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Abstract

Effective monitoring of degenerative patient conditions is crucial for many clinical decision-making problems.
Leveraging the nowadays data-rich environments in many clinical settings, in this paper, we propose a novel clinical
data fusion framework that can build a contemporaneous health index (CHI) for degenerative disease monitoring to
quantify the severity of deterioration process over time. Our framework specifically exploits the monotonic
progression patterns of the target degenerative disease conditions such as the Alzheimer's disease (AD) and articulate
these patterns with a systematic optimization formulation. Further, to address the patient heterogeneity, we integrate
CHI with dictionary learning to build sets of overcomplete bases to represent the personalized models efficiently.
Numerical performances on two real-world applications show the promising capability of the proposed DL-CHI model.
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1 Introduction

In this paper, we concern the problem of patient risk
monitoring that is to characterize the trajectory over the
course of progression. Although there is no universal def-
inition of the concept “patient condition,” it has been
a crucial concept in the communications between clini-
cians and frequently referenced by healthcare providers.
Developing a precise contemporaneous longitudinal index
(CHI) that can faithfully reflect the underlying patient
condition across the course of the condition’s progres-
sion holds great value for facilitating a range of clinical
decision-makings. For instance, it will help early detec-
tion of patient deterioration to help reduce the number
of serious incidents, i.e., it is reported that 11% of seri-
ous incidents are a function of deterioration not acted
upon mainly due to the failure to recognize the sign of
deterioration [1, 2]. It will also help enhance the continu-
ity of care since a longitudinal perspective of the patient
condition can be provided for clinicians and healthcare
providers. Also, it may ultimately lead to development of
control system engineering that can implement adaptive
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interventions for better healthcare management [3-6],
with a global representation of the dynamic condition in
evolution.

Towards this goal, technological innovations are emerg-
ing in many healthcare applications, which have given
rise to a data-rich environment where an abundance of
longitudinal clinical measurements that reflect the degen-
eration of the health condition can be continuously col-
lected. For example, to monitor the surgical site infection
(SSI), daily wound measurements, such as the temper-
ature, granularity, and distance of the wound, could be
acquired to assess the condition of the wound, together
with other non-wound-related but important clinical sig-
nals such as heart rate, morning body temperature, NG
tube presence, etc. However, particular data characteris-
tics present challenges that call for specialized data fusion
models to predict patient conditions using the multivari-
ate longitudinal data. For instance, as these multivariate
longitudinal data are actually temporal realizations of an
underlying disease progression in different dimensions,
how to leverage our knowledge of the disease progres-
sion process to fuse the data is a challenge. Also, the
fact that these data are usually sampled at irregular time
points adds in another layer of complexity. And even if we
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could fuse the data properly, the existence of patient het-
erogeneity multiplies the complexity of the problem that
calls for a generic framework to personalize the model
based on individual’s characteristics implicitly embedded
in data.

To tackle those challenges, we propose a novel frame-
work, named as DL-CHI, that focuses on a particular
category of disease conditions that follow a monotonic
disease progression process. In our previous work [7], we
have developed a contemporaneous health index (CHI)
that fuses the irregular multivariate longitudinal time
series data to quantify the severity of degenerative dis-
ease conditions to fit the monotonic degradation process
of the disease condition. However, CHI is designed for
average user and ignores the patient heterogeneity and
therefore limits their applicability in real-world applica-
tions. For example, it is known that patients of Alzheimer’s
disease (AD) suffer from very diverse and heteroge-
neous progression processes [8—10]. A possible remedy
is to build personalized model on an individual’s basis.
However, this demands a great amount of labeled train-
ing samples, which are very likely not feasible in many
clinical settings.

Thus, this motivates us to develop the DL-CHI frame-
work by integrating CHI with dictionary learning [8, 11].
The basic idea shared by the dictionary learning algo-
rithms is that the input signal is approximated with a
sparse linear combination of a few dictionary elements
or basis [12]. DL has been used in many signal pro-
cessing applications, such as signal reconstruction [13],
face recognition [14], and healthcare [15, 16]. The dic-
tionary basis provides a succinct representation that can
span the space of the personalized models to capture the
patient heterogeneity and reveal the hidden structures
in the data (in a similar spirit as principal component
analysis). It has been shown that the performance of a
classification task can be improved by learning a sparsi-
fying dictionary from the data set. [17, 18]. The reason
is that the sparsifying dictionary actually plays a role in
the regularization of the model learning, as the dictio-
nary basis vectors are numerical representations of patient
heterogeneity. Translating this wisdom into DL-CHI, our
basic idea is to first learn individual models through the
CHI formulation and then reconstruct the model param-
eters of the learned individual models via supervised
dictionary learning. Each column of the dictionary rep-
resents a basis vector. As such, each individual model is
represented as a sparse linear combination of the basis
vectors.

The paper is organized as follows. In Section 2, related
work in the literature will be reviewed and discussed.
In Section 3, the proposed analytic framework will be
presented, and the corresponding computational algo-
rithm will be derived. In Section 4, the proposed method
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will be implemented and validated using two real-world
applications; one is for monitoring of brain health in AD
and the other is monitoring of SSI. We will conclude
the study in Section 5. Note that, in this paper, we use
lowercase letters, e.g., x, to represent scalars, boldface
lowercase letters, e.g., v, to represent vectors, and boldface
uppercase letters, e.g., W, to represent matrices.

2 Related works

2.1 The CHI model

The CHI model is developed in [7] which specifically uti-
lizes the monotonicity of disease progression to enhance
the data fusion of multivariate clinical measurements
taken at irregular time points. In this section, we will first
briefly present the basic formulation of the CHI model
and then present the DL-CHI model that integrates CHI
with dictionary learning for personalized models.

