix with equal rows composed of positive elements.
This means, having in mind (13), that all the nodes will
have asymptotically positive values ωi(∞), i = 1, . . . ,N .
The multiplying constant α defines the memory length of
the algorithm; obviously, for α < 1, the recursion (13)
is asymptotically stable. The chosen value of α should be
small, in order to be able to efficiently exploit current
measurements, and large enough, in order to sufficiently
smooth out stochastic variations in the random sequence
{γ (t)}.
In order to better clarify the basic effects of choosing α

and A, consider w.l.o.g. the situation in which γ (t + 1) =
γ [1], where γ

[1]
1 ≈ 1 and the remaining γ

[1]
i ≈ 0, i =

2, . . . ,N . The asymptotic response of (13) to such an input
signal is given by

lim
t→∞ ω(t + 1) = lim

T→∞

T∑
t=0

(αA)tγ [1]. (16)

Having in mind (16) and (14), there are now two main
possibilities: (1) the rows of C(∞) with ci1 �= 0 contain,
in fact, ci1 ≈ 1, while the remaining elements are of the
order of magnitude of α; (2) the rows ofC(∞)with ci1 = 0
contain the nonzero elements having different order of
magnitude, depending on graph topology, irrespective of
α. In the first case, the convex combination from (9) will
give the highest emphasis to the neighbors observing the
target with high probability, while in the second, node pri-
orities result from the given graph. In the first case, we
have prompt reaction for small α, while in the second,
diffusion rate of the state estimates is maximized. In our
experiments, we adopted α to be around 0.05.
Asymptotic properties of the proposed adaptation

scheme capture the perceivability history in a more effi-
cient way than the original scheme from [2]. For example,
in the cases when two nodes have the same γi, the first
term at the right hand side of (15) gives more weight to the
node that previously received information, coming more
likely from the nodes that had observed the target (see the
example below and the simulation results).
The proposed algorithm is summarized in Algorithm 1.
Example. In order to demonstrate clearly the positive

effect of introducing specially designed dynamics into the
original adaptive scheme from ACF, we shall consider the
following simple illustrative example of a sensor network
with the ring topology and N = 6 nodes, where each
node is connected to 2 neighboring nodes and only the
first node observes the target; there are no false measure-
ments. The adaptation parameters have been chosen as
cχij (∞) = 1, cχij (0) = 0.01, k = 0.2 (original adaptive
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Algorithm 1 IPDA-ACFl for node i at time t
Input: ξi(t|t − 1), Pi(t|t − 1), ω̃i(t − 1)
Get measurements: zi,j(t), j = 1, . . . ,mi(t)
Compute:
z̃i,j(t) = zi,j(t)−Hiξi(t|t−1), Si(t) = HiPi(t|t−1)HT

i +Ri

β
[l]
i,0(t), β

[l]
i,j (t) from (6) or (8) (l = 1 or l = 2, respec-

tively)
z̃i(t) = ∑mi(t)

j=1 β
[l]
i,j (t)z̃i,j(t)

Li(t) = Pi(t|t − 1)HT
i Si(t)−1, Pi(t|t) from (12)

ξi(t|t) = ξi(t|t − 1) + Li(t)z̃i(t)
γi(t) = 1 − β

[l]
i,0(t), ωi(t) = α

1+νi
ω̃i(t − 1) + γi(t)

Send data: ξi(t|t), ωi(t)
Receive data: ξj(t|t), ωj(t), j ∈ Ji
Compute:
ω̃i(t) = ∑

j∈Ji ωj(t)
cij(t) = ωj(t)

ω̃i(t) for j ∈ Ji, cij(t) = 0 else
Perform consensus: C(ξi(t|t)) = ∑

j∈Ji cij(t)ξj(t|t)
Compute:
ξi(t + 1|t) = FC(ξi(t|t))
Pi(t + 1|t) = FPi(t|t)FT + GQGT

Output: ξi(t + 1|t), Pi(t + 1|t), ω̃i(t)

scheme from [2]), and α = 0.03, β[l]
i,0(t) = 0 if the ith node

observes the target at time instant t and β
[l]
i,0(t) = 1 other-

wise (the proposed general adaptation strategy). Figure 2
shows the time evolution of the resulting nonzero con-
sensus weights connected to the original scheme (ACF1)
and the proposed algorithm (ACF2). It can be seen that
the main difference between the algorithms is in the con-
sensus weights connected to the nodes that do not have
measuring nodes in their neighborhoods. The original
algorithm assigns equal consensus weights in the consen-
sus matrix rows connected to these nodes (3rd, 4th, and
5th row in Fig. 2a), while the proposed general algorithm
gives more weight to the nodes that are closer to the mea-
suring node (3rd, 4th, and 5th row in Fig. 2b), enabling
better information flow through the network which, in
turn, allows faster convergence and better tracking.

