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Abstract

The null space condition for �1 minimization in compressed sensing is a necessary and sufficient condition on the
sensing matrices under which a sparse signal can be uniquely recovered from the observation data via �1
minimization. However, verifying the null space condition is known to be computationally challenging. Most of the
existing methods can provide only upper and lower bounds on the proportion parameter that characterizes the null
space condition. In this paper, we propose new polynomial-time algorithms to establish upper bounds of the
proportion parameter. We leverage on these techniques to find upper bounds and further develop a new
procedure—tree search algorithm—that is able to precisely and quickly verify the null space condition. Numerical
experiments show that the execution speed and accuracy of the results obtained from our methods far exceed those
of the previous methods which rely on linear programming (LP) relaxation and semidefinite programming (SDP).
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1 Introduction
Compressed sensing is an efficient signal processing tech-
nique to recover a sparse signal from fewer samples than
required by the Nyquist-Shannon theorem, reducing time
and energy spent in sampling operation. These advan-
tagesmake compressed sensing attractive in various signal
processing areas [1].
In compressed sensing, we are interested in recovering

the sparsest vector x ∈ R
n that satisfies the underdeter-

mined equation y = Ax. Here,R is the set of real numbers,
A ∈ R

m×n, m < n is a sensing matrix, and y ∈ R
m is the

observation or measurement data. This is posed as an �0
minimization problem:

minimize ‖x‖0
subject to y = Ax, (1)

where ‖x‖0 is the number of non-zero elements in vector
x. The �0 minimization is an NP-hard problem. Therefore,
we often relax (1) to its closest convex approximation—the
�1 minimization problem:

minimize ‖x‖1
subject to y = Ax. (2)
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It has been shown that the optimal solution of �0 min-
imization can be obtained by solving �1 minimization
under certain conditions (e.g., restricted isometry prop-
erty or RIP) [2–6]. For random sensing matrices, these
conditions hold with high probability. We note that RIP is
a sufficient condition for sparse recovery [7].
A necessary and sufficient condition under which a k-

sparse signal x, (k � n) can be uniquely obtained via �1
minimization is null space condition (NSC) [3, 8, 9]. A
matrix A satisfies NSC for a positive integer k if

||zK ||1 < ||zK ||1 (3)

holds true for all z ∈ {z : Az = 0, z �= 0} and for all
subsets K ⊆ {1, 2, . . . , n} with |K | ≤ k. Here, K is an index
set, |K | is the cardinality of K, zK is the part of the vector z
over the index set K, and K is the complement of K. NSC
is related to the proportion parameter αk defined as

αk � maximize
{z: Az=0, z �=0}

maximize
{K : |K |≤k}

‖zK‖1
‖z‖1 . (4)

The αk is the optimal value of the following optimization
problem:

maximize
z,{K : |K |≤k}

‖zK‖1
subject to ‖z‖1 ≤ 1, Az = 0, (5)
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where K is a subset of {1, 2, . . . , n} with cardinality at most
k. The matrix A satisfies NSC for a positive integer k if and
only if αk < 1

2 . Equivalently, NSC can be verified by com-
puting or estimating αk . The role of αk is also important
in the recovery of an approximately sparse signal x via �1
minimization where a smaller αk implies more robustness
[8–10].
We are interested in computing αk and, especially, find-

ing the maximum k for which αk < 1
2 . However, com-

puting αk to verify NSC is extremely expensive and was
reported in [7] to be NP-hard. Due to the challenges
in computing αk , verifying NSC explicitly for determin-
istic sensing matrices remains a relatively unexamined
research area. In [3, 8, 11, 12], convex relaxations were
used to establish upper or lower bounds of αk (or other
parameters related to αk) instead of computing the exact
αk . While [3, 11] proposed semidefinite programming-
based methods, [8, 12] suggested linear programming
relaxations to obtain the upper and lower bounds of αk .
For both methods, computable performance guarantees
on sparse signal recovery were reported via bounding αk .
However, these bounds of αk could only verify NSC with
k = O(

√
n), even though theoretically, k can grow linearly

with n.
Our work drastically departs from these prior meth-

ods [3, 8, 11, 12] that provide only the upper and lower
bounds. In our solution, we propose the pick-l-element
algorithms (1 ≤ l < k), which compute upper bounds
of αk in polynomial time. Subsequently, we leverage
on these algorithms to develop the tree search algo-
rithm (TSA)—a new method to compute an exact αk
by significantly reducing computational complexity of an
exhaustive search method. This algorithm offers a way to
control a smooth trade-off between complexity and accu-
racy of the computations. In the conference precursor
to this paper, we had introduced sandwiching algorithm
(SWA) [13], which employs a branch-and-bound method.
Although SWA can also be used to calculate the exact αk ,
it has a disadvantage of greater memory usage than TSA.
On the other hand, TSA provides memory and perfor-
mance benefits for high-dimensional matrices (e.g., up to
size ∼6000 × 6000).
It is noteworthy that our methods are different from

RIP or the neighborly polytope framework for analyzing
the sparse recovery capability of random sensing matri-
ces. For example, prior works such as [6, 22] employ the
neighborly polytope to predict theoretical lower bounds
on recoverable sparsity k for a randomly chosen Gaus-
sian matrix. However, our methods do not resort to a
probabilistic analysis and are applicable for any given
deterministic sensing matrix. Also, our algorithms have
the strength of providing better bounds than existing
methods [3, 8, 11, 12] for a wide range of matrix
sizes.

1.1 Main contributions
We summarize our main contributions as follows:

(i) Faster algorithms for high dimensions. We designed
the pick-l algorithm (and its optimized version),
where l is a chosen integer, to provide upper bounds
on αk . We are able to show that when l increases, the
optimized pick-l algorithm provides tighter upper
bound on αk . Numerical experiments show that,
even with l = 2 or 3, the pick-l algorithm already
provides better bound on αk than the previous
algorithms based on the LP [8] and SDP [3]. For large
sensing matrices, the pick-1-element algorithm can
be significantly faster than the LP and SDP methods.

(ii) Novel formulations using branch-and-bound. Based
on the pick-l algorithm, we propose a branch-and-
bound tree search approach to compute tighter
bounds or even the exact value of αk . To the best of
our knowledge, this tree search algorithm is the first
branch-and-bound algorithm to verify NSC for �1
minimization. This branch-and-bound approach
heavily depends on the pick-l algorithm developed in
this paper. For example, the LP [8] and SDP [3]
methods cannot be directly adapted to provide an
efficient branch and bound approach, due to their
lack of subset-specific upper bounds on αk . In
numerical experiments, we demonstrated that the
tree search algorithm reduced the execution time to
precisely calculate αk by around 40–8000 times,
compared to the exhaustive search method.

(iii) Simultaneous upper and lower bounds. The branch-
and-bound tree search algorithm simultaneously
maintains upper and lower bounds of αk during the
run-time. This approach has two benefits. Firstly, if
one is interested in merely certifying the NSC for a
positive k rather than obtaining the exact αk , then
one can terminate the TSA early to shorten the
running time. This can be done as soon as the global
upper (lower) bound drops below (exceeds) 1/2 and,
therefore, concluding that the NSC for the positive k
is satisfied (not satisfied). Secondly, consider the case
when TSA is terminated early due to, say, constraints
on running time. Then, the process still yields
meaningful bounds on αk via the record of
continuously maintained upper and lower bounds.

(iv) New results on recoverable sparsity. For a certain
l < k, we can compute αl or its upper bound by using
the branch-and-bound tree search algorithm (for
example, based on the pick-1-element algorithm).
We introduce a novel result (Lemma 3), which can
use αl to lower bound the recoverable sparsity k. This
approach of lower bounding the recoverable sparsity
k is useful when l is too large to perform the pick-l
algorithm directly (which requires

(n
l
)
enumerations).
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1.2 Notations and preliminaries
We denote the sets of real numbers and positive integers
as R and Z

+ respectively. We reserve uppercase letters K
and L for index sets and lowercase letters k, l ∈ Z

+ for
their respective cardinalities. We also use | · | to denote
the cardinality of a set. We assume k > l ≥ 1 through-
out the paper. For vectors or scalars, we use lowercase
letters, e.g., x, k, l. For a vector x ∈ R

n, we use xi for its
i-th element. If we use an index set as a subscript of a
vector, it represents the partial vector over the index set.
For example, when x ∈ R

n and K = {1, 2}, xK represents
[ x1, x2]T . We reserve uppercase A for a sensing matrix
whose dimension is m × n. Since the number of columns
of a sensing matrix A is n, the full index set we consider
is {1, 2, . . . , n}. In addition, we represent

(n
l
)
numbers of

subsets as Li, i = 1, . . . ,
(n
l
)
, where Li ⊂ {1, 2, . . . , n},

|Li| = l. We use the superscript * to represent an optimal
solution of an optimization problem. For instance, z∗ and
K∗ are the optimal solution of (5). Since we need to rep-
resent an optimal solution for each index set Li, we use
the superscript i∗ to represent an optimal solution for an
index set Li, e.g., zi∗. The maximum value of k such that
both αk < 1

2 and αk+1 ≥ 1
2 hold true is denoted by the

maximum recoverable sparsity kmax.