The CHI model was motivated by the common char-
acteristics of many degenerative conditions such as AD
which shows monotonic progression trajectory. For exam-
ple, for AD, a number of biomarkers have been devel-
oped to measure the degeneration of the neural systems,
including the neuroimaging modalities such as PET and
MRI scans [19, 20]. It is typical to see that, along with
the disease progression, the brain volumes shown in the
MRI scans continue to shrink over time. The same phe-
nomenon could be observed on the PET scans with the
persistent decrease of metabolic activities. Those mono-
tonic patterns indicate that the disease progression, once
started, tends to be worse and worse.

The task of CHI is to translate multivariate longitudinal
measurements into a contemporaneous health index /4,
that captures patient condition changing over the course
of progression. Note that different individuals could be
measured with different length of time and at different
time locations. As we target degenerative conditions, CHI
should be monotonic, i.e., l1,;, > hyuy, if t1 > £, if we
assume that higher index represents more severe condi-
tion. Since CHI is a latent construct that is not directly
measurable, clinical variables associated with it can be
measured over time, which provide us data to learn it.

Denote the training set by x,,; = [x,,,llt, ey x,,,d,t]T e R4
collected from N patients. Here, each measurement x,, ;;
is the value of the ith variable for the nth subject for a given
time ¢, where t € {1,...,T,} is the time index. Convert-
ing the measurements x,,; into %, ; needs a mathematical
model for 4,; = f(xu;:). Here, for simplicity and inter-
pretability, we start with the linear models, i.e., h,; =
Xn: - W, where w € R? is a vector of weight coefficients to
combine the d variables. Denote the total number of posi-
tive and negative samples by N and N~ respectively, i.e.,
N* = |{nly, = 1}] and N~ := [{nly, = —1}].

The formulation of the CHI learning framework is
shown in below:
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Items in (1) can be explained as follows:

e The first term (1a) and second term (1b) are the SVM
formulation that aims to utilize the label information
to enhance the discriminatory power of CHI. Here,
yn € {1, —1} is the label of the nth sample that
indicates if the nth subject is diseased or not.

e The term (1c) is invented to enforce the
monotonicity of the learned health index, i.e.,

Hpt, > Ny, if 81 > to. Here, 2, is the difference of
two successive data vectors Zyt = Xpt+1 — Xpt-

e Jtems (1d) and (1f) are invented to encourage the
homogeneity of CHI within the group that has the
same health status. Here, i‘;ﬂ and X represent the
center of data vectors at time T, for all positive and
negative samples, respectively, that are:

1
xt .—
X, =T E Xn, T,
ne{nlyn=1}

__ 1
XTy[ :=]\T Z

ne{nly,=—1}

le,Tn .

e The last term, (1f), is the L;-norm penalty that is used
to encourage sparsity of the features.

Note that the proposed formulation generalized many
existing models, such as SVM, sparse SVM, LASSO, etc.
The CHI model could be efficiently solved by using the
block coordinate descent algorithm that is illustrated in
Appendix: “CHI model formulation” section.

2.2 Dictionary learning

Developing models like CHI helps us to capture changes
in various aspects of the disease trajectory. But as CHI
assumes the same model for the whole population, it
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ignores heterogeneity of degenerative diseases and there-
fore limits its applicability in real-world applications that
have shown great patient heterogeneity [21, 22]. Recently,
it has been shown that learning a dictionary can over-
come the above limitations [14, 23, 24]. The basic idea
of dictionary learning algorithms is to approximate train-
ing samples as a sparse linear combination of the few
dictionary elements. Hence, dictionary learning algorithm
can be considered as a way to represent low-dimensional
structure of high-dimensional data.

DL was applied to many applications and achieved state-
of-the-art performances, such as image denoising [13] and
inpainting [25], clustering [26, 27], classification [28, 29]
etc. It is known that the conventional DL framework was
designed for a reconstruction task instead of adapting
to classification. It is believed that classification perfor-
mance will be further improved if we carefully learn a
classification-oriented dictionary. For instance, in [12] a
sparse representation-based classification (SRC) method
was proposed for robust face recognition and achieved
very impressive results. SRC treats the original data set
as a dictionary, wherein the class-specific training sets are
sub-dictionaries contributing to discrimination. Inspired
by SRC, Yang et al. proposed a meta-face learning [14] to
learn an adaptive dictionary for each class, and Ramirez
et al. [17] added another term to derive more delicate
classification-oriented dictionaries.

The use of dictionary learning for personalization of
prediction models is also achieved by proposing novel
transfer learning approaches. For example, in [6] per-
sonalization task was performed in two phases: learning
user-specific source classifiers and learning a distribution-
to-classifier mapping via implementing dictionary learn-
ing. Another approach is to perform multi-modal
task-driven dictionary learning algorithm under the joint
sparsity constraint to enforce collaborations among multi-
ple homogeneous/heterogeneous sources of information.
In task-driven formulation, the multi-modal dictionaries
are learned simultaneously with their corresponding clas-
sifiers. The resulting multi-modal dictionaries can gen-
erate discriminative sparse codes from the data that are
optimized for a given task such as binary or multi-class
classification [30].