Remark 1 The exposed methodology for distributed
adaptive generation of the consensus weights in (10) is
mainly motivated by the idea to exploit the locally avail-
able “β ′′-parameters in order to assign higher importance
to the nodes with higher probabilities of getting target-
originated measurements; it has no other direct connection
with the main state estimation algorithm based on the
PDAF. Therefore, it is easy to conclude that the results of
this section can be readily used in the context of any non-
linear estimation algorithm, provided an estimate of the
probabilities contained in the “β ′′-parameters is available.
In this sense, it is straightforward to construct adaptive

algorithms based, e.g., on the extended Kalman filter (like
in [8]), on the unscented Kalman filter, and particle filters.
It is also possible to apply the proposedmethodology within
the framework of the ML-PDA method applicable in real
time [20–25]. The adaptation strategy should again cope
mainly with the limited FoVs (or sensing ranges).

4 Stability and reduction of noise influence
4.1 Stability
Stability and noise reduction of the proposed distributed
tracking algorithm will be analyzed starting from the
following global network model:

X(t + 1|t) = �(t)X(t|t − 1) + �(t)Z(t), (17)

where X(t + 1|t) = (
ξ1(t + 1|t)T , . . . , ξN (t + 1|t)T)T ,

�(t) =[�ij(t)], i, j = 1, . . . ,N , in which �ij(t) =
cij(t)F

[
I −

(
1 − β

[l]
j,0(t)

)
Lj(t)Hj

]
are m × m blocks,

�(t) =[�ij(t)], in which �ij(t) = cij(t)FLj(t) are m × p
blocks defined by (11), and Z(t) =

(∑m1(t)
k=1 β

[l]
1,k(t)z̃1,k(t),

. . . ,
∑mn(t)

k=1 β
[l]
N ,k(t)z̃N ,k(t)

)T
.

To the best of the authors knowledge, no general
methodology is directly applicable to the stability analysis
of the model (17), not to mention many open questions
related to the local recursions of PDA type [17]. We shall
here make an attempt to apply the methodology pro-
posed in [2, 12] in relation with distributed estimation
schemes with overlapping subsystems and to get an addi-
tional insight into the complex relationship between the
local trackers and the adaptive consensus scheme. Using
the basic results from [12, 33–35], we define the norm of
the block-matrix �(t) =[�ij(t)] as

‖�(t)‖∗
τ = ‖[ ‖�ij(t)‖τ ] ‖∞,

where ‖Y‖τ denotes the norm of a square matrix Y
defined as ‖Y‖τ = ∥∥DτUTYU D−1

τ

∥∥∞, in which U is an
orthogonal matrix in the representation Y = U�UT ,
where � is an upper triangular matrix containing the
eigenvalues of Y at the diagonal (according to the Schur’s
theorem [35]) andDτ = diag{τ , τ 2, τ 3, . . . , τn}. It is essen-
tial to notice that it is possible to find, for any given ε > 0,
such a τε > 0 that, for all τ > τε , ρ(Y ) ≤ ‖Y‖τ ≤ ρ(Y )+ε,
where ρ(Y ) is the spectral radius of a square matrix Y
[12, 35]. Without going into details related to specific
properties of the adopted norm in the case of (17), notice
that the main idea behind the adopted definition is to
take ‖�(t)‖∗

τ as an estimate of ρ(�(t)) based on the local
algorithm properties expressed by ‖�ij(t)‖τ .
Concentrating on�(t), we shall start from the following

sufficient conditions for asymptotic stability of the linear
time-varying system (17) [36, 37]:
1) �(t) is strictly Schur for all t
2) For some constant μ ∈[0, 1)
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a

b

Fig. 2 Time evolution of the nonzero consensus weights. Weights corresponding to the measuring node are shown in red. a The original
adaptation procedure (ACF1). b The refined adaptation procedure (ACF2)
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‖�(�(t) ⊗ �(t))‖ ≤ μ

(nN)
1
2
σmin(�(t) ⊗ �(t) − I)

·σmin(�(t + 1) ⊗ �(t + 1) − I), (18)

where�(�(t)⊗�(t)) = �(t+1)⊗�(t+1)−�(t)⊗
�(t), ⊗ denotes the Kronecker’s product and σmin(·)
the minimal singular value [37].