2 Pick-l-element algorithm
Consider a sensing matrix with n columns. Then, there
are

(n
k
)
subsets K each of cardinality k. When n and k

are large, exhaustive search over these subsets to compute
αk is extremely expensive. For example, when n = 100
and k = 10, it takes a search over 1.7310e+13 subsets
to compute αk— a combinatorial task that is beyond the
technological reach of common desktop computers. Our
goal is to devise algorithms that can rapidly yield an exact
value of αk . As an initial step, we develop a method to
compute an upper bound of αk in polynomial time, which
is called the pick-l-element algorithm (or simply, pick-l
algorithm), where l is a chosen integer such that 1 ≤ l < k.
Let us define the proportion parameter for a given index

set L such that |L| = l, denoted by αl,L, as

αl,L � maximize
{z: Az=0, z �=0}

‖zL‖1
‖z‖1 . (6)

(6) is the partial optimization problem of (4) only consid-
ering the vector z in the null space ofA for a fixed index set
L.We can obtain αl,L by solving the following optimization
problem:

maximize
z

‖zL‖1
subject to ‖z‖1 ≤ 1, Az = 0. (7)

Since (7) is maximizing a convex function for a given
subset L, we cast (7) as 2l linear programming problems by
considering all the possible sign patterns of every element

of zL (e.g., if l = 2 and L = {1, 2}, then, ||zL||1 = |z1| + |z2|
can correspond to 2l = 4 possibilities: z1 + z2, z1 − z2,
−z1 + z2, and −z1 − z2). αl,L is equal to the maximum
among the 2l objective values.
The pick-l algorithm uses αl,L’s obtained from different

index sets to compute an upper bound of αk . Algorithm 1
shows the steps of the pick-l algorithm in detail. The fol-
lowing Lemmata show that the pick-l algorithm provides
an upper bound of αk . Firstly, we provide Lemma 1 to
derive the upper bound of the proportion parameter for
a fixed index set K, and then, we show that the pick-l
algorithm yields an upper bound of αk in Lemma 2.

Algorithm 1: Pick-l-element algorithm, 1 ≤ l < k for
computing an upper bound of αk
1: Given a matrix A, calculate αl,L’s for all the subsets L,

|L| = l, via (7).
2: Sort these

(n
l
)
different values of αl,L’s in descending

order like (10).
3: Compute an upper bound of αk via (9).
4: If the upper bound of αk is larger than 1, then, set the

upper bound to 1. If the upper bound is less than 1
2 ,

then NSC for k ∈ Z
+ is satisfied.

Lemma 1 (Cheap Upper Bound (CUB) for a given sub-
set K ) Given a subset K, we have

CUB(αk,K ) � 1
(k−1
l−1

)
∑

{Li⊆K , |Li|=l}
αl,Li ≥ αk,K . (8)

Proof Suppose that when z = zi∗ and z = z∗, we achieve
the optimal value of (6) for given index sets Li and K

respectively, i.e., αl,Li = ‖zi∗Li‖1
‖zi∗‖1 and αk,K = ‖z∗K‖1

‖z∗‖1 . Since
each element of K appears

(k−1
l−1

)
times in {Li ⊆ K , |Li| =

l}, we obtain the following inequality:

αk,K = ‖z∗K‖1
‖z∗‖1 = 1

(k−1
l−1

)
∑

{Li⊆K , |Li|=l}

‖z∗Li‖1
‖z∗‖1

≤ 1
(k−1
l−1

)
∑

{Li⊆K , |Li|=l}

‖zi∗Li‖1
‖zi∗‖1 = CUB(αk,K ).

The inequality is from the optimal value of (6) for each
index set Li.

Lemma 2 The pick-l algorithm provides an upper bound
of αk, namely

αk ≤ 1
(k−1
l−1

)
(kl)∑

i=1
αl,Li , (9)
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where αl,L1 ≥ αl,L2 ≥ · · · ≥ αl,Li ≥ · · · ≥ αl,L(nl)
. (10)

Proof Without loss of generality, we assume that when
z = zi∗, i = 1, 2, . . . ,

(n
l
)
, αl,Li ’s are obtained in descending

order like (10). It is noteworthy that αk,K is defined for a
fixed K set; however, αk is the maximum value over all the
subsets with cardinality k. Suppose that when z = z∗ and
K = K∗, αk is achieved in (4). From the aforementioned
definitions and similar argument as in Lemma 1, we have:

αk = αk,K∗ ≤ 1
(k−1
l−1

)
∑

{Li⊆K∗, |Li|=l}
αl,Li ≤ 1

(k−1
l−1

)
(kl)∑

i=1
αl,Li .

The first inequality is from Lemma 1, and the last
inequality is from the assumption that αl,Li ’s are sorted in
descending order.

The steps 2 and 3 in Algorithm 1, which are sorting αl,L’s
and computing an upper bound of αk with sorted αl,L’s via
(9), can also be done by solving the following optimization
problem without sorting operation:

maximize
γi, 1≤i≤(nl)

(nl)∑

i=1
γi αl,Li

subject to 0 ≤ γi ≤ 1
(k−1
l−1

) , 1 ≤ i ≤(nl),

(nl)∑

i=1
γi ≤ k

l
. (11)

Here, we note that 1
(k−1
l−1)

× (k
l
) = k

l . Therefore, for the

optimal value, the first
(k
l
)
largest αl,Li ’s are chosen with

the coefficient 1
(k−1
l−1)

.

The upshot of the pick-l algorithm is that we can reduce
number of operations from

(n
k
)
enumerations to

(n
l
)
. For

example, when n = 300, k = 20, and l = 2, the number
of operations is reduced by around 1026 times. More-
over, as n increases, the reduction rate increases. With the
reduced enumerations, we can still have non-trivial upper
bounds of αk through the pick-l-element algorithm. We
will present the performance of the pick-l algorithm in
Section 5 showing that the pick-l algorithm provides bet-
ter upper bounds than the previous research [3, 8] even
when l = 2. Furthermore, thanks to the pick-l algorithm,
we can design a new algorithm based on a branch-and-
bound search to calculate αk by using upper bounds of
αk obtained from the pick-l algorithm. It is notewor-
thy that the cheap upper bound introduced in Lemma 1
can provide upper bounds on αk,K for specific subsets K,
which enable our branch-and-bound method to calculate

αk or more precise bounds on αk . However, LP relaxation
method [8] and SDP method [3] do not provide upper
bounds on αk,K for specific subsets K, which overwhelms
LP and SDP methods to be used in the branch-and-bound
method.
Since we are also interested in kmax, we introduce the

following Lemma 3 to bound the maximum recoverable
sparsity kmax.

Lemma 3 The maximum recoverable sparsity kmax sat-
isfies

k(αl) �
⌈
l · 1/2

αl

⌉
− 1 ≤ kmax, (12)

where 
.� is the ceiling function.

Proof To prove this lemma, we will show that when k =⌈
l · 1/2

αl

⌉
− 1, αk < 1

2 . This can be concluded from the
upper bound of αk given as follows:

αk = αk,K∗ ≤ 1
(k−1
l−1

)
∑

{Li⊆K∗, |Li|=l}
αl,Li

≤
(k
l
)

(k−1
l−1

)αl = αl · kl . (13)

Note that there are
(k
l
)
terms in the summation. From

(13), if αl · k
l < 1

2 , then αk < 1
2 . In other words, if

k < l · 1/2
αl

, then αk < 1
2 . Since k is a positive integer, when

k = ⌈
l · 1/2

αl

⌉−1, αk < 1
2 . Therefore, the maximum recov-

erable sparsity kmax should be larger than or at least equal
to

⌈
l · 1/2

αl

⌉ − 1.

It is noteworthy that in ([8] Section 4.2.B), the authors
introduced lower bound on k based on α1, i.e., k(α1).
However, in Lemma 3, we provide a more general result.
Furthermore, in Lemma 3, instead of using αl, we can use
an upper bound of αl to obtain the recoverable sparsity
k; namely, k(UB(αl)) =

⌈
l · 1/2

UB(αl)

⌉
− 1 ≤ kmax, where

UB(αl) represents an upper bound of αl. Since the proof
follows the same track as the proof of Lemma 3, we omit
the proof.
Finally, we introduce the following proposition to com-

pare our algorithm to LP method [8] theoretically.

Proposition 1 For any integer k ≥ 1, let α
pick1
k be the

upper bound on αk provided by the pick-1-element algo-
rithm according to Lemma 2. Let αLP

k be the upper bound
on αk provided by the LP method [8] according to the
following definition (namely Eq. (4.25) in [8] with β = ∞):

αLP
k = minimize

Y=[y1,...,yn]∈Rm×n

{
maximize

1≤j≤n
||(I − YTA)ej||k,1

}
,
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where ej is the standard basis vector with the j-th element
equal to 1, and ‖ · ‖k,1 stands for the sum of k maximal
magnitudes of components of a vector. Then we have:

α
pick1
k ≥ αLP

k . (14)

For readability, we place the proof of Theorem 1 in
Appendix A.
The LP method can provide tighter upper bounds on αk

than the pick-1-element algorithm; however, this comes
at a cost of solving a big optimization problem of design
dimensionmn. Whenm and n are large, the complexity of
computing αLP

k can be prohibitive (please see Table 2).

