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Abstract

problem under consideration.

This paper is concerned with DOA estimation using a single-electromagnetic vector sensor in the presence of mutual
coupling. Firstly, we apply the temporally smoothing technique to improve the identifiability limit of a single-vector
sensor. In particular, we establish sufficient conditions for constructing temporally smoothed matrices to resolve

K > 2incompletely polarized (IP) monochromatic signals with a single-vector sensor. Then, we propose an efficient
ESPRIT-based method, which does not require any calibration signals or iterative operations, to jointly estimate the
azimuth-elevation angles and the mutual coupling coefficients. Finally, we derive the Cramér-Rao bound (CRB) for the
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1 Introduction

Direction finding using a single-electromagnetic vector
sensor (EMVS) has played an important role in applica-
tions such as radar, wireless communications and seis-
mic exploration. An EMVS consists of six components,
three identical but orthogonally oriented electrically short
dipoles, and another three identical but orthogonally
oriented magnetically small loops. An EMVS can there-
fore measure all the six electromagnetic field compo-
nents induced by any electromagnetic incidence. After
Li [1], and Nehorai and Paldi [2] first introduced the
EMVS measurement model to the signal processing com-
munity, a variety of studies regarding signal processing
with a single EMVS [2-8] have been extensively carried
out. These methods ignore the mutual coupling across
the six antenna component, which ultimately destroys
the underlying model assumptions needed for their
efficient implementations. Consequently, ignoring this
mutual coupling effect can seriously degrade the perfor-
mance the above mentioned algorithms. Therefore, it is of
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great significance to develop algorithms for simultaneous
mutual coupling calibration and parameter estimation.

In the last few years, many advanced array calibration
methods have been reported. These algorithms include
the maximum likelihood algorithm [9], the iterative auto-
calibration method [10], the auxiliary sensor-based methods
[11-14], the cumulant-based method [15], the Rank-
reduction (RARE)-based calibration methods [16, 17], the
sparse representation-based methods [18-20], and the
matrix reconstruction method [21]. However, some of
these methods require a set of calibration signals/auxiliary
sensors [9, 11-14] or iterative/high order statistics/non-
linear optimization computations [10, 15-20]. Moreover,
all such methods are designed for scalar sensor arrays and
are not applicable to the vector sensor arrays. Calibration
of mutual coupling for vector sensors has been studied
recently in [22] and [23]. These two methods can offer
closed-form solutions for coupling matrix and param-
eter estimation. However, they require a coupling-free
auxiliary vector sensor and design of a reference signal.

The aforementioned scalar sensor array calibration
methods have been a strong motivation for us to develop
new joint calibration and estimation methods for vector
sensor arrays, and the contribution of the work lies in that
direction. The proposed method is outlined as follows:
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the temporal smoothing technique is firstly applied to
improve the identifiability limit of a single vector. In par-
ticular, sufficient conditions for constructing temporally
smoothed matrices to resolve K incompletely polarized
(IP) monochromatic signals with a single-vector sensor
are established. An ESPRIT-based method is then devel-
oped for jointly estimating the azimuth-elevation angles
and the mutual coupling coefficients. This method does
not require any calibration signals or iterative operations.
The Cramér-Rao bound (CRB) for the problem under
consideration is also derived.

Throughout the paper, scalar quantities are denoted by
lowercase letters. Lowercase bold type faces are used for
vectors and uppercase letters for matrices. Superscripts 7,
H, =, and 1 represent the transpose, conjugate transpose,
complex conjugate and pseudo inverse, respectively, while
® and ©, respectively, symbolize the Kronecker-product
operator and the Khatri-Rao (column-wise Kronecker)
matrix product. I, and 0y, respectively, stand for the
m x m identity matrix and m x n zero matrix.