For τ large enough,
∥∥∥F

[
I −

(
1 − β

[l]
j,0(t)

)
Lj(t)Hj

]∥∥∥
τ

becomes a good estimate of ρ
(
F

[
I −

(
1 − β

[l]
j,0(t)

)

Lj(t)Hj
])

, i.e., there exists such a τ ′ > 0 that for all

τ > τ ′, we have
∥∥∥F

[
I −

(
1 − β

[l]
j,0(t)

)
Lj(t)Hj

]∥∥∥
τ

<

ρ
(
F

[
I −

(
1 − β

[l]
j,0(t)

)
Lj(t)Hj

])
+ ε, for any ε > 0.

Coming back to the system (17), we derive that
limτ→∞ ‖�(t)‖∗

τ =∥∥∥
[
cij(t)ρ

(
F

[
I −

(
1 − β

[l]
j,0(t)

)
Lj(t)Hj

])]∥∥∥∞ . (19)

At this point, an insight into the local recursions (12)
and (11) provides the following general conclusions:
1) When Pi(t|t) diverges (see [17] for general

observations concerning stability properties of
PDAF), ρ

(
F

[
I −

(
1 − β

[l]
j,0(t)

)
Lj(t)Hj

])
diverges

and, consequently, ‖�(t)‖∗
τ defined by (19) diverges,

as well;
2) When Pi(t|t) remains bounded, and condition (18)

holds for some μ ∈[ 0, 1), the corresponding Li(t)
could be not stabilizing in the sense of ensuring the
condition ρ

(
F

[
I −

(
1 − β

[l]
j,0(t)

)
Lj(t)Hj

])
< 1 for

all i, j = 1, . . . ,N . However, in spite of this, the
condition limτ→∞ ‖�(t)‖∗

τ < 1 in (19) may still be
achieved, provided the coefficients cij(t)(∑N

j=1 cij(t) = 1
)
are chosen appropriately. The

overall stabilizing property results from the network;
from this point of view, it is obvious that the
adaptation procedure in the proposed algorithm
should be such that the nodes with higher detection
probability (lower β

[l]
i,0(t)) should be given higher

priority (see the previous subsection for more
details). This is exactly provided by the proposed
adaptation scheme given in Section 3.2;

3) When Pi(t|t) is stabilizing in the sense that
ρ

(
F

[
I −

(
1 − β

[l]
j,0(t)

)
Lj(t)Hj

])
< 1 for all

i, j = 1, . . . ,N [38], limτ→∞ ‖�(t)‖∗
τ < 1 for

admissible choice of the consensus weights.

Having in mind the stochastic time-varying nature of
the basic recursions (12), the above general conclusions
require verification in all particular cases; one should also
bear in mind that, to the authors best knowledge, there is
no rigorous stability analysis of the PDAF in the general

case which would give a possibility to estimate ρ(�ij(t))
[17, 39]. In order to provide additional clarifications to
the above qualitative statements, we shall focus our atten-
tion on an approximation of (12), in which the random
matrices Pi(t|t) and the probabilities β

[l]
i,0(t) are replaced

by their expected values (see, e.g., [17, 39]). Without going
here into details, we shall utilize the results from [17, 18]
and obtain that Pi(t|t) in (12) gives rise to the following
modified deterministic discrete Riccati equation

P̄i(t|t) = P̄i(t|t − 1) − q(i)
2 L̄i(t)S̄i(t)L̄i(t)T , (20)

where q(i)
2 is a constant

(
q(i)
2 ∈ (0, 1]

)
, while L̄i(t) and

S̄i(t) follow analogously from the formulae for Li(t) and
Si(t) in (12), i = 1, . . . ,N . Under the standard detectabil-
ity condition of the pairs (F ,Hi) and positive definiteness
of the noise covariance matrices Ri, the important result
from [18] leads to the conclusion that the recursion (20)
converges (irrespective of the initial condition) to the
unique positive definite solution of the following modified
algebraic Riccati equation, resulting from (12) and (11):