There are various dictionary learning algorithms that
are effective for classification tasks [31-34]. Zhang and Li
proposed discriminative K-SVD to simultaneously achieve
a dictionary which has a good representation power while
supporting optimal discrimination of the classes [33]. The
name K-SVD refers to updating a dictionary with K vec-
tors. A collection of training vectors corresponding to the
dictionary vector in its approximation are taken by min-
imizing the Frobenius norm of the approximation error
by solving for the dictionary vector at each iteration.
This algorithm starts with an initial dictionary and initial
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sparse code coefficients, and then, one dictionary vector is
updated at each iteration. The corresponding sparse coef-
ficient is changed before proceeding to update the next
dictionary vector. The minimization is done through sin-
gular value decomposition (SVD). Another example is the
iterative least squares dictionary learning algorithms (ILS-
DLA) presented in [31, 32], where assumes known sparse
code coefficients at each iteration and derives the best
possible dictionary using either the orthogonal match-
ing pursuit (OMP) or Focal Under-determined System
Solver (FOCUSS). ILS-DLA method deploys a second
order update which makes it nearly impractical in reason-
able dimensions due to its matrix inversion step. Another
example is the recursive least squares dictionary learn-
ing algorithm RLS-DLA, which is an online alternation of
ILS-DLA. In the online alternation, each training signal is
processed one at a time to improve the dictionary. One
of the larger challenges with ILS-DLA and K-SVD is to
find a good initial dictionary. The online nature of RLS-
DLA prevents getting stuck in a local minimum close to
the initial dictionary contrary to the K-SVD and ILS-DLA.
RLS-DLA uses the forgetting factor to improve the con-
vergence properties of the algorithm and hence makes the
algorithm less dependent on the initial dictionary. How-
ever, RLS-DLA method requires to permute the order of
training vectors and adapt the forgetting factor to satisfy
the randomness and convergence properties of the online
nature of the algorithm.

There are several properties that should be consid-
ered in the search for a successful dictionary training
algorithm. Flexibility: The algorithm should be flexible
enough to run with various sparse approximation algo-
rithm such as pursuit algorithm which involves finding
the best projections of input signal onto the span of
an overcomplete dictionary D. The flexibility property
would enable different choices in favor of run-time con-
straints. Usually, methods that are flexible enough would
separate the dictionary updates with sparse coding stage.
Adaptivity: An overcomplete dictionary D either can be
chosen as a pre-determined set of functions or designed to
iteratively getting updated to better fit the data. Choosing
a pre-specified dictionary is appealing because it is sim-
pler and may lead to a fast algorithm. However, the dictio-
nary that leads to the best representation for each member
in this set, under strict sparsity constraints, is needed.
Such dictionaries have the potential to outperform the
commonly used pre-specified dictionaries. Efficiency: A
dictionary learning algorithm should lead to a numerically
efficient and fast convergence. For example, ILS-DLA has
a second-order update which makes it nearly impractical
in reasonable dimensions.

K-SVD algorithm is flexible and works with any pursuit
algorithm. In addition, it leads to the best representa-
tion for each training vector. Given the merits of DL
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in overcoming heterogeneity of models, and the classi-
fication performance, here we used the idea of DL and
developed the DL-CHI framework using K-SVD dictio-
nary learning algorithm. Therefore, we reconstructed our
model parameter of each individual sample to be linear
combination of dictionary elements. We further com-
pared our methodology with CHI and other dictionary
models K-SVD, ILS-DLA, and RLS-DLA. Note, that DL-
CHI formulation is personalized and not designed for
average users unlike the above methods.

3 The proposed DL-CHI model

3.1 Rational and formulation

To extend CHI for personalized models, our approach is
built on the dictionary learning framework [35]. As we
have mentioned, the dictionary learning aims to iden-
tify a set of representative vectors that could characterize
the low-dimensional structure embedded in a high-
dimensional vector space [36—38]. Particularly, here, tak-
ing the model parameter vectors of all the individuals as
the high-dimensional vector space, we seek a dictionary to
represent these model parameter vectors. The dictionary
will be learned from data, and it helps regularize the learn-
ing of the models since it requires the model parameter
vectors to be (sparse) linear combination of the dictionary
bases. The whole pipeline of this DL-CHI model is shown
in Fig. 1.

From this point of view, the dictionary learning could be
viewed as a trade-off made between two extremes. In one
extreme, there is only one model for all the individuals,
i.e., the “one-size-fits-all” model. On the other extreme,
there is one distinct model for all the individuals and
these models are all independent with each other. As a
trade-off, dictionary learning exploits the dependency and
difference of the individuals simultaneously.

To fulfill this idea, here, we denote the set of model
parameter vectors of all the individuals as W* =
[wik LWL ,w}“\[], where w} represents weight coeffi-
cient vector of the i patient learned from the CHI model.
Using dictionary learning, we aim to find an overcom-
plete dictionary D € R?*¥ that contains k independent
columns referred as the basis vectors, {di}f‘zl. A model
parameter vector w* can be represented as a linear com-
bination of these basis vectors, satisfying the approxima-
tion condition w* ~ Da, where a is the coefficient vector
which can be considered as the representation of w* over
the dictionary D.

In order for D to be flexible and robust to noise, we
set the dictionary to be overcomplete (k > d). On the
other hand, given any w* with a overcomplete dictionary,
we need to find the smallest set of basis vectors from
the dictionary to represent it. When we set the dictio-
nary to be overcomplete, an infinite number of solutions
are available for the representation; hence, constraints on
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Fig. 1 A conceptual overview of the DL-CHI method
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the solution must be set. The solution with the fewest
number of nonzero coefficients in a to represent w* is cer-
tainly an appealing representation. This strategy is called
sparse coding that is often used in dictionary learning
representations. In this setting, sparse coding amounts to
computing the following:

N
{A,D} _%; |[wi — Da; |, + 21 llaillo .
. 2
=min [W* —DA|; + 1 Al

Here, ||-||o is the % norm, counting the nonzero entries of
a vector, and A = [ay,...,ay] is the coefficient matrix
of the sparse decomposition. In order to achieve sparse
representations given a set of training vectors, we adapt
a dictionary that leads to the best representation for each
vector in this training set, under strict sparsity constraints.

