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Abstract

Multiple-Input Multiple-Output (MIMO) relay communication systems are used as an efficient system in spectral
efficiency and power allocation view point. In these systems, some of the facilities need channel state information
(CSI). Besides, new estimation methods based on compressed sensing (CS) are well known for their spectral efficiency
and accuracy. In this paper, we have used a Distributed CS-based channel estimation method to improve the accuracy
and spectral efficiency of channel estimation for MIMO-Orthogonal Frequency Division Multiplexing relay network.
Specifically, using Least Squares (LS) estimation increases the accuracy of well-known Compressive Sampling Matching
Pursuit (CoSaMP) algorithm and proposes Block-verified CoSaMP (B-vCoSaMP). To improve the accuracy of estimation,
we are encountered with a combinatorial optimization which is dealt with probability-based approaches in this paper.

MIMO-OFDM relay channel estimation, Pilot allocation

More particularly, three probability-based optimization methods have been proposed to optimize the mutual
coherence of measurement matrix called Sequential Cross-Entropy (SCE), Extended Estimating of Distribution
Algorithm (EEDA), and Parallel Cross-Entropy (PCE). All these methods are based on sampling from a Probability
Density Function (PDF) which is updated in each iteration using elite samples of the population. The simulation results
represent the accuracy and speed of the proposed methods, and the comparison is expressed as well.

Keywords: Block-verified compressive sampling matching pursuit, Cross-entropy, Distributed compressed sensing,

1 Introduction

Multiple-Input Multiple-Output (MIMO) relay commu-
nication systems make it possible to increase the data rate
and coverage area of communication. Different character-
istics of MIMO-Orthogonal Frequency Division Multi-
plexing (OFDM) relaying make it an essential technology
to conflict with fading and long-distance impairments
[1, 2]. There are some features which need channel
state information (CSI) to be available such as coherent
demodulation, beamforming, relay selection, and so on
[3, 4]. Increasing demand for high data rate communica-
tion could be accomplished by increasing the bandwidth
efficiency of channel estimation methods which could be
met by using compressed sensing (CS)-based procedures.
Since there is a small number of significant scatterers
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in the wireless environments, and the delay spread is
normally large, the wireless channel could be modeled
by sparse signal especially when operating in wide
bandwidth. Consequently, CS-based channel estimation
approaches could be used to increase the bandwidth
efficiency and accuracy of channel estimation. Further to
sparsity, MIMO communication systems benefit from the
joint support of all the channel ensembles, since there are
common scatterers in the environment between antennas
of a transmit-receive pair [5]. Consequently, the support
vector of the different channel groups is distributed iden-
tically. Thus, all the channels of MIMO communication
between a transceiver pair are jointly sparse and could
be represented in a block-sparse form [6]. By taking into
account the block sparsity of MIMO channels, we could
use the Distributed CS (DCS)-based channel estimation
approaches instead of CS-based channel estimation meth-
ods. DCS-Simultaneous Orthogonal Matching Pursuit
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(SOMP) was one of the first DCS-based approaches
which have been used in Single-Input Single-Output
(SISO)-OFDM channel estimation [7]. Subsequently,
in [8], DCS-SOMP was used to estimate the jointly
sparse channel vectors in MIMO transmission. Recently,
massive MIMO CSI matrices were estimated using the
joint-Orthogonal Matching Pursuit (OMP) algorithm
which has been proposed in [9] using the DCS-based
approaches.

In DCS-based channel estimation methods for MIMO-
OFDM systems, the measurement matrix can be con-
structed using random pilot patterns. However, it can
be optimized to boost the estimation accuracy using
Restricted Isometry Property (RIP). Since there is no
known polynomial time approach to optimize RIP, alter-
natively, the mutual coherence is minimized which is
more practical [10]. It is shown that the mutual coher-
ence is related to the position of pilots. As a consequence,
one may minimize the mutual coherence by exhaus-
tively searching the best positions for pilots which are
intractable from the computational point of view. Hence,
utilizing computational programs to generate suboptimal
pilot patterns are entirely favorable. To this end, some of
the papers in the literature perform evolutionary algo-
rithms to create pilot patterns. Specifically, in [11], two
different methods are developed for optimizing pilot allo-
cation in CS-based channel estimation including Genetic
Algorithm (GA) and minimizing the largest element in
mutual coherence set. Moreover, the pilot allocation for
DCS-based channel estimation is proposed in [12] using
GA-based suboptimal approach. Additionally, Estimating
the Distribution Algorithm (EDA) is used as a promising
approach to optimize the pilot positions in SISO-OFDM
systems [13]. For MIMO-OFDM systems, in [12], the
authors try to optimize the pilot allocation using GA-
based approach which was the extension of [14]. Other
papers including [15-17] focus on the SISO-OFDM sys-
tems and try to generate pilot sequences to increase the
compressed channel estimation accuracy.