3 Optimized pick-l algorithm
We can tighten the upper bound of αk in the pick-l algo-
rithm by replacing the constant factor 1(

k−1
l−1

) in (9) with

optimized coefficients at the cost of additional complexity,
which we call as the optimized pick-l algorithm. This opti-
mized pick-l algorithm is mostly useful from a theoretical
perspective. In practice, it gives improved but similar per-
formance in calculating the upper bound of αk to the basic
pick-l algorithm described in Section 2. As a theoretical
merit of the optimized pick-l algorithm, we can show that
as l increases, the upper bound of αk becomes smaller or
stays the same.
The optimized pick-l algorithm provides an upper

bound of αk via the following optimization problem:

maximize
γi, 1≤i≤(nl)

(nl)∑

i=1
γi αl,Li

subject to γi ≥ 0, 1 ≤ i ≤(nl),

(nl)∑

i=1
γi ≤ k

l
, (15)

∑

{i: B⊆Li, 1≤i≤(nl)}
γi ≤

(k−b
l−b

)

(k−1
l−1

) ,
∀ b ∈ Z

+ s.t. 1 ≤ b ≤ l,
∀ B with |B| = b

In the following lemmata, we show that the optimized
pick-l algorithm produces an upper bound of αk and this
bound is tighter than that of the basic pick-l algorithm
introduced in (11). The last lemma establishes that as l
increases, the upper bound of αk decreases or stays the
same.

Lemma 4 The optimized pick-l algorithm provides an
upper bound of αk.

Proof The strategy to prove Lemma 4 is to show that
one feasible solution of (15) gives an upper bound of αk .

Suppose when K = K∗, αk is achieved, i.e., αk = αk,K∗ .
For a feasible solution, let us choose γi = 1

(k−1
l−1)

when

Li ⊆ K∗, and γi = 0 otherwise, which we can easily check
whether it satisfies the first and second constraints of (15).
For the third constraint, let us check the case when b = l
first. For b = l, we can choose an arbitrary index set B
such that |B| = b = l. For the chosen B, there is only
one Li such that B ⊆ Li, which is itself, i.e., B = Li. For
other chosen B’s, it is the same. Hence, the third constraint
represents

γi ≤ 1
(k−1
l−1

) , i = 1, 2, . . . ,
(
n
l

)
. (16)

For b = 1, the third constraint represents
∑

{i: B⊆Li, 1≤i≤(nl), |B|=1}
γi ≤ 1. (17)

Note that there are
(n−1
l−1

)
numbers of Li’s which have an

index set B as a subset. Among
(n−1
l−1

)
numbers of γi’s, only

γi’s whose corresponding Li’s are the subsets of K∗ are
1(

k−1
l−1

) . Since each element in Li such that Li ⊆ K∗ appears

(k−1
l−1

)
times in

{
i : Li ⊆ K∗, 1 ≤ i ≤ (n

l
)}
, the summation

of γi, where the corresponding Li’s are the subset of K∗,
becomes 1(

k−1
l−1

) ×(k−1
l−1

) = 1, which satisfies (17). Basically,

the third constraint makes that for an index, the summa-
tion of coefficients related to the index is limited to 1. In
the same way, for 1 < b < l, the chosen γi is a feasi-
ble solution of (15). From this feasible solution, we have

1(
k−1
l−1

)
∑

{i: Li⊆K∗, |Li|=l} αl,Li for the optimal value, which is

an upper bound of αk as shown in (13).

Lemma 5 The optimized pick-l algorithm provides a
tighter, or at least the same, upper bound of αk than the
basic pick-l algorithm introduced in (11).

Proof We will show that the optimization problem (11)
is a relaxation of (15). As in the proof of Lemma 4, for
b = l, the third constraint of (15) represents (16), which is
involved in the first constraint of (11). Since the third con-
straint of (15) considers other b values such that 1 ≤ b < l,
(15) has more constraints than (11). Therefore, the opti-
mized pick-l algorithm, which is (15), provides a tighter
or at least the same upper bound than the basic pick-l
algorithm.

Lemma 6 The optimized pick-l algorithm provides a
tighter or at least the same upper bound than the optimized
pick-p algorithm when l > p.
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Proof We can upper bound the objective function of
(15) by using (8) as follows:

maximize
γi, 1≤i≤(nl)

1
( l−1
p−1

)
(nl)∑

i=1
γi

∑

{j: Pj⊂Li, |Pj|=p}
αp,Pj

subject to γi ≥ 0, 1 ≤ i ≤(nl),

(nl)∑

i=1
γi ≤ k

l
, (18)

∑

{i: B⊆Li, 1≤i≤(nl)}
γi ≤

(k−b
l−b

)

(k−1
l−1

) ,
∀ b ∈ Z

+ s.t. 1 ≤ b ≤ l
∀ B with |B| = b .

Note that in the objective function of (18), each
αp,Pj , 1 ≤ j ≤ (n

p
)
, appears

(n−p
l−p

)
times. Let us define

γ
′
j �

1
( l−1
p−1

)
∑

{i: Pj⊂Li, 1≤i≤(nl)}
γi.

We can relax (18) to the following problem, which turns
out to be the same as the optimized pick-p algorithm:

maximize
γ

′
j , 1≤j≤(np)

(np)∑

j=1
γ

′
j αp,Pj

subject to γ
′
j ≥ 0, 1 ≤ j ≤(np),

(np)∑

j=1
γ

′
j ≤ k

p
, (19)

∑

{j: B⊆Pj , 1≤j≤(np)}
γ

′
j ≤

(k−b
p−b

)

(k−1
p−1

) ,
∀ b ∈ Z

+ s.t. 1 ≤ b ≤ p
∀ B with |B| = b .

The relaxation is shown by checking the constraints.
The first constraint of (19) is trivial to obtain. For the sec-
ond constraint, we can obtain the second constraint of
(19) from the following relations:

(np)∑

j=1
γ

′
j =

(np)∑

j=1

1
( l−1
p−1

)
∑

{i: Pj⊂Li, 1≤i≤(nl)}
γi

= 1
( l−1
p−1

)

(
l
p

) (nl)∑

i=1
γi

≤ 1
( l−1
p−1

)

(
l
p

)
k
l

= k
p
,

where the second equality is obtained from the fact that
γi, which is a coefficient of αl,Li , appears

( l
p
)
times in

∑(np)
j=1

∑
{i: Pj⊂Li} γi. The final inequality is from the sec-

ond constraint of (18). The third constraint in (19) can be
deduced from the following inequality:

∑

{j: B⊆Pj , 1≤j≤(np)}
γ

′
j=

1
( l−1
p−1

)
∑

{j: B⊆Pj , 1≤j≤(np)}

∑

{i: Pj⊂Li, 1≤i≤(nl)}
γi

= 1
( l−1
p−1

)

(n−b
p−b

)(n−p
l−p

)

(n−b
l−b

)
∑

{i: B⊂Li, 1≤i≤(nl)}
γi

≤ 1
( l−1
p−1

)

(n−b
p−b

)(n−p
l−p

)

(n−b
l−b

)

(k−b
l−b

)

(k−1
l−1

) , 1 ≤ b ≤ p

=
(k−b
p−b

)

(k−1
p−1

) , 1 ≤ b ≤ p,

where the second equality is from the fact that for a fixed
Pj, there are

(n−p
l−p

)
numbers of Li’s, where Pj ⊂ Li, i =

1, . . . ,
(n
l
)
; for a fixed B, there are

(n−b
p−b

)
numbers of Pj’s,

where B ⊂ Pj, j = 1, . . . ,
(n
p
)
, and

(n−b
l−b

)
numbers of Li’s,

where B ⊂ Li, i = 1, . . . ,
(n
l
)
. Since (19) is obtained from

the relaxation of (18), the optimal value of (19) is larger or
equal to the optimal value of (18). (19) is just the optimized
pick-p algorithm. Thus, when l > p, the optimized pick-
l algorithm provides a tighter or at least the same upper
bound than the optimized pick-p algorithm.

By using larger l in the pick-l algorithm, we can obtain
a tighter upper bound of αk . However, for a certain l,
we need to enumerate

(n
l
)
possibilities, and this becomes

infeasible when l is large. Moreover, when l < k, the pick-
l algorithm only gives an upper bound of αk , instead of
an exact value of αk . There is, however, a need to find
tighter bounds on αk , or to even find the exact value of
αk , when k is too large for

(n
k
)
enumerations of exhaustive

search [14–16]. To this end, we propose a new branch-
and-bound tree search algorithm to find tighter bounds
on αk than Lemma 2 provides, or to even find the exact αk .
Our branch-and-bound tree search algorithm is enabled
by the pick-l algorithms introduced in Sections 2 and 3.

4 Tree search algorithm
To find the index set K∗ which leads to the maximum
αk,K (among all possible index set K ’s), the tree search
algorithm (TSA) performs a best-first branch-and-bound
search [23] over a tree structure representing different
subsets of {1, 2, . . . , n}. In its essence, for each subset J
with cardinality no bigger than k, TSA calculates an upper
bound of αk,K , which is valid for any set K (with cardi-
nality k) such that J ⊆ K . If this upper bound is smaller
than a lower bound of αk , TSA will not further explore any
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of J ’s supersets, leading to reduced average-case computa-
tional complexity. For simplicity, we will describe the TSA
based on pick-1-element algorithm, simply called 1-Step
TSA. However, we remark we can also extend the TSA to
be based on pick-l-element (l ≥ 2) algorithm, by calcu-
lating upper bounds of αk,K based on the results of the
pick-l-element algorithm.

4.1 Tree structure
A tree node J represents an index subset of {1, . . . , n} such
that |J| ≤ k. We have the following rule:

[R1] A parent node is a subset of each of its child node(s).

A node that has no child is referred to as a leaf node.
We call the cardinality of the index set corresponding to
J as J ’s height. The tree structure follows the “legitimate
order,” which ensures that any new index in the child node
is bigger than the indices of its parent node.