2 Mathematical data model and assumptions

Assume that there are K uncorrelated monochromatic
transverse electromagnetic signals, parameterized by
{61,461}, -+, {6k, ¢k}, after having traveled through a
homogeneous isotropic medium, impinge upon a single
spatially stretched EMVS. The EMVS consists of three
orthogonal electric dipoles and another three orthogonal
magnetic loops, with the dipole triad being located at
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(0,0) and the loop triad being located at (dy, d), as shown
in Fig. 1. The parameter 0 < 6; < 7w denotes the elevation
angle of the kth signal, and 0 < ¢y < 2x represents the
azimuth angle. The 6 x 1 data vector measured by the
EMVS at time instant ¢ can be expressed as [2]

K
2() = ) Awsi(t) +0() = As() +n(®) (1)
k=1

where

Vik Vo,k

A, =A@ ) =laLk & = ?
X (6> d1) =[ar k> azkl [quz,k —61kV1,1<] :

vk = [cos Bk cos ¢y, cos Oy sin ¢y, — sin O] r (3)
Vo = — sin ¢y, cos ¢, 0]" (4)

qe = ejZn/)\(dx sin 6 cos ¢y+dy sin O sin ¢y) (5)
A=[Ay, -, Ax] (6)

sc(®) = [sk1 (D), sk201F

. , T
— I:ﬂk,lel(wk,ltJFWk,l), ﬂky2el(wk,2t+¢k,2)i| 7)
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s = [T, sk 0] ®)
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In the above equations,

e Apisthe6 x 2 EMVS response of the kth
electromagnetic signal.

e Aisthe 6 x 2K EMVS steering matrix.

® s;(¢f)isa2 x 1 vector, representing the two entries
of the kth transmitted signal.

e In(7), Bki» wk; and Yz, i, = 1,2, respectively,
represent the energy, frequency, and the uniformly
distributed random phase of the ith entry of the kth
signal.

e n(t)isthe6 x 1 noise vector.

Note that the rank of the covariance matrix of the kth
signal Ry, = E {sk(t)skH (t)} is related to the polarization
state of the kth signal [24, 25]. For the case of an incom-
pletely polarized (IP) signal, the covariance matrix Ry, is
of rank-2, whereas for the case of completely polarized
(CP) signal, Ry, becomes rank deficient. In other words,
the IP signal possesses two spatial degrees of freedom,
whereas the CP signal has only one. Referring back to (7),
if w1 # wio, then the signal is IP, and its polarization
varies with time. On the other hand, if wx; = wky = Wi,
then the signal is CP, and it has constant polarization. For
the CP signal, s;(¢) can be expressed as [25]

sin ye/

COS Yk (10)

sk(t) = grsk(t) = [ }Sk(t)
where y; and 7 are polarization parameters referred to
as the auxiliary polarization angle and polarization phase
difference, respectively, and s; (£) = Bre/“x!TV%) is the kth
transmitted signal. Thus, for the case of K CP signals, the
data vector in (1) reduces to the one used in [3].

The data vector model in (1) is only valid for ideal vector
sensors. For practical vector sensors, the mutual coupling
across the six vector sensor components is not negligible.
In such a realistic situation, the signal received by a vec-
tor sensor component is no longer related to the wavefield
incident on that component only, but can be expressed as
a linear combination of the wavefields incident onto all the
six vector sensor components. To take the coupling effect
into account, the data model in (1) needs to be modified
by including a 6 x 6 matrix term M, referred to as the
coupling matrix, which expresses the aforementioned lin-
ear combination. Therefore, the data vector in the pres-
ence of mutual coupling can be written as

z(t) = MAs(t) + n(¢) (11)

The mutual coupling matrix M may contain 36 distinct
parameters. Thus, a full coupling matrix model usually
requires too many parameters to be estimated. There-
fore, a simplified version of M is required. If a priori
knowledge on the mutual coupling matrix is available,
then its exploitation can be useful in reducing the number
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of parameters to be estimated, thus, making the estima-
tion procedure simpler. In light of this consideration, we
assume that the displacement between the dipole triad
and the loop triad is large enough so that the mutual cou-
pling coefficients between the dipole triad and the loop
triad are zero. This hypothesis can be justified by the fact
that the coupling decreases quite rapidly with distance
[11]. Furthermore, since the components in the dipole
triad and loop triad are orthogonal to one another, all the
components of a vector sensor would experience the same
coupling effect. Therefore, the mutual coupling matrix M
can be formulated as

C1 Cy Cy
€2 C1 €
C2 C2 (1

M=LRC=IL® (12)

where ¢; and ¢, represent the self and mutual coupling
coefficients, respectively.