3.2 Computational algorithm

In DL-CHI, we used the K-SVD dictionary learning algo-
rithm [39, 40] for sparse representation as an optimization
problem, which can be efficiently solved via orthogonal
matching pursuit (OMP) and singular value decomposi-
tion (SVD). The K-SVD approach is an iterative procedure
that consists of two steps, and both steps in the algo-
rithm are coherent with each other, working towards the
minimization of the overall objective function.

First, we considered the sparse coding stage where we
assumed that D was fixed and considered the optimiza-
tion problem in (2) as a search for sparse representation
with coefficients summarized in the matrix A. The spar-
sity term of the constraint was relaxed so that the number
of nonzero entries of each column a; could be more than

1 and less than a number Tj. In doing so, the relaxed
objective function becomes:

Vi, |aillg < To,i=1,2,...,N
(3)

ngn |wr — Da,'||§ s.t.

In (3) D was first fixed such that we could focus on
learning the coefficient matrix A using the orthogonal
matching pursuit method, as long as it could supply a solu-
tion with a fixed and predetermined number of nonzero
entries Top. OMP is an iterative greedy algorithm that
selects the column best correlated with the residual part of
the signal and represents the sub-optimal solution to the
problem of sparse signal representation. The major advan-
tage of the OMP is its simplicity and fast implementation.
The problem in (3) consists of N distinct problems.

With a learned A, we searched for the best dictionary
D. The search process is to update only one column of
the dictionary, dy, at each time corresponding to i row
in A, denoted as a’T (this is not the vector a; which is the
i column in A). The process of updating only one col-
umn of D at a time has a straightforward solution based
on the singular value decomposition (SVD). The prob-
lem becomes looking only at the training vectors that uses
only one column of the dictionary vector in its approxima-
tion, minimizing the approximation error E;. The matrix

Ep = W* — Z}]«;k d;a; stands for the error for all the

training samples when the kth basis is removed, and a’%
is the kth row in A. The SVD finds the closest rank-1
matrix (in Frobenius norm) that approximates E. Hence,
we re-wrote the penalty term in (3) as:

N
2_[[w; = Dail; = ||w* - DAJJ; @
i
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The notation ||A||r stands for the Frobenius norm,

defined as ||Al|f = /ZijA?j. Then, the penalty term in

(2) can be rewritten as:

2
k
[W = DA|[; = |\w* 3 djay

j=1 F

2

ko (5)
=|[| W= da; | - dal
j#k F

2
k
= [Ec - @t |,

Hence, we updated the HEk — dkakT’ i, assuming fixed
coefficients A and error E;. The constraint is over the jth
orthonormal basis D;. By decomposing the multiplication
DA into the sum of K rank 1 matrices, we can assume that
the other K — 1 terms were fixed, and the kth remains
unknown. Then, the singular value decomposition finds
the closest K — 1 terms that approximate Eg, and this will
effectively minimize the error in Eq. (5).

The above solution of vector a/; is very likely to be
filled, because the sparsity constraint is not enforced.
To enforce the sparsity constraint, we define wy as
the group of indices pointing to examples w; that use

basis d; and entries of a]% (i) that are non-zero. Thus,

Wi = {i|1 <i< N,al% @) #£ O}. Then, we compute E; =

MR
sponding to wk. We then apply the SVD decomposition
Ef = UAVT. The solution for d is the first column of U,
and the updated coefficient vector is the first column of
U x AL 1).

2
- by only choosing columns corre-

3.3 Summary of DL-CHI

Putting all together, an overview of the DL-CHI method
can be seen from Fig. 2. A full description of the DL-CHI
algorithm is also given in Algorithm 1. It can be seen in
Algorithm 1 that we have to learn W, A, and D. We split
the algorithm into two phases for learning personalized
CHI and dictionary learning. In the phase I, we intend
to solve w* via CHI using the Algorithm 2 described in
Appendix: “Algorithm” section. In this phase, we learn the
model parameter vectors of all individuals, which lead to
the construction of the matrix W*. In the phase II, we
use the K-SVD method to learn the dictionary by first
computing the best representation matrix A via (3) using
the matching pursuit algorithm and then searching for
the best dictionary. With a learned dictionary, the repre-
sentations of the individual’s models could be identified
and further used as the final individual models. Specifi-
cally, from the dictionary algorithm we can find the the
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low-dimensional structure of the model parameter matrix
W* ~ DA, where each column of W* is a reconstructed
model parameter vector of each individual to be linear
combination of dictionary elements.

Algorithm 1 The DL-CHI algorithm

Require: DO ¢ R4k W+ ¢ R4*" and A € R

Ensure: Find a dictionary D € R?*X, and a corresponding
coefficient matrix A € R**” such that the represen-
tation error, R = W — DA is minimized and A fulfill
sparseness criterion

1: while not converge do
2 Start iterations t:= 1,2,...do
3 Update A
4 fori=1,2,...,N,
5: Ay = minai HVVZk — D(til)ai| |§ Vi, |laillg < To
6: end for
7: Update D
8 for k = 1,...,k Update the ky, column of D®:
9 Define wy = {i|l < i < d,ak. (i) # 0}
10: Compute: Ex = W* — 37, d(t)a(;)
11 In Eg, choose only columns corresponding to wy
12: Apply the SVD to the corresponding Ey
13: E;, = UAVT,
14: The updated dj is the first column of U.
15: The updated al% is first column of U x A(1,1).
16: end for
17: Reconstructed individual model parameter: W* ~ DA

4 Numerical studies

4.1 Real-world applications

We implement the DL-CHI model on two real-world
datasets that were collected in Alzheimer’s disease (AD)
and surgical site infection (SSI) research. Both diseases
exhibit monotonic disease progression and significant
patient heterogeneity. For the Alzheimer’s disease data,
we use the FDG-PET images of 162 subjects (Alzheimer’s
Disease: 74, Normal aging: 88) downloaded from the
ADNI (www.loni.usc.edu/ADNI). For each subject, there
are at least three time points and at most seven time
points. The data has been preprocessed and the Auto-
mated Anatomical Labeling has been used to segment
each image into 116 anatomical volumes of interest
(AVOIs). We select 90 AVOIs that are in the cerebral cor-
tex in our study. Each AVOI becomes a variable here. The
measurement data of each region, according to the mech-
anism of FDG-PET, is the regional average FDG binding
counts, representing the degree of glucose metabolism.
Extensive evidences in the literature have shown that the
glucose metabolism will decline as a function of the aging,
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Fig. 2 An algorithmic overview of the DL-CHI method

while the pathology of neurodegenerative diseases such as
AD will further accelerate the declination, providing a per-
fect application example for implementing and testing the
proposed DL-CHI method.