[R2] “Legitimate order” - Let P and C denote the parent
node and the child node. Then, any index in P must
be smaller than any index in C \ P.

Figure 1 illustrates this rule in a tree with k = 2 and
n = 3.

4.2 Basic idea of a branch-and-bound approach for
calculating αk

We use a branch-and-bound approach over the tree struc-
ture to calculate αk . This methodmaintains a lower bound
on αk (how to maintain this lower bound will be explained
in Section 4.3). When the algorithm explores a tree node
J, the algorithm calculates an upper bound B(J), which is
no smaller than αk,K for any child node K (with cardinal-
ity k) of node J. If B(J) is smaller than the lower bound on
αk , then the algorithm will not explore the child nodes of
the tree node J.
In our algorithm, we calculate B(J) as

B(J) = αj,J +
t∑

i=1
α1,{i+max(J)}, (20)

Fig. 1 A tree structure following the legitimate order for k = 2 and
n = 3

where j + t = k, max(J) represents the largest index in J,
and α1,{1} ≥ α1,{2} ≥ . . . ≥ α1,{n}. We obtain this descend-
ing order by permuting the columns of the sensing matrix
A in descending order of α1,{i}’s as the pre-computation
step of TSA. For example, in Fig. 1, for k = 2, B({1}) =
α1,{1}+α1,{2}. In order to justify that B(J) is an upper bound
of αk,K for all node K such that J ⊆ K , we provide the
following lemma.

Lemma 7 Given α1,{1} ≥ α1,{2} ≥ . . . ≥ α1,{n}, B(J) =
αj,J + ∑t

i=1 α1,{i+max(J)}, where j + t = k, and max(J) rep-
resents the largest index in J, is an upper bound of αk,K for
all nodes K such that J ⊆ K.

Proof For any subset K such that J ⊆ K , we can write
αk,K = αj+t,{J∪T}, where j + t = k and T = K \ J . Then,
following exactly the same line of argument as in the proof
of Lemma 1, we have

αk,K ≤ αj,J + αt,T ,

and αt,T is no larger than
∑t

j∈T α1,{j}. Finally, since
α1,{i}’s are sorted in the descending order,

∑
j∈T α1,{j} ≤

∑t
i=1 α1,{i+max(J)}. Note that, due to the legitimate order

[R2], the smallest element of the index setT is no less than
1+max(J). In conclusion, for all nodes K such that J ⊆ K ,
B(J) becomes an upper bound of αk,K .

4.3 Best-first tree search strategy
TSA adopts a best-first tree search strategy for the branch-
and-bound approach. We first describe a basic version
of the best-first tree search strategy and then intro-
duce two enhancements to this strategy in the next
subsection.
In its basic version, TSA starts with a tree having only

the root node and sets the global lower bound of αk as 0.
In each iteration, TSA selects a leaf tree node J with the
largestB(J) and expands the tree by adding the child nodes
of J to the tree. For each of these newly added child nodes,
say Q, TSA then calculates the upper bound B(Q) in (20).
Note that if a newly added child node Q has k elements,
TSA will calculate αk,Q, which is a lower bound on αk . For
this k-element Q, if the newly calculated αk,Q is bigger
than the global lower bound of αk , TSA will set the global
lower bound equal to αk,Q. TSA will terminate if a leaf tree
node J has the largest B(J) among all the leaf nodes, and
that B(J) is no bigger than the global lower bound on αk .
From standard theories of the branch-and-bound

approach, this TSA will output the exact αk . Also, in this
process, the global lower bound will keep increasing until
it is equal to an upper bound of αk (the largest B(J) among
leaf nodes).
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4.4 Two enhancements
We incorporate two novel features to TSA in order to
reduce the computational complexity. Firstly, when TSA
attaches a new node Q to a node J in the tree structure,
TSA computes B(Q) as (21):

B(Q) = αj,J + α1,Q\J +
t∑

i=1
α1,{i+max(Q)}, (21)

where j+t+1 = k, max(Q) represents the largest index in
Q, and α1,{1} ≥ α1,{2} ≥ . . . ≥ α1,{n}. Thus, without calcu-
lating αj+1,Q (which involves higher computational com-
plexity), we can still have B(Q) as an upper bound of αk,K
for any child node K (with cardinality k) of the node Q.
Secondly, when TSA adds a new node Q as the child of

node J in the tree structure (assuming αj,J has already been
calculated), TSA does not need to add all of J ’s child nodes
to the tree at the same time. Instead, TSA only adds the
node J ’s unattached child node Q with the largest B(Q) as
defined in (21). Namely, the index Q \ J is no bigger than
the index Q′ \ J , where Q′ is any unattached child of the
node J. We note that B(Q) is an upper bound on B(Q′)
(according to (21)) for any other unattached child nodeQ′
of the node J. Thus, for any child node K (of cardinality k)
of node J ’s unattached child nodes, B(Q) is still an upper
bound of αk,K .
Algorithm 2 shows detailed steps of TSA, based on the

pick-1-element algorithm (namely, l = 1, 1-Step TSA). In
the description, we define “expanding the tree from a node
J” as follows:

Algorithm 2: Tree search algorithm based on the
pick-1-element algorithm (1-Step TSA)

Input: A ∈ R
m×n, k, l ← 1 � 1-Step TSA, i.e., l = 1

Output: αk

� Pre-computation:
1 compute αl,{i} for i = 1, . . . , n via (7)
2 permute columns of A in descending order of α1,{i} ’s, so that

α1,{1} ≥ . . . ≥ α1,{n}
� Tree expansion:

3 start with root node∅, where B(∅) = ∑k
i=1 α1,{i}, in a tree

structure ϒ
4 Loop
5 J ← a node that has the largest B(·) among all the leaf nodes in

ϒ
6 j ← |J|
7 if αj,J is not calculated then
8 compute αj,J via (7) and update B(J) via (20)
9 expand ϒ from the parent of J � See [R3]

10 else
11 if j = k then
12 αk ← B(J)
13 break
14 else
15 expand ϒ from J � See [R3]
16 end
17 end
18 EndLoop

[R3] “Expanding the tree from a node J”—attaching a
new node Q to the node J, where B(Q) is the largest
value defined as (21) among the node J ’s all the
unattached child nodes.

4.5 Advantage of the tree search algorithm
Due to the nature of the branch-and-bound approach,
we can obtain a global upper bound and a global lower
bound of αk while TSA runs. As the number of itera-
tions increases in TSA, we can obtain tighter and tighter
upper bounds on αk , which is the largest B(·) among the
leaf nodes. By using the global upper bound of αk , we
can obtain a lower bound of the recoverable sparsity k via
Lemma 3. Thus, even if the complexity of TSA is too high
to finish in a timely manner, we can still obtain a lower
bound on the recoverable sparsity k by early terminating
TSA.
We note that the methods based on LP [8] and SDP

[3] also provide upper bounds on αk . However, they are
unable to determine upper bounds of αk,K , which is for a
specific index set K. This prevents the use of LP and SDP
methods in our branch-and-boundmethod for computing
αk .

5 Numerical experiments
We conducted extensive simulations to compute αk and
its upper/lower bounds using the pick-l algorithms and
TSA. In this section, we call the pick-l algorithms intro-
duced in Section 2 and 3 as simply the (basic) pick-l and
the optimized pick-l algorithms respectively.
For same matrices, we compared our methods with LP

relaxation [8] approach and SDP method [3]. We assessed
the computational complexity in terms of execution time
of the algorithms.1 In addition, we carried out numerical
experiments to demonstrate the computational complex-
ity of TSA empirically.
For LP method in [8] and SDP method in [3], we used

the Matlab codes2 provided by the authors. Consistent
with previous research, we used CVX [17]—a package
for specifying and solving convex programs—for the SDP
method, and MOSEK [18]—a commercial LP solver—for
the LP method. In our own algorithms, we used MOSEK
to solve (7). Also, to be consistent with the previous
research, matrices were generated from the Matlab code
provided by the authors of [3] at http://www.di.ens.fr/~
aspremon/NSPcode.html. For valid bounds, we rounded
down lower bounds on αk and exact αk , and rounded up
upper bounds on αk to the nearest hundredth.