With a total of N snapshots taken at the distinct instants
{nA7 :n = 1,---,N}, the problem is to determine the
DOA’s {(6k, dx),k = 1,---,K} of the K signals and the
coupling matrix C from these snapshots. The following
assumptions are made:

1. The parameters (01, ¢1), - - , (Ok, ¢x) are pairwise
distinct.

2. The value of K is known or correctly estimated.

3. The coupling coefficients ¢c; # cg so that the
coupling matrix C is non-singular.

4. The impinging signals are IP and are uncorrelated
with one another. This implies that the frequencies
W11 F W12 F 0 F WK1 F 0K

5. The noise is zero-mean, complex Gaussian, and is
statistically independent of all the signals.

3 Joint angle and mutual coupling matrix
estimation

3.1 Temporal smoothing

The authors in [4] have found that the maximum number
of arbitrary electromagnetic sources uniquely identifiable
by one vector sensor is two. That is, the data matrix in
(11) is rank deficient if the number of incoming signals
is greater than two. In this subsection, we will apply the
temporal smoothing technique [26] to deal with this rank
deficiency problem. We will also show that under certain
conditions, the temporal smoothing technique can restore

the rank of the data matrix.

Define a 6 x N data matrix Z =[z(A7),--- ,z(NA7T)],
where z(A7),z(2AT), - -+ , Z(NAT) are the N snapshots
sampled at time instants A7,2A7,--- ,NAT, respec-
tively. For simplicity of analysis, we will neglect the noise
terms. Then, we define P temporally shifted data subsets
of Z, where each contains N — P — 1 data samples. The
first and the pth temporally shifted data subsets can be
expressed as
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Z,=[z(A7), -
B 181101,1A7+1//1,1 B leiwl,leT+1//1,1
Bro@@2AT V12 By ) 012287 Y12

»2(N—P+1)A7)] (13)
con B @@t N=P+D AT+,

o+ Bro@@12N=P+DAT Y1,
=MA

- B 1€ Ok 1 N=P+D AT+
B 2e/ k2 N=P+DAT+HK2

B 1K ATV B ) @K1 2AT VKL
Bi 2@ PK2ATHVI B o gOk220TH I

ST

Zy=[z(pAT), - 2(N=P+p)Ap)] (14)
B 1e/PLIPATHYLL B 1@t DATHLL B 16/t (N=P+p) ATty
Bra@@2PATHL By o @12 W DAT L L gy o g2 (N=PAP) AT +Y

=M

ﬂK‘IBII<l’K,1PAT+1/’I(,l Bi @Ok WFDATHIGL ,/3K’1€1'm1(,1(N*P+p)AT+\lf1<,1

Bi 2&K2PATHVKL By o JOK2(PTDAT VL L. By 0K 2 (N=PHP) AT +ic

gL (p—hAT
g@12(p—DAT
=MA] g s’
@k 1 p—DAT
gok2(p=DAr
®p
where

®, = diag [eiwl,l(p—lmr, Jua=DAT

(15)
JOk1p—DAT ein,z(Pfl)AT]

is a diagonal matrix that is only dependent on the time
delay and the frequencies of the signals, and

S =[s(A7),---,s((N — P+ 1)Ap)]T (16)

isa (N—P+1) x 2K signal matrix. Then, forp = 1,---,P,

we will have P different data sets {Z, - - -, Zp}. Note that

these P data sets differ from one another in view of the fact

the the matrices ®, differ from one set to another. Next,

the 6P x (N — P + 1) temporally smoothed data matrix is

defined by stacking Z,, forp = 1,---,Pas

T

Zrs = [ZIT, . ,Z};] (17)

Theorem 1 If P > 2K and N > 4K — 1, then the
temporally smoothed data matrix Zrs is of full rank 2K.