The SSI data exhibit similar characteristics as the AD
data. There have been many models developed to moni-
tor individuals who are subject to developing SSI [41-43],
based on daily wound measurements, such as the tem-
perature, granularity, and distance of the wound, together
with other non-wound-related but important clinical sig-
nals such as heart rate, morning body temperature, and
NG tube presence, etc. Figure 3 shows the longitudinal
trend of a wound-related variable collected in our data,
which clearly shows the monotonic degradation process of
the SSI patients. The SSI data include longitudinal wound
measurements from 857 patients, among which 169 are
SSI patients and 539 are normal control. The data include
wound measurement variables, for example, wound edge

25
—non-SSI
-SSI

2.0

5 &

typeexudate

4
=

0.0
5 10 15 20

postopday

Fig. 3 Example of the longitudinal data of wound assessment that

could gradually separate the SSI group with the non-SSI group as the

condition progresses over time [7]

distance, temperature, include exudate amount, etc. Some
other physiological variables such as heart rate are also
provided in the data. Subjects were measured in time
length ranging from 3 days to 21 days.

4.2 Parameter tuning and validation

For each experiment, we randomly split the data into
two equal parts, one for training and one for testing.
For training, we used 10-fold cross validation to tune the
parameters. As CHI is a complex data fusion mechanism
that synthesizes monotonicity of the disease progression,
label information, and statistical homogeneity, we use a
comprehensive scheme to compare DL-CHI with CHL
Specifically, we compared the two models (1) when only
monotonicity is used for model training (i.e., by setting
B = 0 and optimizing for «), (2) when only the label
information is used for model training (i.e., by setting
a = 0 and optimizing for B), and (3) when a full model
is used (i.e., by optimizing for both & and g). In addition,
we performed in each of the settings by randomly down-
sampling the training data, i.e., only using a proportion of
the data ranging from 15 to 75%, to train both models.
A model that can maintain good performances with less
training data in obviously more promising in healthcare
applications while data collection is relatively more costly
than other real-world applications.

4.3 Results

Comparison between CHI and DL-CHI across a wide
range of scenarios aforementioned are reported in Table 1.
In general, it is observed that the DL-CHI model
could significantly improve CHI model by accounting
for the patient heterogeneity. This makes sense, since
enforcing the constraint that the individual CHI model
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Table 1 AUC performance for ADNI and SSI data across different
ratio of training and testing datasets obtained by 10-fold
cross-validation

o =0, p*

Data Ratio (%) CHI DL-CHI

ADNI 15 0.870 £ 0.024 0.887 £0.021
20 0.883 £ 0.021 0.890 £0.016
35 0.889+0.014 0.936 £ 0.051
50 0.890 £ 0.031 0.940 £ 0.047
75 0927 £0.012 0.959 £ 0.036

Ssl 15 0.850 £ 0.055 0.867 £ 0.039
20 0.861 £ 0.036 0.877 £0.020
35 0871 £0.012 0.886 £ 0.020
50 0.862 £0.015 0.892 £ 0.041
75 0.889 £ 0.024 0914 £0.027

a*, =0

ADNI 15 0.780 £ 0.016 0.863 4+ 0.034
20 0.799 £ 0.054 0.873 £0.024
35 0.804 £0.012 0.844 £0.034
50 0818 £0.019 0.869 + 0.064
75 0.855 £ 0.064 0.905 £ 0.024

SSl 15 0.829 £ 0.064 0.860 £ 0.023
20 0.860 £ 0.021 0879+£0.016
35 0.870 £ 0.034 0.883 £0.034
50 0.880 + 0.042 0.892 + 0.036
75 0.883 £0.026 0.895£0.016

o, p*

ADNI 15 0.865 £ 0.021 0.872 £0.025
20 0.871 £0.023 0881 £0014
35 0.874 £0.032 0.890 £ 0.026
50 0.891 £ 0.021 0910 £ 0.041
75 0.901 £ 0.020 0919 £ 0.036

S 15 0.741 £0.032 0.814 £ 0.041
20 0.758 £0.034 0.820 + 0.030
35 0.770 £0.013 0.831 £0.036
50 0.791 £0.026 0.887 £0.015
75 0.806 £ 0.010 0.862 £ 0.036

should be represented by a dictionary plays a role in
the regularization of the model learning, as the dic-
tionary basis vectors are numerical representations of
patient heterogeneity. It is shown that in all of the three
scenarios, using only monotonicity (8 = 0), using only
the label information o = 0, or the full-model DL-CHI
model, achieve satisfying results. Another observation
is that enforcing monotonicity constraint alone leads
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to satisfactory performance for the DL-CHI model. As
shown in Table 1, the DL-CHI method is also robust to
small sample size. We investigate DL-CHI model’s capa-
bility by selecting only 15% of the data as the training
data, while the 10-folder cross validation was used to
identify the optimal parameters in the model. The results
show that our method achieves better prediction perfor-
mance than the CHI model that uses the same ratio of the
training data. Overall, the results show that the DL-CHI
has a great potential for clinical applications to overcome
the limitation of the CHI method in mitigating patient
heterogeneity.