P̄i = FP̄iFT − q(i)
2 FP̄iHT

i (HiP̄iHT
i

+Ri)−1HiP̄iFT + GQGT (21)

for all values of q(i)
2 ∈

(
q̃(i)
2 , 1

]
, where 1 − 1

(ρ(F))2
≤

q̃(i)
2 ≤ 1 − 1

(M(F))2
is the critical value of the character-

istic parameter q(i)
2 , M(F) = ∏n

l=1 max{1, |λl(F)|}. Let
p(i)
1 = 1 −

(
1 − q(i)

2

) 1
2 and p(i)

2 = 1 +
(
1 − q(i)

2

) 1
2 ; then,

every positive definite solution of (21) renders the matrix

F̄i
(
p(i)

)
= F − p(i)FP̄iHT

i

(
HiP̄iHT

i + Ri
)−1

HT
i (22)

to be Schur for all p(i) ∈
[
p(i)
1 , p(i)

2

]
(the stabilizing solution

of (21)) [18] .
Assume next that the described approximations are

adopted instead the original local PDAFs and that the
recursions (20) converge to the unique positive definite
matrices P̄i defined by (21). According to (9), asymp-
totic stability of the resulting approximation of the tracker
model depends exclusively on the eigenvalues of F̄i(p(i)),
where p(i) = 1 − β̄

[l]
i = P(i)

D P(i)
G , P(i)

D representing the
local detection probability and P(i)

G the local probability
that the correct measurement (if the target is detected) lies
within the predefined gate [17]. Accordingly, we imme-

diately conclude that for β̄
[l]
i <

(
1 − q(i)

2

) 1
2 , the adopted

approximation of the tracker model is asymptotically sta-

ble; however, for β̄
[l]
i >

(
1 − q(i)

2

) 1
2 , this model may be

not asymptotically stable, in spite of the fact that (21) has
a positive definite solution [18]. Using (19), we obtain
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limτ→∞ ‖�(t)‖∗
τ =∥∥∥

[
cij(t) limτ→∞

∥∥∥F
[
I −

(
1 − β̄

[l]
j,0

)
L̄jHj

]∥∥∥
τ

]∥∥∥∞
. (23)

As above, the condition limτ→∞ ‖�(t)‖∗
τ < 1 may be

achieved for (17) not only when F̄i(1− β̄i,0) is Schur for all
i but also in the situations when for some nodes, matrix
F̄i(1 − β̄i,0) is not Schur. In this sense, the overall sta-
bility of the estimator depends directly on the choice of
cij(t): the better the coefficients cij(t) follow the essentially
time varying detection probabilities, expressed through
the importance of the nodes, the closer the whole system
is to stability. A more detailed analysis could be con-
nected to specific target and observation models, taking
into account the corresponding structure of the solution
of (21) and its dependence on the underlying parameters
(notice, for example, that ρ(F) = 1 for standard kinematic
target models). Such an analysis would be beneficial for
practice not only from the point of view of stability (which
is expected to hold for a large variety of definitions of
cij(t)) but also from the point of view of tracking accuracy.

4.2 Reduction of noise influence
In order to provide an insight into the influence of mea-
surement noise to the overall estimation error, we can
write simply E(t+1|t) = X(t+1|t)−X(t+1), whereX(t) =(
x(t)T , . . . , x(t)T

)T , and obtain from (17) that the stochas-
tic driving term in the relation for E(t + 1|t), appearing
as a consequence of the measurement noise, is given by
Vc(t) = �(t)v(t), where v(t) = (

v1(t)T , . . . , vN (t)T
)T .

The effect of this driving term to the overall estima-
tion error covariance can be immediately seen from the
expression for Pc(t) = E

{
Vc(t)Vc(t)T

}
. Assuming the

deterministic modified Riccati Eq. (20) and the state tran-
sition matrix (22), as well as uncorrelatedness of the local
measurement noises, we obtain that the covariance of
Vc(t) at node i, conditioned by the consensus weights, is
given by

P(i)
c (t) =

N∑
j=1

cij(t)2
(
p(j)

)2
FLjRjLTj F

T . (24)

For equal noise covariances Rj = R, we obtain
the following inequality

∑N
j=1 cij(t)2

(
p(j))2 FLRLTFT ≤

FLRLTFT , having in mind row stochasticity of C(t). The
last term represents the covariance of the driving term
in the case when only one node has access to measure-
ments (p(i)= 1). Evidently, the applied consensus scheme
decreases the noise influence by averaging over the set of
measuring nodes.