Proof The matrix Zts can be expressed in a column-
wise Kronecker matrix product form as

Zts = (W O MA)ST (18)
where
1 1 s 1 1
PJOLIAT g@12AT PPKIAT POK2AT
\I’ =

oK1 P—DAT  jogs(P-1)Ar

(19)

J011(P—DAT Gjora(P—DAT | |

Since all the signals are assumed to be IP and have distinct
frequencies, the Vandermonde matrix S is of full column
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rank 2K if and only if (N — P + 1) > 2K. Next, by
results in [27], we have

rank(¥ © MA) < min{2K,rank(¥) - rank(MA)}

and a sufficient condition for equality is to have ¥ and/or
MA tall and full rank. Then, if P > 2K, the Vandermonde
matrix W is tall and is of rank 2K. In this case,

rank(¥ © MA) = min{2K, 2K - rank(MA)} = 2K

Finally, combining P > 2K with (N — P + 1) > 2K, we
have Ztg to be of full rank 2K, if P > 2K and N > 4K — 1,
since (¥ ©MA) is of full column rank and S7 is of full row
rank. This concludes the proof. O

Theorem 1 establishes sufficient but not necessary con-
ditions for constructing temporally smoothed matrices to
resolve K IP monochromatic signals with a single-vector
sensor. Specially, on the basis of Theorem 1, an infinite
number of uncorrelated signals with distinct frequencies
may potentially be resolved as N approaches infinity.

3.2 Angle and mutual coupling matrix estimation

In this subsection, we propose an ESPRIT-based algo-
rithm to estimate the angles and the coupling matrix from
the data matrix Zts. For analytical purposes, we con-
sider the ideal noiseless case. Let E; be the 6P x 2K
signal-subspace eigenvector matrix, whose columns are
the 6P x 1 signal-subspace eigenvectors associated with
the 2K largest eigenvalues of ZTSZ¥S. Using the basic idea
of ESPRIT [28], we have

E, = (¥ O MA)T = BT (20)

where B = ¥ © MA, and T is a unique 2K x 2K non-
singular matrix. Next, define the following two selection
matrices

J1 =[Ier — 6,06P — 6)x6],J2 =[0@6P — 6) x 6:ler — 6] (21)

and let By = J;B and B, = J;B. The shift invariance
structure in B indicates that

B, = B1® (22)

where
d — dlag [@iwl'lAT, ejw1,2AT’ e, e]'CUK,lAT’ efw](,ZAT] (23)
From (20) and (22), we obtain
T-'eT = ElE, (24)

where E; = J1E; and E; = J,E,. Consequentially, the
ESPRIT’s eigenvalues, i.e., the eigenvalues of EIEQ equal
the diagonal elements of ®, and the ESPRIT’s right eigen-
vectors constitute the columns of T. Thus, the matrix B;
may be estimated as

.1
Bi=_ (BT + ET o'} (25)
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Note that the matrix B; has the form

T
B = [Qf.Qf Q)] (26)
T
= [QT, Q)7 (Qe®?) ]
where Q = MA. Therefore, the matrix Q can be

estimated from l§1 as

1 P-1
O — - @-D
Q P_ lpngp

(27)

It should be pointed out that the estimated Q would suffer
the unknown scaling ambiguities of the columns. That is,
the columns of the estimated Q in fact satisfy

DRk -1 = 2kCVie que = a2 Cvak (28)
@k —1 = A xCvak Qi = a2 Cvig (29)
where qox — 1, Qo and Qox — 1, Qo kK = 1,- -+, K, respec-

tively, denote the top three and bottom three rows of
the (2k — 1)th and (2k)th columns of Q, a;j and &,
1,2,j = 1,---,K represent the unknown scalars.
Note that since gx # 1, «;; is in general unequal to @;;.