Table 2 shows the performance comparison of person-
alized DL-CHI method with the CHI model and and three
dictionary methods: K-SVD, ILS-DLA, and RLS-DLA.
While for each model training, 10-fold cross validation is
used on the training data and the AUC is evaluated on the
testing data. Results in Table 2 show that the integration of
dictionary learning with the CHI model improves the per-
formance of the algorithm. The performance of RLS-DLA
is in general considerable better than that of ILS-DLA
and K-SVD. However, interestingly DL-CHI model perfor-
mance demonstrates that it is superior to the RLS-DLA
despite its convergence as an online algorithm and its
ability for reconstruction purposes.

4.4 Representation capacity of dictionary learning

Figure 4 provides the results regarding the number of basis
vectors needed for a sufficient representation of patient
heterogeneity from AD. Apparently, the larger the dictio-
nary size, the lower the representation error. On the other
hand, we can also observe that the error of representation
drops quickly with the increasing number of basis vec-
tors in the dictionary. As the optimal dictionary size is not
known in advance; hence, we first obtained it through an
initial dictionary Dg of large size K. The initial dictionary
Dy € R¥*k is obtained by selecting K samples randomly
from input signals. The dictionary Do helps minimizing
the reconstruction error, and it is not yet optimal. For our
experiment, we selected the number of basis based on the
minimum error of representation given various dictionary
sizes. To satisfy the overcompleteness, we choose the size

Table 2 AUC performance comparison for ADNI and SSI data for
CHI, DL-CHI, K-SVD, ILS-DLA and RLS-DLA models obtained by
10-fold cross-validation

Data ADNI SSI

DL-CHI 0951 £ 0.025 0.902 + 0.032
CHI 0.920 £ 0.021 0.880 + 0.010
RLS-DLA 0.903 £ 0.030 0.873 £ 0.065
K-SVD 0.850 £ 0.043 0.803 £ 0.014
ILS-DLA 0.723 £0.012 0.653 £ 0.063
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1.3 merge the smooth terms and derive the dual optimiza-
tion problem, and finally train it via the block coordinate
1 descent algorithm. Specifically, we can simplify Eq. (1) in
5 0e a quadratic form by defining:
5 2 . Wl _ 2
Iwli% = w' Qw = [lw]|
A1 T \?
5 04 = —x*
g +5 | 5= > ((Xn,T,, xTn) w) +
- ne(N*ly,=1}
2
A 1 T
0 ~ - =
1 10 19 28 37 46 55 64 73 8 91 100 + 2\ N- Z ((Xn,T,, xTn> w>
Dictionary size ne{N~|y,=1}
Fig. 4 Representation error for different dictionary size 6)

where Q is defined as

f Do to b fficiently 1 than the di i f 1 _ T
[0) o O De suliicien y arger an € dimension oI an Q — I + 2 L Z Xn,Tn _ X; ) (Xn,Tn . x_;)

. . +

input signal. nelnyn=)

5 Conclusion 1 __ —\'
In this paper, we presented a DL-CHI formulation to N— Z (xn,Tn - xTn> (Xn,Tn - xTn)
help build personalized contemporary health index (CHI) neinlyy=-1}

to monitor patient condition over time. Through appli-  With that, Eq. (6) is simplified to Eq. (7) as follows:
cations on two real-world datasets of AD and SSI, the

DL-CHI model is shown to be better than the CHI model min 1 ||W||2Q +ylwlh
2

in patient prediction and can achieve robust results with w,b

small sample sizes. In the future, we may further enhance +a Z max (0’ 1— ZLW)

the DL-CHI method in the following directions. First, ne(LoN) ’

note that, in the current DL-CHI formulation, the indi- te{l,,Ty—1)

vidual models have to be learned via the CHI formulation ( ( T ))
max (0,1— X, 7 W+b)).

without information from the dictionary. Only with a + 'Bng{; N In X1, WF

learned dictionary, the representations of the individual’s
models are identified and further used as the final indi- @)
vidual models. This is a possibility that a joint learning By introducing two relaxation variables & and €, Eq. (7)
of both steps could further enhance the performance of is equivalent to Eq. (8) as follows:

DL-CHI by incorporating the dictionary into the CHI for-

. 1

mulation. Second, the need of transfer learning when the min o Iwlig, + alTE+ 1 e + y Wl
supply of training data is limited is vital. One way to tackle . . 8)
this problem is by exploring the transfer learning through st. 1-Z'w—§<0
model-based transfer, where the prior knowledge from the 1-XTw— by —e<0
generic recognizer enters through a modified regulariza- h
tion term in the CHI model. Last but not least, we can also where
consider an integraFion between data—bgsed‘ and mf)del— &= (51,1: € N ’SN,TN—I)T ,
based transfer learnlng..Whgre, by re—.welghtmg the input 7 — (Zl,l, AT IN 7ZN,TN71) )
source data, we can minimize the discrepancy between T
the source and the target distributions, and then allowing €=(€1,,€N)
CHI to be biased toward the parameters of another model. Y=L ,¥N)

. X =WiXur, - YNXN,TY ) -
Appendix (v1X11y YNXN,Ty)
CHI model formulation We then can derive the dual formulation of (8) by sub-

For completeness of DL-CHI, here we present more stituting the £;-norm penalty in (8) by its conjugate norm
details of the CHI formulation (1). The CHI formulation  ||[w|l1 = maxXjs|,,<1(s, W) = maxjs|, <1 —(s,w), and then
is convex but contains multiple non-smooth terms such  introducing two new dual variables u and v which leads to
as (1b), (1c), and (1f). To solve this formulation, we could the following formulation:
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min, ;, max

1
w0 SIWlh+alTE +p1Te — (w,s)

>0 v>0 2
£>0 lIslloo<¥

+<u,1—ZTW—S>+<V,1—XTw—by—e>.