5 Alternative IPDA-based distributed trackers
5.1 Kalman-consensus filter: IPDA-KCF
We shall define information vectors and information
matrices as ui(t) = HT

i R
−1
i

∑mi(t)
j=1 β

[l]
ij (t)zij(t) andUi(t) =

HT
i R

−1
i Hi, respectively, as well as their sums across

neighbors: yi(t) = ∑
j∈Ji uj(t) and Bi(t) = ∑

j∈Ji Uj(t)
[6, 7].
The so-called JPDA Kalman-consensus filter (JPDA-

KCF) has been proposed in [7]. In the context of the
present paper and the IPDAmethodology, it is given in the
following form:

ξi(t|t) = ξi(t|t − 1)+[Pi(t|t − 1)−1 + Bi(t)]−1

·
[
yi(t) −

(
1 − β

[l]
i,0

)
Bi(t)ξi(t|t − 1)

+ Mε(t)
∑
j∈Ni

(ξj(t|t − 1) − ξi(t|t − 1))
]
,

ξi(t + 1|t) = Fξi(t|t),
Mε(t) = ε

Pi(t|t)
1 + ‖Pi(t|t)‖ ,

Pi(t|t) = β
[l]
i,0(t)Pi(t|t − 1)

+
[
1−β

[l]
i,0(t)

][
Pi(t|t−1)−1+Bi(t)

]−1+P̃i(t),

Pi(t + 1|t) = FPi(t|t)FT + GQGT ,
(25)

where ε is a small positive scalar. The algorithm is derived
by decomposing the global Kalman filter for the whole
network and adding the consensus term at the filtering
level [5]. Notice that the algorithm requires communica-
tion of information vectors (size n × 1) and information
matrices (size n×n) between the neighbors, in addition to
the exchange of state estimates (size n × 1).

5.2 Information-weighted consensus filter: IPDA-ICF
The tracking algorithm which takes into account cross-
covariances between the state estimates across different
nodes is the so-called information-weighted consensus
filter (ICF) [4]. A multi-target version of this algorithm
based on the PDA methodology is described in [8]. In
the context of the present paper and the IPDA methodol-
ogy, the single consensus step version of this algorithm is
represented by:

ξi(t|t) = ξi(t|t − 1) +
[
A

(
Pi(t|t − 1)

N

)
+ A(Ui(t))

]−1

·
⎡
⎣A(ui(t)) − A(Ui(t))ξi(t|t − 1)

+ A
(
β
[l]
i,0(t)Ui(t)ξi(t|t − 1)

)

+ε
∑
j∈Ni

P−1
j (t|t − 1)

N
(
ξj(t|t − 1) − ξi(t|t − 1)

)
⎤
⎦ ,

ξi(t + 1|t) = Fξi(t|t),
(26)
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where

Pi(t|t)−1 = A(P−1
i (t|t − 1)) + NA(Gi(t)),

Gi(t) = Pi(t|t − 1)−1Li(t)

·
[
Ci(t)−1 − Li(t)TPi(t|t − 1)−1Li(t)

]−1

· Li(t)TPi(t|t − 1)−1,

Ci(t) =
[
1 − β

[l]
i,0(t)

]
Si(t) − P̃i(t),

Pi(t + 1|t) = FPi(t|t)FT + GQGT ;
(27)

by A(xi(t)), where xi(t) is a local variable at the instant t,
we denote the single step averaging consensus operation

A(xi(t)) = xi(t) + ε
∑
j∈Ni

(xj(t) − xi(t)). (28)

The algorithm requires inter-node communication of
one n × 1 vector and two n × nmatrices.
Notice that ICF was originally designed to be applied

with multiple consensus steps between two consecutive
time instants. This requirement represents a significant
communication burden for the whole tracking scheme;
in this paper, our focus is on the single consensus step
version, compatible with the trackers formulated above.

Remark 2 To summarize, the communication require-
ments of the above considered algorithms are as follows
(per node and per time step): IPDA-ACF: O(n) (more
exactly, n+ 1), IPDA-KCF: O

(
n2

)
(more exactly, n2 + 2n),

and IPDA-ICF: O
(
n2

)
(more exactly, 2n2 + n). Regard-

ing the computational requirements, complexity of all the
methods is, in general, O

(
n3

)
. However, the algorithms

IPDA-KCF and IPDA-ICF require computation of matrix
inversions (size n×n, see (25) and (26), respectively), which
is not the case with the IPDA-ACF algorithm. Therefore, in
addition to favorable communication requirements (which
are of crucial importance for the efficiency of large sensor
networks), the proposed algorithm exhibits also the lowest
computational demands.