5.1 Performance comparison
Firstly, we considered Gaussian matrices and partial
Fourier matrices sized from n = 40 to n = 6144. We
chose n = 40 so that our results can be compared with the
simulation results in [3].

http://www.di.ens.fr/~aspremon/NSPcode.html
http://www.di.ens.fr/~aspremon/NSPcode.html
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5.1.1 Low-dimensional sensingmatrices
Sensing matrices with n = 40 . We considered sens-
ing matrices of row dimension m = 0.5n, 0.6n, 0.7n,
0.8n, where n = 40. For every matrix size, we randomly
generated 10 different realizations of Gaussian and par-
tial Fourier matrices. So, in total we used 80 different
n = 40 sensing matrices for the numerical experiments in
Tables 7 and 8. We normalized all of the matrix columns
so that they have a unit �2-norm. The entries of Gaussian
matrices were i.i.d standard GaussianN (0, 1). The partial
Fourier matrices hadm rows randomly draw from the full
Fourier matrices. We compared our algorithms—pick-1-
element, pick-2-element, pick-3-element, and TSA—to LP
and SDP methods. For readability, we place the numerical
results for these small sensing matrices in Appendix B.
For each matrix size and type, we increased k from 1

to 5 in unit steps. Tables 7(a) and 8(a) show the median
values of αk . (To be consistent with the previous research
[3], in which the authors used the median value of αk
to compare the SDP method with the LP method, we
provided the median values obtained from 10 random
realizations of sensing matrix.) From the median value of
αk , we obtained the recoverable sparsity kmax such that
αkmax < 1/2 and αkmax+1 > 1/2. In addition, we calculated
the arithmetic mean of kmax’s. For the arithmetic mean,
we obtained each kmax from each random realization and
computed the arithmetic mean of ten kmax’s. Compared
with LP and SDP methods, we obtained bigger or at least
the same recoverable sparsity kmax by using pick-2, pick-3,
and TSA. It is noteworthy that we obtained the exact αk
for k = 1, 2, . . . , 5 by using TSA, while LP and SDP meth-
ods only provided the exact αk for k = 1. We observed
that αk < 1/2 but the upper bound of αk > 1/2 holds
true in several cases, e.g., α5 in 32×40 Gaussian matrices,
α4 in 28 × 40 Gaussian matrices, α3 in 24 × 40 Gaus-
sian matrices, α3 in 20 × 40 partial Fourier matrices, and
α4 in 24 × 40 partial Fourier matrices. Additionally, this
can also be established by the arithmetic mean of kmax in
Tables 7(a) and 8(a).
To compare the computational complexity, we calcu-

lated the geometric mean of the algorithms’ execution
time, to avoid biases for the average. Tables 7(b) and 8(b)
list the average execution time. We also ran the exhaustive
search method (ESM) to find αk and compared its execu-
tion time with that of TSA. In calculating α5, on average,
3-Step TSA reduced the computational time by around
86 times for 20 × 40 Gaussian matrices, and by 94 times
for 20 × 40 partial Fourier matrices, compared to ESM.
For 32 × 40 Gaussian matrix and partial Fourier matrix,
the speedup compared to the best l-Step TSA, l = 1, 2, 3,
becomes around 1760 times and 182 times respectively.
We observed that when m/n = 0.5, e.g., 20 × 40 sensing
matrices, in general, the 3-step TSA provides the fastest
result for k = 5. On the other hand, for m/n = 0.8 (e.g.,

32 × 40 case), the 2-Step TSA is the quickest in finding
an exact αk for k = 5; however, for k > 5, the fastest l-
step TSA cannot be determined from either experiments
or theory.

Sensing matrices with n = 256 . We assessed the per-
formance of the pick-l algorithm for sensing matrices
with n = 256. We carried out numerical experiments
on 128 × 256 Gaussian matrices in Fig. 2a and 64 × 256
partial Fourier matrices in Fig. 2b. Here, for 10 sensing
matrices, we obtained the median value of upper bounds
of αk using the pick-l algorithm and compared the result
with LP relaxation method [8]. We omitted SDP method
[3] from this experiment due to its very high computa-
tional complexity. For the pick-3 algorithm in Fig. 2a, we
calculated an upper bound of α3 via TSA and used this
result to calculate upper bounds of αk , k = 3, 4, . . . , 8 via
(13). Figure 2a, b demonstrate that, with an appropriate
choice of l, the upper bound of αk obtained via the pick-l
algorithm can be tighter than that from the LP relaxation
method. For example, for 128 × 256 Gaussian matrices,
LP relaxation often determines the maximum recoverable
sparsity as 5, while the pick-2 algorithm improves it to 6.
In the pick-3 algorithm, the maximum recoverable spar-
sity is 7 (α7 = 0.49). For 64× 256 partial Fourier matrices,
the maximum recoverable sparsity from LP relaxation and
the pick-2 algorithm are 3 and 4 respectively.

Sensing matrices with n = 512 . We further conducted
numerical experiments on Gaussian sensingmatrices with
n = 512. The simulation results in Table 1 clearly demon-
strate that the pick-2 algorithm provides larger lower
bound on the recoverable sparsity k than the LP method
[8]. Especially, when Gaussian sensing matrix is 410×512,
the lower bound on k obtained from the pick-2 algorithm
is almost twice larger than that of the LP method.

5.1.2 High-dimensional sensingmatrices
Sensing matrix with n ≥ 1024 . We conducted numeri-
cal experiments for Gaussian sensingmatrices with n from
1024 to 6144. We show these numerical experiments in
Tables 2 and 3, where we calculated the lower bound on
the recoverable sparsity k and obtained the corresponding
execution time. The SDP method [3] was not applicable
in these experiments due to its very high computational
complexity. In Table 2, we ran TSA for 1 day (24 h) and
obtained an upper bound of α2, denoted by UB(α2). With
the upper bound of α2, we obtained a lower bound of
k, denoted by k(UB(α2)), via Lemma 3. Our numerical
results in Tables 2 and 3 clearly show that our pick-l algo-
rithm outperforms the LP method in recoverable sparsity
k or execution time. We note that although our pick-1-
element algorithm provides the same recoverable sparsity
k as the LP method [8] in Tables 2 and 3, the complexity
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Fig. 2Median upper bounds of αk from the pick-l algorithm and the LP relaxation method. a 128 × 256 Gaussian matrices b 64 × 256 partial
Fourier matrices

of LP method can be 10 times higher than our method on
m × n Gaussian matrices, wherem is large.
For extremely large sensing matrices, e.g, 4014 × 4096

and 6021×6144, the LP and SDPmethods cannot provide
any lower bound on k due to unreasonable computational
time. However, our pick-l algorithm can still provide the
lower bound on k efficiently. Table 3 shows the lower
bound on k and the execution time for these large dimen-
sional matrices, where our verified recoverable sparsity k
can be as large as 558 for a 6134 × 6144 sensing matrix.
We obtained the estimated time for the LP method by
running theMatlab code obtained from http://www2.isye.
gatech.edu/~nemirovs/, which shows the percentage of
the calculation on screen.

5.2 Comparison between the optimized pick-l algorithm
and the basic pick-l algorithm

We compared the basic pick-l algorithm introduced in
Section 2 to the optimized pick-l algorithm in Section 3
on Gaussian sensing matrices 28 × 40 and 40 × 50 for
l = 3 and k = 4, 5, . . . , 8. Table 4 demonstrates that when

Table 1 Lower bound on k and execution time (Gaussian matrix
with n = 512)

Matrix A Pick-1 Pick-2 LPa

(a) Lower bound on k

102 × 512 2 3 2

205 × 512 5 7 5

307 × 512 10 17 10

410 × 512 14 27 14

(b) Execution time (Unit: second)

102 × 512 53.7 2.96e4 50.8

205 × 512 114.8 6.36e4 105.1

307 × 512 309.7 1.19e5 333.0

410 × 512 133.1 5.03e4 510.0

a Linear programming [8]

l = 3 and k = 4, 5, . . . , 8, the optimized pick-l algorithm
provided tighter upper bounds on αk than the basic pick-l
algorithm. This is because when l is large and k > l, (15)
includes more constraints, which leads to the reduced size
of the feasible set, than the case when k and l are small.
Hence, the optimal value of (15), which is the result from
the optimized pick-l, can be smaller than or equal to that
of (11), which is the basic pick-l. Additionally, we provided
the exact αk values obtained from TSA in order to check

Table 2 Lower bound on k and execution time (Gaussian matrix
with n = 1024)

Matrix A Pick-1 k
(
UB(α2)

b
)

k(α1) LPa

(a) Lower bound on k

102 × 1024 2 3 2 2

205 × 1024 4 4 4 4

307 × 1024 5 6 5 5

410 × 1024 7 8 7 7

512 × 1024 9 10 9 9

614 × 1024 12 13 12 12

717 × 1024 16 17 15 16

819 × 1024 21 23 20 21

922 × 1024 32 36 30 32

(b) Execution time (Unit: second)

102 × 1024 237 24 h 237 200

205 × 1024 452 24 h 452 429

307 × 1024 796 24 h 796 723

410 × 1024 1207 24 h 1207 1073

512 × 1024 1952 24 h 1952 1600

614 × 1024 2150 24 h 2150 2217

717 × 1024 1337 24 h 1337 2992

819 × 1024 838 24 h 838 3904

922 × 1024 386 24 h 386 4730

a Linear programming [8]
b Upper bound of α2 obtained from 1-Step TSA after 24 hours’ run

http://www2.isye.gatech.edu/~nemirovs/
http://www2.isye.gatech.edu/~nemirovs/
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Table 3 Lower bound on k and execution time (Gaussian matrix)

Matrix A Pick-1 k(α1) LPa

(a) Lower bound on k

512 × 2048 7 6 7

2007 × 2048 102 90 102

4014 × 4096 152 139 N/Ab

1024 × 6144 8 8 8

6021 × 6144 190 174 N/A

6134 × 6144 558 406 N/A

(b) Execution time (Unit: second)

512 × 2048 7.51e3 7.51e3 6.63e3

2007 × 2048 6.71e2 6.71e2 7.19e4

4014 × 4096 9.12e3 9.12e3 15 daysc

1024 × 6144 2.18e5 2.18e5 1.61e5

6021 × 6144 3.89e4 3.89e4 65.5 daysd

6134 × 6144 1.37e4 1.37e4 41.7 dayse

a Linear programming [8]
b Not available
c Estimated time (15 h for 4% calculations)
d Estimated time (15 h for 1% calculations)
e Estimated time (10 h for 1% calculations)

how tight the bounds obtained from the basic pick-l and
the optimized pick-l are. In terms of the execution time,
the optimized pick-l algorithm, which computes (15), was
around 1.7 and 4.4 times slower than the basic pick-l on
28 × 40 and 40 × 50 Gaussian matrix respectively.
In summary, the optimized pick-l algorithm provides

better or at least equal upper bound on αk to the basic
pick-l algorithm, with additional complexity. In spite of

Table 4 αk comparison and execution time (Gaussian matrix)

Matrix A Algo. α4 α5 α6 α7 α8

(a) αk comparison

28 × 40 Basic pick-3 0.52 0.64 0.75 0.86 0.97

Optimized pick-3 0.52 0.63 0.75 0.85 0.96

3-Step TSA 0.47 0.54 0.62 0.67 0.72-0.78

40 × 50 Basic pick-3 0.40 0.48 0.57 0.65 0.72

Optimized pick-3 0.39 0.47 0.55 0.62 0.70

3-Step TSA 0.36 0.41 0.46 0.51 0.57-0.59

(b) Execution time (Unit: second)

28 × 40 Basic pick-3 249.28 249.28 249.28 249.28 249.28

Optimized pick-3 420.97 410.43 422.14 422.41 460.52

40 × 50 Basic pick-3 748.88 748.88 748.88 748.88 748.88

Optimized pick-3 3.31e3 3.49e3 3.26e3 3.26e3 3.31e3

the increased complexity of the optimized pick-l algo-
rithm, it has an important theoretical merit, which is
Lemma 6.