The scaling ambiguities can be easily eliminated in the
proposed method. Using qox = a94xCvyx, we can form
the following three equations:

i =

ag(— c1singr + cp cosdy) Qok,1 (30)
ag(—casingg + crcosdy) = qokp (31)
ag(—casingg + cacosdy) = qois (32)

where gor1, qokp, and gor3 are, respectively, the
first, second, and third entries of qo. Solving these
three equations yields the azimuth angle and coupling
coefficient estimates:

ér = arctan <q2’<1_‘72’<3) (33)
92k3 — 922
A 1 {qoka cosdr + qox sin P
¢ = = = — ~
2 \ qor1sindr + qok,2 cos Py
+ q2k,3 COS ¢3/(
q2k,2 COS Qi + qok3Sindr — gok,2 Sin Py
(34)

With the estimation of the coupling coefficient ¢, we can
construct an estimate of the mutual coupling matrix C as

~

C = (35)

N> O =
N> = O
= 0> O

It is easy to see that the matrix product CC becomes
a scaled identity matrix. This means that the mutual
coupling coefficients, which constitute the non-diagonal
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elements of C, are completely eliminated. With the esti-
mation of ¢y and ¢, using qox =
the following three equations:

& xCvy k, we can form

Qo k (cos Prcos® + Csingycos® — Esin 9) = Gok,1
(36)

Aok (6 cos Py cos + singycosd — Esin 9) = Gok2
(37)

Ak (8 cos dp cos® + Csingycos® — sin 9) = ok 3
(38)

Solving these three equations leads to the elevation angle
estimates

Qi3

6 = arctan <6 (cos dr + sin ¢A>k> S S
9241 — q2k,2

(39)
x (1 — ¢ (cosd;k — sinqgk)>

Note that the estimation of ék and ¢A>k are automatically
paired without any additional processing.

In practice, apart from the scaling ambiguities, the esti-
mated Q may also suffer from some permutation ambigu-
ities. In this case, qox may not be the estimate of ap Cvy «.
Thus, the estimation of ¢; and ¢ obtained by using (33)
and (34) from qyx may be erroneous. These may fur-
ther result in the erroneous estimation of 9. Unlike the
scaling ambiguities, the permutation ambiguities are not
resolvable. Here, we provide a solution to deal with this
permutation ambiguity problem as follows: first, for all
k = 1,---,2K, obtain a set of 2K different azimuth
angle estimates from qy. Each of these 2K azimuth angle
estimates is then used to produce its own coupling coeffi-
cient and elevation angle estimates. Thus, the kth azimuth
angle, elevation angle, and coupling coefficient estimates
are automatically matched. We know that only a set of
K estimates are true estimates. Theoretically, the K true
coupling coefficient estimates are identical, while the K
erroneous coupling coefficient estimates are, in general,
distinct from one another and from the K true estimates.
Therefore, we can take homogeneity in coupling coeffi-
cient estimates as a criterion for determining the true
estimates of the angles and coupling coefficients, i.e., we
take a set of K angle estimates associated with K iden-
tical coupling coefficient estimates as the true estimates.
Without loss of generality, let us assume that the first K
estimates are true and the last K estimates are erroneous;
then,wehave¢; = ---=¢x = ¢ # Cx+17# -+ #* Ck-
Finally, we obtain the estimates (ék, ¢;k),k =1,---,Kas
the angle estimates of the K signals.
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3.3 Remarks

In the presence of noise, the estimation procedures in
Section 3.2 becomes approximate. Specially, with noise,
the set of K coupling coefficient estimates are in general
different. Nevertheless, we can search for a set of K cou-
pling coefficient estimates with “most similar values” as
the “identical” estimates.

Also note that the vector cross product estimator has
been widely used for direction finding with a single-
vector sensor [2, 3, 7]. However, this estimator cannot
be exploited directly in the presence of mutual coupling
among the vector sensor components. Obviously, with
the estimation of ¢, the vector sensor can be calibrated
by using the calibration matrix defined as M = L®
C. Therefore, the vector cross product estimator can be
applied to the calibrated data matrix MZ to extract the
angle estimates of the incoming signals. Although the pro-
posed method is designed for vector sensors with mutual
coupling, it can also be applied to ideal vector sensors,
where the measurement of each component is indepen-
dent of the others.