6 Simulation results
We shall consider a network of N = 15 cameras (nodes)
aimed at distributed tracking of a target moving within
a 500 × 500 space [4, 8]. The cameras are randomly dis-
tributed in space with random orientations resulting in
overlapping field-of-views (FoVs), represented by equilat-
eral triangles with 300 units height. The communication
range is set to 200 units. The dynamics of a target is
modeled using the constant speed model. The process
covariance Q is set to diag(10, 10, 1, 1) [4]. Target’s initial
position is randomly selected within the given square area,
and its initial speed is set to 2 units per time step, with
random direction. The measurement noise covariances

are set to 100I2. The initial state estimates are randomly
set around actual target’s initial state, with covariance
10Q. The initial error covariance matrices are set to
diag(100, 100, 10, 10) for all the nodes.
First, we shall examine scenarios with no clutter. An

experiment has been performed with 250 Monte Carlo
runs, over which estimation errors (average distance per
node between the target position estimates and the actual
position) and disagreements between the nodes (variance
of the estimates) have been computed. Each run uses dif-
ferent target trajectory and network topology, designed in
the way described above. In the chosen simulation set-
ting, at each time iteration, 2.3 nodes on average receive
measurements from the target, and one node communi-
cates with 5.3 nodes for each network topology. Parameter
ε in ICF has been set to 1/maxi(|Ni| + 1) at each run;
parameter ε in KCF has been set to 0.07. ACF has been
simulated in two described variants, with ACF1 parame-
ters chosen as in the example from Section 3.2, and with α

set to 0.05 for ACF2. Figure 3 shows the resulting estima-
tion errors (top) and disagreements (bottom). It is obvious
that, owing to the introduced refined adaptation proce-
dure, ACF outperforms both KCF and ICF, in spite of
much lower communication requirements.
In the situations with clutter, PDi has been calculated

individually for each node at each time instant by inte-
grating the probability density function of the predicted
estimate over the triangular area visible to the camera; Pgi
has been set to 0.999 for all the nodes and λi(t)Vi(t) =
1/32 [8]. The target perceivability has beenmodeled using
p11i = 0.98, p21i = 0, and πi(0|0) = 0.2 for all the nodes.
IPDA-ACF with the refined adaptation scheme has been
simulated for two choices of l (IPDA-ACFl, with l = 1
corresponding to the classical PDA filter, and l = 2 to
the target-existence-based IPDA filter), together with the
IPDA-ICF algorithm (both choices of l have produced
very similar results so that only the case l = 1 has been
considered). The IPDA-KCF algorithm does not give com-
parable performances. Figure 4 illustrates performance of
IPDA-ACF2, giving snapshots of the position estimates
of all the nodes, together with the target trajectory for
one simulation run. It shows that the proposed algorithm
gives network-wide accurate target state estimates. The
resulting average estimation errors (top) and disagree-
ments (bottom) of different algorithms are shown in Fig. 5.
The optimal centralized Kalman filter (CKF) has also been
simulated. It can be seen that the proposed algorithmwith
the target existence-based IPDA filter again outperforms
ICF. CKF obviously represents a reference scheme with
the best tracking results; however, it assumes that all the
measurements are available to all the nodes. It is far from
being realistic to perform all the necessary communica-
tions before the next updating of the state estimates. How-
ever, we have also investigated achievable performance
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Fig. 3 Performance of the algorithms: no clutter

Fig. 4 Snapshots of the target position estimates of all the nodes (blue x), together with the target trajectory up to the given time instants (black
dashed line) and the current target positions (black x). Cameras’ positions, orientations, and FoVs are also shown (dots, arrows, and triangles,
respectively)—in red for cameras that observe the target, in blue for the others. Communication topology is represented by dotted lines
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Fig. 5 Performance of the algorithms: clutter is present

in the case of the flooding protocols realizable by the
simulated networks (see, e.g., [40]), regardless of the com-
munication cost. Obviously, depending on the adopted
network diameter, different results can be obtained, rep-
resented typically as delayed estimates generated by CKF.
For the networks simulated in the way described above,
the results are much inferior to those obtained by the
proposed algorithm (having in mind the intrinsic need
for tracking moving targets); the average diameter in our
experiments has been found to be 4.4. The results pre-
sented in Fig. 5 give an obvious illustration. The proposed
algorithm has been found to be superior even in the case
of networks with the average diameter equal to one.
To assess the performance of the algorithms in case of