5.3 Complexity of tree search algorithm
In this subsection, we carried out numerical experiments
to demonstrate the computational complexity of TSA
empirically on randomly chosen Gaussian sensing matri-
ces. Figure 3a, b shows the distribution of execution time
and the distribution of number of nodes in height 5
attached to the tree structure in TSA respectively. For
m = 0.5n, we generated 100 random realizations of Gaus-
sian matrices and computed α5 using 3-Step TSA. The
maximum number of leaf node whose cardinality is k is(n
k
) = (40

5
) = 6.58008e5. From Fig. 3b, we note that for

90% of the cases, 3-Step TSA was terminated before 1.6%
of all the possible height-5 nodes were attached to the tree
structure.
We provided the execution time of TSA for different-

sized randomly chosen Gaussian matrices in Fig. 4. We
compared the execution time of TSA to ESM. Figure 4a
shows that when k = 1, 1-Step TSA provides almost
similar performance to ESM. This is because 1-Step TSA
calculates all the α1,{i}’s as a pre-computation, which is the
same procedure as ESM. However, for k > l as shown
in Fig. 4b–d, TSA can find αk with reduced computation
by using all the αl,L’s, while it is required to compute all
the αk,K ’s in ESM. In order to compute αk , we achieved a
speedup of around 100 times via 2-Step TSA compared to
ESM for k = 3, 4.
In addition, in Fig. 5, we compared the execution time of

TSA to ESM by varying k with n fixed on random Gaus-
sianmatrices. For the best execution time of TSA, we used
different l values for TSA. For n = 40 and n = 50, 3-Step
TSA reduced the execution time to find α5 by around 100
times and 300 times respectively, compared with ESM .
Finally, Fig. 6 gives illustrations of the values of the

global lower and upper bounds, for 80×100 and 160×200
Gaussian sensing matrices, as the number of iterations
in TSA increases. As we can see, the global upper and
lower bounds get close very quickly. This implies that we
can sometimes terminate TSA early and still obtain tight
bounds on αk .

5.4 Application to network tomography problem
We apply our new tools introduced in this paper to verify
NSC for sensing matrices in network tomography prob-
lems [14–16, 19–21]. In an undirected graphmodel for the
communication network, the communication delay over
each link can be determined by sending packets through
probing paths that are composed of connected links. The
delay of each path is then measured by adding the delays
over its links. Generally, most links are uncongested, and
only a few congested links have significant delays. It is,
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Fig. 3 Histograms of the TSA (based on the pick-3 algorithm) to find α5 on 100 randomly chosen 20 × 40 Gaussian sensing matrices for each
method. a Execution time. b Number of nodes in height 5

therefore, reasonable to think of finding the link delays
as a sparse recovery problem. This sparse problem can
be expressed in a system of linear equations y = Ax,
where the vector y ∈ R

m is the delay of m paths, the
vector x ∈ R

n is the delay vector for the n links, and
A is a sensing matrix. The element Aij of A is 1, if and
only if path yi, i ∈ {1, 2, . . . , m}, goes through link j,
j ∈ {1, 2, . . . , n}; otherwise,Aij equal to 0 (see Fig. 7). The
indices of nonzero elements in the vector x correspond to
the congested links.
In our numerical experiments to verify NSC in network

tomography problems, the paths for sending data packets
were generated by random walks of fixed length. Table 5
summarizes the results of our experiments. We note that

by using TSA, one can exactly verify that a total of k = 2
and k = 4 congested link delays can be uniquely found
by solving �1 minimization problem (2) for the randomly
generated network measurement matrices 33 × 66 (12-
node complete graph) and 53 × 105 (15-node complete
graph) respectively. For ESM, we estimated the execution
time by multiplying the unit time to solve (7) and the total
number of cases in the exhaustive search.We obtained the
unit time to solve (7) by calculating the arithmetic mean
from 100 trials. For a 53 × 105 matrix, 3-Step TSA sub-
stantially reduced the execution time to find α5 around
137 times compared to ESM.
We further carried out numerical experiments on even

larger networkmodel having 300 nodes and 400 edges.We

Fig. 4 The execution time of TSA in log scale as a function of n on randomly chosenm × n Gaussian matrices, wherem = n/2. a k = 1 b k = 2
c k = 3 d k = 4



Cho et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:16 Page 13 of 18

Fig. 5 The execution time of TSA in log scale as a function of k on randomly chosenm × n Gaussian matrices, wherem = n/2. a n = 40 b n = 50

created a random spanning tree for a network model by
using random walk approach [24]. At each probing path,
we randomly chose a node among 300 nodes as a start-
ing point of random-walk and walked 100 times along the
network connection. We obtained a 320×400 matrix cor-
responding to the networkmodel.We calculated αk values
via l-Step TSA, where l = 1, 2. In terms of the execu-
tion time, in Table 6, we compared TSA with ESM, where
the unit time to solve (7) was obtained by calculating the
arithmetic mean from 100 trials. Especially, 1-Step TSA
reduced the execution time to find α4 by around 28,700
times compared to ESM.

5.5 Discussion
In this section, we discuss the strengths and weaknesses of
our proposed algorithms, compared with earlier research
[3, 8].

1. Comparisons with LP and SDP. Our proposed
pick-1-element algorithm can achieve similar
performance as the LP [8] and SDP methods [3].
However, our pick-1-element algorithm has the clear
advantage of being more computationally efficient
for large dimensional sensing matrices. Please see
Table 3, where the LP and SDP methods cannot
provide the performance bounds on recoverable

sparsity k due to high computational complexity. On
the other hand, in Table 3, our pick-1-element
algorithm can efficiently provide bounds on
recoverable sparsity k. The LP method has high
computational complexity because it has to deal with
a large convex program of design dimension mn,
which leads to prohibitive computational complexity
when m and n are large [8].
In our pick-1-element algorithm, we proposed the
novel idea of sorting α1,{i}’s (see Lemma 2), which
leads to improved performance bounds on αk and
recoverable sparsity k. This sorting idea, combined
with Lemma 2, provides us with larger recoverable
sparsity bound k than purely using α1 for bounding
recoverable k in ([8] Section 4.2.B).

2. Set-specific upper bounds. Our proposed pick-l -
element algorithm (l ≥ 2) is novel and can provide
improved bounds on αk and recoverable sparsity k,
using polynomial computational complexity in n
when l is fixed. This approach is not practical when l
is large. However, pick-2-element and pick-3-element
algorithm can already provide improved performance
bounds, compared with the previous research [3, 8].
The fact that we can obtain upper bounds on αk ,
based on the results of pick-l -element (l ≥ 2)
algorithm, is new and non-trivial (see Lemma 2,

Fig. 6 Global lower bound (GLB) and global upper bound (GUB) in TSA on Gaussian sensing matrices. a For (k, l) = (5, 3), we obtained
(GLB,GUB)=(0.27,0.28) after 167501 iterations. b For (k, l) = (4, 2), we obtained (GLB, GUB)=(0.15,0.17) after 148101 iterations
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Fig. 7 a A simple example of a network tomography graph.W, X, Y, and Z are nodes in the network, and Path1, 2, 3, and 4 are the probing paths
through which the packets are sent. b The sensing matrix corresponding to the graph shown in a. The rows and columns of the matrix represent
probing paths and edges respectively

Lemma 3 and Lemma 4). For example, if we know
α5 ≤ 0.22, we can use Lemma 3 to obtain that
α11 ≤ 0.22 × 11/5 < 0.5.
Our pick-l -element algorithm can provide
set-specific upper bound for αk,K , laying the
foundation for our branch-and-bound TSA.