The proposed method shares all the advantages indi-
cated in [3]. For example, it offers automatically paired
azimuth and elevation angle estimates, does not restrict
AT to be constricted by the Nyquist sampling rate, does
not need the signal frequencies to be known a priori, and
suffers no frequency-DOA ambiguity. It should be noted
that the method in [3] assumes CP signals, whereas the
proposed method assumes IP ones.

Lastly, it should be pointed out that the application of
ESPRIT technique for vector sensor mutual coupling cali-
bration has been studied in works [22] and [23]. However,
the differences between these two works and the present
work are that (1) the former requires a coupling-free aux-
iliary vector sensor and design of a reference signal, while
the latter does not, (2) the former does not apply the tem-
porally smoothing technique to improve the identifiability
limit of a vector sensor, and (3) the former assumes the
incoming signals are completely polarized, while the latter
considers the incompletely polarized signals.

4 Cramér-Rao bound

This section derives the CRB for the problem considered
above, under the assumptions made in Section 2. Fur-
ther, the following assumptions are added: (i) we assume
¢1 = landcy; = ¢ # 1 due to the fact that the vector
sensor can be calibrated with the estimation of ¢ = ¢3/c;.
(ii) Since the spatial phase factor g; between the dipole
triad and loop triad is considered as a scalar constant in
the proposed method, we assume gy = 1,k = 1,---,K
for convenience. (iii) The energies, frequencies and initial
phases of the signals are presumed as known constants.
(iv) The 6 x 6 noise covariance matrix R, is presumed
as unknown, deterministic, and diagonal with all diagonal

Page 6 of 11

elements equal to o2, Hence, the observation data satisfies
the following model:

2(nA1) ~ CN (r(n),0°1) (40)

where p(n) = Y} MAgsg(nAr),n = 1, ,N.
Define a (2K + 2) x 1 unknown parameter vector 6§ =
T
[cT,olT,--- ,0;] , where ¢ = [Re(c),Im(c)]” and 0; =

[0k, ¢x1T. Then, the (2K 42) x (2K +2) Fisher information
matrix (FIM) is given by

N H
owm\" .y (dum
J0) = 2 Re ( ) R, ()”(41)
Z{ [ T T

where the elements of du(n)/90 are

K
=) (Lo ®C)Aisi(nAr) (42)
dRe(c) P
K
om(m) .
Sime) ~ Y (1, ® C)Acsi(nAr) (43)
k=1
ap(n)
25 = 2 ®ONs(nAT) (44)
ap(n)
b (I ® C)A}, sx(nAr) (45)
where
011
cC=]|101 (46)
110
6
r vk 0
= 4
¢ ¢
Al = |:v(%k Y2k } (48)
Vok “Vik
with V? « =[—cosgysinb, — sin ¢y sin O, — cos O] T,
v‘fk = [ — sin ¢y cos Ok, cos ¢y cos Ok, 01T, and V?k =

[ — cos ¢, — sin ¢, 0] 7. Note that J(9) can be expressed in
a block matrix form as

o Tk
- Jouox

Ic,c ]c,() 1

]91,(1 ]01,01

J(0) = (49)

]91(,0 ]01(,91 e ]01{,01{
where all the blocks are of size 2 x 2. Using the fact that for
large N, % fozl s,'(nAT)s;.‘ (nAT) = 8;j, where §;; denotes
the Dirac delta, J(#) would asymptotically have the form

](0) — [ ]c,c ]c,@ ]

Jo.c Joo (50)
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where

Joo=Jle =eoi »Jeor] (51)

Jo..0,
Joo = (52)
Joi.0x

Finally, computing the inverse of the FIM, we obtain the
following closed-form expression for the CRB:

K -1
Z <]C,9/<]0k1,0k]9/<:‘3>) (53)

k=1

o

2
CRB(C) = E (]c,c -

o2 — -1
CRB(®) = - (Jo.0 ~Jo.Jcclco) (54)
where
Jeo = Jim(o)im(e) 12 = JRe(e),Re(c) 12 (55)
]Re(c) O ]Re(c) Dk ]
1. — : : 56
Jore =Jeo |:]Im(c),9k Jim(e).¢x (%0
Jowor Joro
Io,o:[ o Ok k,k] (57)
fBk J6x Tonn
with
K
Jre@,Rete) =2 Y ((Cvi0" (Cvip) + (Cva )" (Cvap)
k=1
(58)
JRe(o), = 2 ((C’vlyk)H (Re(C)v‘jk)) (59)

Tre@a =2 (€10 (Re(@], ) +(Cvap (Re(CvE,))
(60)

Jimoar =2 ((€v1,0" (Im(©)¥],)) (61)

Jim(e) 4 =2 ((C’vl,k)” (Im(C)v‘lb,k>+ (Cvplt (Im(C)v‘f’k»

(62)
Josp = 2 <(Cv§,k)H (Cv(ik)) (63)
Jorsi = Jorb =2 ((CV?,/(>H (C"(f,k>> (64)

oo =2((01)" () + (o8)" () )65

(2018) 2018:14
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5 Simulation results and discussion

5.1 Simulation results

In this section, we provide simulation results to illustrate
the performance of the proposed ESPRIT-based method.
In all the simulations, the vector sensor is assumed to
be spatially collocated with the mutual coupling model
defined in (12). The mutual coupling coefficient used is
¢ = 0.1e7/7/*, The additive noise is assumed to be spatial
white complex Gaussian, and the SNR is defined relative
to each signal. The result in each of the examples below
is obtained from 500 independent Monte-Carlo trials. For
comparison purposes, three different methods are consid-
ered. The first method is to apply the vector cross product
estimator to the measured data directly. This method is
hereafter referred to as “VCP Estimator without calibra-
tion” The second method is based on the condition that
the mutual coupling coefficient is known a priori, and
the vector cross product estimator is applied to the per-
fectly calibrated data. This method is referred to as “VCP
Estimator perfect calibration” The third method is the
auxiliary sensor calibration method presented in [22]. The
performance metric used is the root mean squared error
(RMSE) of the two signals.

In the first example, we present the scatter diagram
of the azimuth-elevation angle estimates of four source
signals in Fig. 2 to show the effectiveness of the tem-
poral smoothing technique. The angles of signals are
set as (0y,---,64) = (24.35°, 12.92°, 21.13°, 39.82°) and
(@1, ,¢a) = (75.96°, 26.57°, 33.69°, 51.34°). The SNR is
assumed to be 25 dB and N = 15 data samples are used.
P = 8 is used for performing the temporal smoothing
processing. From the figure, we can see that the proposed
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Fig. 2 Angle estimation result for four source signals. The angles of
signals are setas: (61, - - - ,64) = (24.35°,12.92°,21.13°,39.82°) and
(1, . ¢a) =(75.96° 26.57°,33.69°, 51.34°). Five hundred
independent experiments are conducted
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method successfully resolves the four signals, as stated in
Theorem 1: N > 4K — 1.

In the second example, we study the performance of
the proposed method with different temporal smoothing
dimension P. Two equal-power narrowband uncorrelated
monochromatic IP signals with randomly chosen digital
frequencies impinge upon the vector sensor with angles:
01 = 21.13°, ¢; = 33.69° and 6, = 39.82°, ¢ = 51.34".
The number of snapshots and SNR used are, respectively,
N = 200 and SNR = 25 dB. The RMSEs of angle esti-
mates as a function of the value P, varying from 8 to 40, are
shown in Fig. 3. We see from the figure that the estima-
tion errors remain almost unchanged with the increasing
of value P.