This can be rewritten as the following constrained
smooth convex optimization problem, which can be
solved efficiently:

1
min F(s,u,v) := —

s+ Zu+Xv|% , — (L u)—(1,v)
S, U,V 2 Q

st. 0<u<ul
0<v<pl
(vy)=0

Islloc < y.

)

Then the solutioil w* to Eq. (9) can be obtained by: w* =
Q7! (s* 4 Zu* 4+ Xv¥).

Algorithm
The block coordinate descent algorithm [44] to solve the
dual problem in Eq. (9) is an iterative procedure as follows:

Al

gorithm 2 Block Coordinate Descent for Solving CHI

Require: Problem parameters {Z, Q,)?,y,(x,ﬁ,y}) and

Optimization parameters 7, 7y, 0y, p € (0,1) (step
sizes 75, Ny, and 1, can be adaptively decided using
linear search alternatively)

Ensure: w*, b*

1

S

N

. Initialize k =0
: While not converge do

Sk+1 = max (—y 1, min (y 1, sx — nsVsF (S, Uk, Vi)
w1 = max (0, min (o1, g — NuVisF (Sk41, Wk, Vi)

: Vir1 = Projo<v<g1 (Vk — v F (Sk+1, llk+1,Vk)
(vy)=0
: k < k =+ 1

8: Recover the primal variables

w'=Q! (s+Zu—|—)?v)

T
b = Z yi —whx;
{ilvie(0,8)}

Acknowledgements

The authors acknowledge funding support from the National Science
Foundation under Grants CMMI-1536398 and CCF-1715027. Authors are also
grateful for ADNI, Heather Evans, and Bill Lober for data to demonstrate our
method.

Authors’ contributions

SH

and AS conceived the project. AS and SH completed the algorithm

development, data analysis, and interpretation. Both authors contributed to

the

manuscript writing and approved the final manuscript.

Page 10 of 11

Competing interests
Both authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 7 August 2017 Accepted: 13 February 2018
Published online: 05 March 2018

References

1.

2.

20.

R Thomson, D Luettel, F Healey, S Scobie, Safer care for the acutely ill
patient: learning from serious incidents. Natl. Patient Saf. Agency (2007)
RP Gaynes, DH Culver, TC Horan, JR Edwards, C Richards, JS Tolson,
National Nosocomial Infections Surveillance System, Surgical site
infection (SSI) rates in the United States, 1992-1998: the national
nosocomial infections surveillance system basic SSI risk index. Clin. Infect.
Dis. 33(Supplement_2), S69-577 (2001)

B Spring, M Gotsis, A Paiva, D Spruijt-Metz, Healthy apps: mobile devices
for continuous monitoring and intervention. IEEE Pulse. 4(6), 34-40 (2013)
DE Rivera, Optimized behavioral interventions: What does system
identification and control engineering have to offer? IFAC Proc. Vol.
45(16), 882-893 (2012)

S Deshpande, DE Rivera, JW Younger, NN Nandola, A control systems
engineering approach for adaptive behavioral interventions: illustration
with a fibromyalgia intervention. Transl. Behav. Med. 4(3), 275-289 (2014)
G Zen, L Porzi, E Sangineto, E Ricci, N Sebe, Learning personalized models
for facial expression analysis and gesture recognition. [EEE Trans.
Multimedia. 18(4), 775-788 (2016)

Y Huang, Q Meng, H Evans, W Lober, Y Cheng, X Qian, J Liu, S Huang, CHI:
A contemporaneous health index for degenerative disease monitoring
using longitudinal measurements. J. Biomed. Inform. 73, 115-124 (2017)
JL Cummings, Cognitive and behavioral heterogeneity in Alzheimer’s
disease: seeking the neurobiological basis. Neurobiol. Aging. 21(6),
845-861 (2000)

MF Folstein, Heterogeneity in Alzheimer’s disease. Neurobiol. Aging.
10(5), 434-435 (1989)

E Friedland, JV Koss, RP Haxby, CL Grady, J Luxenberg, J Schapiro,

MB Kaye, Annals Intern. Med. 109(4), 298-311 (1988)

BA Olshausen, DJ Field, Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature.
381(6583), 607 (1996)

JWright, A Yang, AY Ganesh, SS Sastry, Y Ma, Robust face recognition via
sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2),
210-227 (2009)

M Elad, M Aharon, Image denoising via sparse and redundant
representations over learned dictionaries. IEEE Trans. Image Process.
15(12), 3736-3745 (2006)

M Yang, L Zhang, J Yang, D Zhang, in Image Processing (ICIP), 2010 17th
IEEE International Conference On. Metaface learning for sparse
representation based face recognition (IEEE, 2010), pp. 1601-1604

Q Xu, H Yu, X Mou, L Zhang, J Hsieh, G Wang, Low-dose X-ray CT
reconstruction via dictionary learning. IEEE Trans. Med. Imaging. 31(9),
1682-1697 (2012)

Y Chen, X Yin, L Shi, H Shu, L Luo, C Coatrieux, J-L Toumoulin, Phys. Med.
Biol. 58(16), 5803 (2013)

I Ramirez, P Sprechmann, G Sapiro, in Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference On. Classification and clustering
via dictionary learning with structured incoherence and shared features
(IEEE, 2010), pp. 3501-3508

R Raina, A Battle, H Lee, B Packer, AY Ng, in Proceedings of the 24th
International Conference on Machine Learning. Self-taught learning:
transfer learning from unlabeled data (ACM, 2007), pp. 759-766

SG Mueller, MW Weiner, LJ Thal, RC Petersen, C Jack, W Jagust,

JQ Trojanowski, L Toga, W ABeckett, The Alzheimer’s disease
neuroimaging initiative. Neuroimaging Clin. N. Am. 15(4), 869-877 (2005)
JR Petrella, RE Coleman, PM Doraiswamy, Neuroimaging and early
diagnosis of Alzheimer disease: a look to the future. Radiology. 226(2),
315-336(2003)

. JZhou, J Liu, J Narayan, VA Ye, in Proceedings of the 18th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining.