different communication topologies, the original commu-
nication networks have been pruned to their spanning
trees, and random edges progressively added, so that the
resulting networks have the average node degree δ rang-
ing from 2 to 14. Parameter ε in IPDA-ICF has been set
to 1/(δ + 1). We can see in Fig. 6 that in terms of the
tracking error, all the algorithms exhibit similar behavior,
while IPDA-ACF2 outperforms IPDA-ICF in terms of the
disagreement between the nodes. IPDA-ICF slightly out-
performs IPDA-ACF2 in terms of the tracking error in the
case of dense communication graphs.

In order to illustrate the idea underneath the consensus
scheme design in the proposed adaptation algorithm, we
have plotted in Fig. 7, for one simulation run, the actual
target perceivabilities of the nodes (represented by binary
signals equal to 1 when the target is visible and to 0 other-
wise), together with the corresponding values of γi(t) used
in (15). It can be seen that, for each node, γi(t) follows
the binary perceivability signal, resulting in a consensus
scheme which efficiently potentiates the nodes receiving
measurements from the target.
As a part of the rationale behind the choice of l = 2

in the design of the proposed algorithm, we have sim-
ulated a situation when a target is temporarily occulted
in the circle with 50 units radius (Fig. 8). One tar-
get trajectory crossing the circle has been fixed, and
250 experimental runs have included random network
topologies. Figure 9 shows the resulting average estima-
tion errors (top) and disagreements (bottom) for different
algorithms. We can see that choosing l = 2 instead of
l = 1 yields substantially lower disagreement between
the local estimates when the target is occulted since in
these situations, the introduced target perceivability prob-
ability is small, resulting in the state estimates relying on
prediction, rather than on themeasurements generated by
clutter.
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Fig. 6 Performance of the algorithms at t = 40 vs. network connectivity

7 Conclusion
In this paper, a new distributed adaptive consensus-
based tracking algorithm has been proposed for cam-
era networks in the case of limited FoVs, high-level
clutter and occulted targets, using the methodology of

(IPDA) [13]. The algorithm is defined either in the
perceivability-based or the existence-based form, rep-
resenting distributed consensus-based versions of the
classical PDA tracker from [10, 11] and the existence-
based tracker from [15], respectively. Special care is

Fig. 7 Target perceivabilities and consensus scheme parameters corresponding to these perceivabilities
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Fig. 8 One realization of a sensor network together with the target
trajectory (black dashed line). The target is occulted when crossing
the white circle

taken of the design of a distributed adaptation pro-
cedure, based on utilization of the “β ′′-parameters as
a measure of the probabilities of observing the target
by particular nodes. A new distributed adaptation algo-
rithm, based on the generation of node importance, is
proposed for defining appropriate weights in the con-
sensus matrix, providing high tracking precision and

fast convergence of the estimates over the network.
The paper contains a theoretical analysis of stability
and noise rejection capabilities of the proposed algo-
rithm. The applied methodology of analysis is based
on the idea from [12] and on recent results related to
the properties of the modified Riccati equations result-
ing from the PDA recursions [18]. It has been shown
that the algorithm provides convergence even in the case
when some nodes may be unstable, owing to a proper
choice of the consensus weights. The proposed algo-
rithm has been verified by extensive simulations. It has
been shown that it outperforms similar algorithms known
from the literature—IPDA-KCF from [7] and IPDA-ICF
from [8]—in spite of lower communication requirements;
derivation of one-step consensus-based versions of these
algorithms, consistent with the form of the proposed
algorithm, is given in a separate section. The results
related to occulted objects and high-level clutter are of
special interest. The proposed algorithm can be readily
applied to all distributed target tracking problems (radars,
sonars) under analogous assumptions. We do hope that
it can become a simple and efficient tool for engineering
practice.
Further efforts could be oriented in the direction of

the development of complementary distributed track ini-
tiation, confirmation, and termination algorithms using
IPDA methodology [13, 15]. Generalization of the algo-
rithm to the multi-target case in the sense of applying the
basic methodology of JPDAF [10, 41] in the distributed
multi-agent context represents a complex but straightfor-
ward task.

Fig. 9 Performance of the algorithms: occulted target
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