3. Computational complexity of TSA. We proposed
TSA to find precise values for αk with significantly
reduced average-case computational complexity than

Table 5 αk and execution time in network tomography problems

Matrix A Algo. α1 α2 α3 α4 α5 kmax

(a) αk values

33 × 66 1-Step TSA 0.28 0.41 0.50 0.57 0.62 2

2-Step TSA 0.28 0.41 0.50 0.57 0.62-0.64 2

3-Step TSA 0.28 0.41 0.50 0.57 0.62 2

53 × 105 1-Step TSA 0.20 0.29 0.36 0.45 0.52-0.54 4

2-Step TSA 0.20 0.29 0.36 0.45 0.49-0.56 4

3-Step TSA 0.20 0.29 0.36 0.45 0.52 4

(b) Execution time (Unit: second)

33 × 66 1-Step TSA 0.74 3.62 28.94 404.11 5.94e4

2-Step TSA 0.74 3.62 43.94 541.70 1 day

3-Step TSA 0.74 3.62 1.69e3 1.73e3 3.70e4

ESM 0.64 3.94 1.63e3 1.4e4a 1.8e5a

53 × 105 1-Step TSA 1.31 30.61 608.90 5.35e3 1 day

2-Step TSA 1.31 116.12 143.99 1.05e3 1 day

3-Step TSA 1.31 116.12 7.95e3 7.93e3 1.38e4

ESM 1.28 127.28 8.70.e3 9.6e4a 1.9e6a

Random walk step: 20
aExhaustive search method (estimated execution time = average time to solve (7)
(=0.02 second) for an index set × total number of index sets)

ESM. The computational complexity of TSA is
dependent on n, sparsity k, and a chosen constant l.
When k, n, and l are large enough, finding αk via
TSA is still computationally expensive. In the worst
case, TSA has the same computational complexity as
ESM. However, our extensive simulations ranging
from Fig. 3 to Fig. 5 and from Table 5 to Table 8
show that on average, TSA can greatly reduce the
computational complexity of finding αk compared
with ESM.
Moreover, since TSA maintains an upper bound and
a lower bound of αk during its iterations, one can
always early terminate TSA and still get improved
performance bounds on αk than the LP and SDP
methods. We can use TSA to find an exact value of
αl, where l < k, and then use Lemma 3 to bound αk .

4. Use of data structures. We used object-oriented
programming (OOP) to implement TSA in Matlab
[25], because the OOP makes it easy to handle
tree-type structures. In OOP, we defined a class and

Table 6 αk and execution time in a large network model having
300 nodes and 400 edges

Algo. α1 α2 α3 α4 α5 α6

(a) αk values

1-Step TSA 0.07 0.13 0.15 0.18 0.20 0.22-0.26a

2-Step TSA 0.07 0.13 0.15 0.18 0.20-0.23a 0.22-0.28a

(b) Execution time (Unit: second)

1-Step TSA 63.37 65.70 599.96 5.49e3 8.60e4 1 day

2-Step TSA 63.37 3.46e4 3.54e4 4.03e4 1 day 1 day

ESM 73.22 3.20e4 1.59e6b 1.58e8b 1.25e10b 8.22e11b

aLower bound - upper bound
bExhaustive search method (estimated operation time = average time to solve (7)
(=0.15 second) for an index set × total number of index sets)
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Table 7 αk comparison and execution time - Gaussian Matrix

A
(m×n)

Algo. α1 α2 α3 α4 α5 kmax
d

(a) αk comparison

20 × 40 Pick-1 0.28 0.55 0.81 1 1 1/1.1

Pick-2 0.28 0.45 0.66 0.85 1 2/1.9

Pick-3 0.28 0.45 0.57 0.76 0.92 2/1.9

1-Step TSA 0.28 0.45 0.57 0.67 0.75 2/1.9

2-Step TSA 0.28 0.45 0.57 0.67 0.75 2/1.9

3-Step TSA 0.28 0.45 0.57 0.67 0.75 2/1.9

LPa 0.28 0.50 0.67 0.84 0.98 2/1.6

SDPb 0.28 0.49 0.66 0.81 0.95 2/1.8

ESMc 0.28 0.45 0.57 0.67 0.75 2/1.9

24× 40 Pick-1 0.23 0.46 0.67 0.87 1 2/2.0

Pick-2 0.23 0.37 0.53 0.69 0.85 2/2.1

Pick-3 0.23 0.37 0.46 0.61 0.75 3/2.8

1-Step TSA 0.23 0.37 0.46 0.57 0.65 3/2.8

2-Step TSA 0.23 0.37 0.46 0.57 0.65 3/2.8

3-Step TSA 0.23 0.37 0.46 0.57 0.65 3/2.8

LP 0.23 0.41 0.56 0.71 0.84 2/2.0

SDP 0.23 0.41 0.55 0.70 0.82 2/2.0

ESM 0.23 0.37 0.46 0.57 0.65 3/2.8

28× 40 Pick-1 0.18 0.36 0.53 0.70 0.86 2/2.0

Pick-2 0.18 0.31 0.46 0.59 0.72 3/3.0

Pick-3 0.18 0.31 0.41 0.54 0.66 3/3.0

1-Step TSA 0.18 0.31 0.41 0.49 0.57 4/3.5

2-Step TSA 0.18 0.31 0.41 0.49 0.57 4/3.5

3-Step TSA 0.18 0.31 0.41 0.49 0.57 4/3.5

LP 0.18 0.34 0.49 0.61 0.72 3/3.0

SDP 0.18 0.34 0.48 0.60 0.71 3/3.0

ESM 0.18 0.31 0.41 0.49 0.57 4/3.5

32× 40 Pick-1 0.14 0.29 0.42 0.55 0.67 3/3.0

Pick-2 0.14 0.24 0.37 0.47 0.58 4/3.8

Pick-3 0.14 0.24 0.33 0.44 0.53 4/4.2

1-Step TSA 0.14 0.24 0.33 0.40 0.47 5/4.9

2-Step TSA 0.14 0.24 0.33 0.40 0.47 5/4.9

3-Step TSA 0.14 0.24 0.33 0.40 0.47 5/4.9

LP 0.14 0.27 0.38 0.49 0.58 4/3.9

SDP 0.14 0.27 0.38 0.48 0.57 4/4.0

ESM 0.14 0.24 0.33 0.40 0.47 5/4.9

(b) Execution time (Unit: second)

20× 40 Pick-1 0.35 0.35 0.35 0.35 0.35

Pick-2 0.35 10.96 10.96 10.96 10.95

Pick-3 0.35 10.96 313.65 313.65 313.65

1-Step TSA 0.50 2.14 11.78 128.98 1.62e3

2-Step TSA 0.50 13.20 14.11 58.93 3.77e3

Table 7 αk comparison and execution time - Gaussian Matrix
(Continued)

A
(m×n)

Algo. α1 α2 α3 α4 α5 kmax
d

3-Step TSA 0.50 13.20 320.20 346.43 695.53

LP 0.55 0.55 0.58 0.55 0.56

SDP 56.92 6.02e3 5.14e3 5.12e3 5.61e3

ESM 0.35 10.96 313.65 4.5e3 6.0e4

24× 40 Pick-1 0.44 0.44 0.44 0.44 0.44

Pick-2 0.44 13.00 13.00 13.00 13.00

Pick-3 0.44 13.00 311.27 311.27 311.27

1-Step TSA 0.50 2.05 9.63 77.45 429.48

2-Step TSA 0.50 12.92 13.60 35.08 634.62

3-Step TSA 0.50 12.92 319.27 378.10 481.29

LP 0.84 0.94 0.88 0.83 0.82

SDP 62.18 5.59e3 4.89e3 4.75e3 5.37e3

ESM 0.44 13.00 311.27 4.6e3 6.4e4

28× 40 Pick-1 0.58 0.58 0.58 0.58 0.58

Pick-2 0.58 14.67 14.67 14.67 14.67

Pick-3 0.58 14.67 326.80 326.80 326.80

1-Stpe TSA 0.52 1.41 4.39 32.43 119.86

2-Stpe TSA 0.52 13.54 13.82 29.35 126.62

3-Stpe TSA 0.52 13.54 327.79 404.23 383.61

LP 1.12 1.20 1.12 1.09 0.68

SDP 71.27 5.55e3 4.90e3 4.98e3 4.72e3

ESM 0.58 14.67 326.80 4.7e3 6.9e4

32× 40 Pick-1 0.42 0.42 0.42 0.42 0.42

Pick-2 0.42 13.29 13.29 13.29 13.29

Pick-3 0.42 13.29 331.80 331.80 331.80

1-Step TSA 0.55 1.14 2.89 13.50 40.67

2-Step TSA 0.55 14.22 14.32 18.13 40.35

3-Step TSA 0.55 14.22 340.87 336.29 355.06

LP 0.70 0.71 0.72 0.70 0.70

SDP 56.12 7.17e3 5.43e3 5.07e3 4.79e3

ESM 0.42 13.29 331.80 4.9e3 7.1e4

a Linear programming [8]
b Semidefinite programming [3]
c Exhaustive search method
d Median/arithmetic mean

created objects from the class to store property of
each node J, e.g., B(J), in the tree. In order to make a
connection between two tree nodes, we used doubly
linked list data structure as a part of the object.
However, in case readers would like to implement
the algorithm using alternative data structures, we
have provided implementation-agnostic pseudocode
of our algorithm in Algorithm 2.