Samareh and Huang EURASIP Journal on Advances in Signal Processing (2018) 2018:17

22.
23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

Modeling disease progression via fused sparse group lasso (ACM, 2012),
pp. 1095-1103

JZhou, J Liu, J Narayan, Ye VA, ADN Initiative, et al., Modeling disease
progression via multi-task learning. Neurolmage. 78, 233-248 (2013)

J Mairal, M Elad, G Sapiro, Sparse representation for color image
restoration. IEEE Trans. Image Process. 17(1), 53-69 (2008)

Z Jiang, Z Lin, LS Davis, Label consistent k-svd: Learning a discriminative
dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(11),
2651-2664 (2013)

M Elad, Y Figueiredo, MA Ma, On the role of sparse and redundant
representations in image processing. Proc. [EEE. 98(6), 972-982 (2010)

B Cheng, J Yang, S Yan, Y Fu, TS Huang, Learning with 11-graph for image
analysis. IEEE Trans. Image Process. 19(4), 858-866 (2010)

JWright, Y Ma, J Mairal, G Sapiro, S Huang, TS Yan, Sparse representation
for computer vision and pattern recognition. Proc. IEEE. 98(6), 1031-1044
(2010)

JA Bagnell, DM Bradley, in Advances in Neural Information Processing
Systems. Differentiable sparse coding (Curran Associates, Inc., 2009),

pp. 113-120

J Mairal, J Ponce, G Sapiro, A Zisserman, FR Bach, in Advances in Neural
Information Processing Systems. Supervised dictionary learning (Curran
Associates, Inc., 2009), pp. 1033-1040. http://papers.nips.cc/paper/3448-
supervised-dictionary-learning.pdf

S Bahrampour, A Nasrabadi, NM Ray, WK Jenkins, Multimodal task-driven
dictionary learning for image classification. IEEE Trans. Image Process.
25(1), 24-38 (2016)

K Engan, SO Aase, JH Husoy, in Acoustics, Speech, and Signal Processing,
1999. Proceedings., 1999 IEEE International Conference On. Method of
optimal directions for frame design, vol. 5 (IEEE, 1999), pp. 2443-2446

K Engan, SO Aase, JH Husay, Multi-frame compression: theory and design.

Signal Process. 80(10), 2121-2140 (2000)

Q Zhang, B Li, in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference On. Discriminative k-svd for dictionary learning in face
recognition (IEEE, 2010), pp. 2691-2698

K Engan, K Skretting, JH Husay, Family of iterative Is-based dictionary
learning algorithms, ils-dla, for sparse signal representation. Digit. Signal
Process. 17(1), 32-49 (2007)

J Mairal, G Sapiro, M Elad, Learning multiscale sparse representations for

image and video restoration. Multiscale Model. Simul. 7(1), 214-241 (2008)

K Kreutz-Delgado, JF Murray, BD Rao, K Engan, T-W Lee, TJ Sejnowski,
Dictionary learning algorithms for sparse representation. Neural Comput.
15(2), 349-396 (2003)

M Donoho, DL Elad, Optimally sparse representation in general
(nonorthogonal) dictionaries via I1 minimization. Proc. Natl. Acad. Sci.
100(5), 2197-2202 (2003)

Z Mallat, SG Zhang, Matching pursuits with time-frequency dictionaries.
IEEE Trans. Signal Process. 41(12), 3397-3415 (1993)

Z Jiang, Z Lin, LS Davis, in Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference On. Learning a discriminative dictionary for sparse
coding via label consistent k-svd (IEEE, 2011), pp. 1697-1704

M Aharon, M Elad, A Bruckstein, rmk-svd: An algorithm for designing
overcomplete dictionaries for sparse representation. IEEE Trans. Signal
Process. 54(11), 4311-4322 (2006)

A Dipiro, RG Martindale, JT Bakst, PF Vacani, P Watson, MT Miller, Infection
in surgical patients: effects on mortality, hospitalization, and
postdischarge care. Am. J. Health-Syst. Pharmacy. 55(8), 777-781 (1998)
E Lawson, BL Hall, CY Ko, Risk factors for superficial vs deep/organ-space
surgical site infections: implications for quality improvement initiatives.
JAMA Surg. 148(9), 849-858 (2013)

L Saunders, M Perennec-Olivier, P Jarno, F L'Hériteau, A-G Venier, L Simon,
M Giard, J-M Thiolet, J-F Viel, et al, Improving prediction of surgical site
infection risk with multilevel modeling. PloS ONE. 9(5), €95295 (2014)

P Tseng, S Yun, A coordinate gradient descent method for nonsmooth
separable minimization. Math. Prog. 117(1-2), 387-423 (2009)

Page 11 of 11

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://papers.nips.cc/paper/3448-supervised-dictionary-learning.pdf
http://papers.nips.cc/paper/3448-supervised-dictionary-learning.pdf

	Abstract
	Keywords

	Introduction
	Related works
	The CHI model
	Dictionary learning

	The proposed DL-CHI model
	Rational and formulation
	Computational algorithm
	Summary of DL-CHI

	Numerical studies
	Real-world applications
	Parameter tuning and validation
	Results
	Representation capacity of dictionary learning

	Conclusion
	Acknowledgements
	Authors' contributions
	Competing interests
	Publisher's Note
	References