In the third example, we compare the performance of
the proposed method with the VCP Estimator without
calibration, VCP Estimator perfect calibration, and auxil-
iary sensor calibration method. The simulation conditions
are similar to those in the second example, except that
the SNR is varying from 0 to 40 dB in steps of 5 dB. The
RMSEs of angle estimates are shown in Fig. 4, where the
CRBs are also plotted for comparison. We see from the
figure that the proposed method has a performance sig-
nificantly superior to that of the VCP Estimator without
calibration. For azimuth angle estimation, the proposed
method outperforms the VCP Estimator perfect calibra-
tion and auxiliary sensor calibration method at all SNRs.
For elevation angle estimation, the RMSEs of the pro-
posed method are slightly greater than those of the VCP
Estimator perfect calibration and auxiliary sensor cali-
bration method. This phenomenon can be explained as
follows. Referring back to (33), (34), and (39), the pro-
posed method obtain the estimates of azimuth angles,
coupling coefficients and elevation angles in a successive
way, and the estimation of the elevation angles is based
on the previous estimations of the azimuth angles and
the mutual coefficient. Consequently, the errors in the
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azimuth angle and coupling coefficient estimates will pro-
duce additional errors in the elevation angle estimates.
Note that, with the estimation of coupling coefficient, the
estimation performance for elevation angle can be further
improved by statistically optimal algorithms such as maxi-
mum likelihood algorithm and subspace fitting algorithm.
Incidentally, since the estimate errors are a bit bigger than
CRB, the proposed method might be biased.

In the fourth example, we assess the performance of
the proposed method versus the number of snapshots.
The simulation conditions are similar to those in the sec-
ond example, except that the SNR is set at 20 dB and the
number of snapshots is varied from N = 20 to N =
2000. The RMSEs of the angle estimates are plotted in
Fig. 5, and compared with those of the VCP Estimator
without calibration, VCP Estimator perfect calibration,
auxiliary sensor calibration method, and the CRBs. We
see from Fig. 5 that the results are similar to those of
the first example. The RMSEs of the proposed method
decrease monotonically with the number of snapshots.
Moveover, for azimuth angle estimation, the RMSEs of the
proposed method are lower than those of the VCP Esti-
mator perfect calibration and auxiliary sensor calibration
method.

In the last example, we investigate the RMSEs of angle
estimates for the proposed method against the coupling
level, which is represented by coupling coefficient ¢ =
pe™/* varying low (p = 0.1) to high (o = 0.9). One IP
signal with 6 = 21.13°, ¢ = 33.69°, and randomly chosen
digital frequencies impinges upon the sensor. The num-
ber of snapshots and SNR used are, respectively, N = 200
and SNR = 25 dB. The RMSEs of angle estimates as
a function of the value p are shown in Fig. 6. We see
from the figure that the proposed method can handle both
low and high coupling levels, since the estimation errors
remain almost constant with the increasing of coupling
coefficient p.
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5.2 Discussion

The proposed method is valid only for the case of K > 2.
If there is only one incoming signal, this method can-
not be used. In this case, the temporal smoothing process
is not necessary, and a method for determining the true
estimates is formulated as follows: let E,, be the 6 x 4
noise-subspace eigenvector matrix whose four columns
are the 6 x 1 noise-subspace eigenvectors associated with
four smallest eigenvalues of ZZ'. For the two sets of esti-
21,0041, (22 éz,é’z)
which one is the true one by first constructing the matri-
cesIr) ® élAl and I, ® CZAZ, and then taking (61, 91, (1;1)
to be the true estimates if

mates { ( ], we may determine as to

~ ~ 7H ~ ~ 1H
H@@Qm]h<<@®gm]m

or (Ez, 6, ¢2> otherwise, where ||-|| denotes the Frobenius
norm.

6 Conclusions

The present paper has considered, for the first time,
the direction finding using a single-vector sensor in the
presence of mutual coupling. The temporal smoothing
technique has been applied to improve the identifiability
limit of a single vector. In particular, sufficient conditions
for constructing temporally smoothed matrices to resolve
K > 2 incompletely polarized (IP) monochromatic sig-
nals with a single vector sensor have been established. An
efficient ESPRIT-based method, which does not require
any calibration sources or iterative operations, has been
developed to jointly estimate the azimuth-elevation angles
and the mutual coupling coefficients. The CRB for the
considered problem has also been derived. Simulation
results have been presented showing the superiorities of
the proposed method.
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