Cho et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:16 Page 16 of 18

Table 8 αk comparison and execution time - Partial Fourier
Matrix

A
(m×n)

Algo. α1 α2 α3 α4 α5 kmax
d

(a) αk comparison

20× 40 Pick-1 0.19 0.39 0.59 0.78 0.98 2/2.0

Pick-2 0.19 0.36 0.55 0.73 0.91 2/2.2

Pick-3 0.19 0.36 0.47 0.64 0.80 3/2.7

1-Step TSA 0.19 0.36 0.47 0.61 0.70 3/2.7

2-Step TSA 0.19 0.36 0.47 0.61 0.70 3/2.7

3-Step TSA 0.19 0.36 0.47 0.61 0.70 3/2.7

LPa 0.19 0.39 0.59 0.78 0.98 2/2.0

SDPb 0.19 0.39 0.59 0.78 0.98 2/2.0

ESMc 0.19 0.36 0.47 0.61 0.70 3/2.7

24× 40 Pick-1 0.15 0.31 0.47 0.62 0.78 3/2.8

Pick-2 0.15 0.27 0.42 0.55 0.69 3/3.0

Pick-3 0.15 0.27 0.38 0.51 0.64 3/3.4

1-Step TSA 0.15 0.27 0.38 0.49 0.59 4/3.5

2-Step TSA 0.15 0.27 0.38 0.49 0.59 4/3.5

3-Step TSA 0.15 0.27 0.38 0.49 0.59 4/3.5

LP 0.15 0.31 0.47 0.62 0.78 3/2.8

SDP 0.15 0.31 0.47 0.62 0.78 3/2.8

ESM 0.15 0.27 0.38 0.49 0.59 4/3.5

28× 40 Pick-1 0.12 0.25 0.37 0.50 0.62 4/3.6

Pick-2 0.12 0.23 0.35 0.47 0.58 4/4.0

Pick-3 0.12 0.23 0.32 0.44 0.54 4/4.0

1-Step TSA 0.12 0.23 0.32 0.41 0.50 4/4.0

2-Step TSA 0.12 0.23 0.32 0.41 0.50 4/4.1

3-Step TSA 0.12 0.23 0.32 0.41 0.50 4/4.1

LP 0.12 0.25 0.37 0.50 0.62 4/3.6

SDP 0.12 0.25 0.37 0.50 0.62 4/3.6

ESM 0.12 0.23 0.32 0.41 0.50 4/4.1

32× 40 Pick-1 0.09 0.19 0.29 0.38 0.48 5/4.7

Pick-2 0.09 0.17 0.27 0.36 0.44 5/4.7

Pick-3 0.09 0.17 0.25 0.35 0.43 5/4.7

1-Step TSA 0.09 0.17 0.25 0.33 0.39 5/4.7

2-Step TSA 0.09 0.17 0.25 0.33 0.39 5/4.7

3-Step TSA 0.09 0.17 0.25 0.33 0.39 5/4.7

LP 0.09 0.19 0.29 0.38 0.48 5/4.7

SDP 0.09 0.19 0.29 0.38 0.48 5/4.7

ESM 0.09 0.17 0.25 0.37 0.39 5/4.7

(b) Execution time (Unit: second)

20× 40 Pick-1 0.31 0.31 0.31 0.31 0.31

Pick-2 0.31 10.85 10.85 10.85 10.85

Pick-3 0.31 10.85 260.41 260.41 260.41

1-Step TSA 0.47 9.72 70.57 329.28 3.60e3

Table 8 αk comparison and execution time - Partial Fourier
Matrix (Continued)

A
(m×n)

Algo. α1 α2 α3 α4 α5 kmax
d

2-Step TSA 0.47 11.97 18.54 45.18 3.36e3

3-Step TSA 0.47 11.97 291.29 297.45 633.12

LP 0.49 0.77 0.53 0.59 0.51

SDP 33.93 2.34e3 2.65e3 2.91e3 2.60e3

ESM 0.31 10.85 260.41 4.1e3 6.0e4

24× 40 Pick-1 0.39 0.39 0.39 0.39 0.39

Pick-2 0.39 11.51 11.51 11.51 11.51

Pick-3 0.39 11.51 302.86 302.86 302.86

1-Step TSA 0.48 12.12 76.21 407.67 2.77e3

2-Step TSA 0.48 12.52 21.46 107.00 1.83e3

3-Step TSA 0.48 12.52 306.43 426.17 1.36e3

LP 0.62 0.56 0.66 0.59 0.58

SDP 41.13 2.39e3 2.66e3 2.63e3 2.56e3

ESM 0.39 11.51 302.86 4.5e3 6.4e4

28× 40 Pick-1 0.43 0.43 0.43 0.43 0.43

Pick-2 0.43 13.29 13.29 13.29 13.29

Pick-3 0.43 13.29 341.05 341.05 341.05

1-Step TSA 0.50 8.70 31.53 272.68 731.90

2-Step TSA 0.50 12.99 16.85 47.45 544.79

3-Step TSA 0.50 12.99 317.40 410.47 553.67

LP 0.65 0.67 0.71 0.67 0.75

SDP 40.51 2.17e3 2.29e3 2.80e3 2.63e3

ESM 0.43 13.29 341.05 4.7e3 6.5e4

32× 40 Pick-1 0.57 0.57 0.57 0.57 0.57

Pick-2 0.57 17.24 17.24 17.24 17.24

Pick-3 0.57 17.24 385.26 385.26 385.26

1-Step TSA 0.52 6.39 22.35 101.67 451.62

2-Step TSA 0.52 13.38 18.65 49.46 372.35

3-Step TSA 0.52 13.38 326.40 476.55 1.02e3

LP 0.86 0.89 0.78 0.75 0.76

SDP 46.51 2.41e3 2.62e3 2.53e3 2.75e3

ESM 0.57 17.24 385.26 4.8e3 6.8e4

a Linear programming [8]
b Semidefinite programming [3]
c Exhaustive search method
d Median/arithmetic mean

5. Difference from phase transition works. There has
been extensive research on the phase transitions of
various sparse recovery algorithms such as Basis
Pursuit (BP), Orthogonal Matching Pursuit (OMP),
and Approximate Message Passing (AMP) [1].
However, our research is different from the research
on phase transition in two aspects. Firstly, our work
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and the previous works [3, 8] are focusing on
worst-case performance guarantee (recovering all the
possible k-sparse signals), while the research on
phase transition is considering the average-case
performance guarantee for a single k-sparse signal
with fixed support and sign pattern. Secondly, the
phase transition bounds are mostly for random
matrices. Hence, for a given deterministic sensing
matrix, phase transition results cannot be used for
that particular matrix.

6 Conclusion
In this paper, we consider the problem of verifying the
null space condition in compressed sensing. Calculat-
ing the proportional parameter αk that characterizes
the null space condition of a sensing matrix is a non-
convex optimization problem, and also known to be
NP-hard in [7]. In order to verify the null space condi-
tion, we proposed novel and simple enumeration-based
algorithms, which are called the basic and optimized
pick-l algorithms, to obtain upper bounds of αk . With
these algorithms, we further designed a new algorithm
called the tree search algorithm to gain a global solu-
tion to the non-convex optimization problem of veri-
fying the null space condition. Numerical experiments
show that our algorithms outperform the previously
proposed algorithms [3, 8] in performance as well as
speed.

Endnotes
1We conducted our experiments on HP Z220 CMT

with Intel Core i7-3770 dual core CPU @3.4GHz clock
speed and 16GB DDR3 RAM, using Matlab (R2013b) on
Windows 7.

2 LP method from http://www2.isye.gatech.edu/~
nemirovs/ and SDP method from http://www.di.ens.fr/~
aspremon/NSPcode.html.

Appendix
Proof of proposition 1
Proof Let us denote the sum of k maximal magnitudes

of elements of x ∈ R
n as

||x||k,1 = maximize
|K |≤k

∑

i∈K
|xi|.

We use i1, i2, . . ., and ik (or j1, j2, . . ., and jk ) to denote
k distinct integers between 1 and n. For a matrix, say A,
we use Ai,j to represent its element in the i-th row and j-th
column.

αLP
k = minimize

Y=[y1,...,yn]∈Rm×n

{
maximize

1≤j≤n
||

(
I − YTA

)
ej||k,1

}

= minimize
Y=[y1,...,yn]∈Rm×n

⎧
⎨

⎩
maximize
i1,i2,...,ik ,j

k∑

t=1
|
(
I − YTA

)

it ,j
|
⎫
⎬

⎭

≤ minimize
Y=[y1,...,yn]∈Rm×n

⎧
⎨

⎩
maximize
i1,i2,...,ik ,
j1,j2,...,jk

k∑

t=1
|
(
I − YTA

)

it ,jt
|
⎫
⎬

⎭

= minimize
Y=[y1,...,yn]∈Rm×n

⎧
⎨

⎩
maximize
i1,i2,...,ik

k∑

t=1
||eit − ATyit ||∞

⎫
⎬

⎭

= maximize
i1,i2,...,ik

⎧
⎨

⎩

k∑

t=1

(

minimize
yit∈Rm×1

||eit − ATyit ||∞
) ⎫

⎬

⎭
,

(22)

where we can exchange the order of “maximize” and “min-
imize” in the last equality because ||eit − ATyit ||∞ only
depends on yit .
Moreover, according to the equations for “αi” between

(4.29) and (4.30) in [8] (taking β there to be ∞),

minimize
yit∈Rm×1

||eit − ATyit ||∞

= maximize
x

{
eTit x : Ax = 0, ||x||1 ≤ 1

}

= α1,{it}.

Combining this with (22), αLP
k is no bigger than the

upper bound calculated by Lemma 2 (based on the pick-
1-element algorithm). Namely,

αLP
k ≤ α

pick1
k . (23)

Sensingmatrices with n = 40
Here, we provide the numerical results for small sensing
matrices with n = 40 to compare our methods to LP [8]
and SDP [3] methods.
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