In this paper, we have developed a DCS-based approach
called Block-verified Compressive Sampling Matching
Pursuit (B-vCoSaMP). Specifically, we have used the joint
sparsity behavior of MIMO channels to produce a block
sparse measurement matrix. Fortunately, using a permu-
tation matrix, we have generated the measurement matrix
and received pilot subcarriers. Using the measurement
matrix and received pilot vectors, we have developed
a distributed form of Compressive Sampling Matching
Pursuit (CoSaMP) algorithm. To utilize CoSaMP success-
fully, we have verified it by using Least Squares (LS)
estimation on the positions of the channel vectors which
are suggested by Block-CoSaMP (B-CoSaMP) algorithm.
Hence, B-CoSaMP is completed by an LS estimation
phase, and B-vCoSaMP is generated. In fact, by taking into
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account the sparsity order of the channel, CoSaMP is one
of the most successful algorithms to estimate the support.
By applying block behavior into the recovery algorithm,
B-CoSaMP is changed to the more accurate algorithm for
estimating the support, as well. Support estimation deter-
mines the non-zero paths of channel estimation vector.
Furthermore, to increase the accuracy we used LS esti-
mating, as well. Further to estimation algorithm, the pilot
allocation approaches are also proposed.

We have proposed three different pilot allocation
methods based on probability-based mutual coher-
ence optimization for DCS-based MIMO relay channel
estimation, as well. The mutual coherence of the mea-
surement matrix is considered as the fitness function in
this paper. It is caused by the impact of mutual coherence
on the mean square error of estimation in DCS-based
approaches which is addressed in the literature. More-
over, orthogonal pilot allocations are considered in
channel estimation, i.e., each antenna transmits neutral
subcarrier in pilot subcarriers of the other antennas.
At first, we have shown that shifting the measurement
matrix rows and columns have not affected the mutual
coherence. Furthermore, it is proved that mutual coher-
ence of a block measurement matrix can be calculated
using smaller and simpler non-block measurement
matrix. Utilizing these phenomena, we have defined the
new fitness function for pilot allocation. Modeling the
mutual coherence of measurement matrix implies that
the fitness function is combinatorial and needs to be opti-
mized using different pilot sequences. Herein, in order to
minimize the fitness function, we have used probability-
based approaches. Specifically, Sequential Cross-Entropy
(SCE)-based pilot allocation, Extended Estimating of Dis-
tribution Approximation (EEDA)-based pilot allocation,
and Parallel Cross-Entropy (PCE)-based pilot allocation
are three different pilot allocation approaches which have
been proposed in this paper. SCE-based pilot allocation
works based on the sampling from a Probability Den-
sity Function (PDF) which is updated in each iteration.
Updating the PDF in each iteration is related to the
current samples and previous iterations’ samples, as well.
The relation can be controlled using a control constant
7. On the other hand, considering the marginal value for
control constant (t = 1), the algorithm will update the
PDF utilizing current samples. This approach is called
EEDA which is an extension of [18]. EEDA approach will
increase the convergence speed, but it will increase the
risk of local minima trapping. Subsequently, to increase
the rate of convergence together with the decrease of
local minima trapping, we have proposed PCE-based
pilot allocation which considers multiple local extrema
in the iterations. It will increase the speed of convergence
expectedly, moreover decrease the risk of local minima

trapping.
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The contributions of the paper can be summarized as:

® The compressed channel estimation using proposed
B-vCoSaMP algorithm which uses block
representation of the channel vectors to increase the
accuracy of support estimation and excess LS
estimation stage in the positions determined by
estimated support to enhance the channel
coefficients accuracy.

e The pilot allocation is optimized using proposed
SCE-based sequence determination algorithm and
extended to MIMO pilot allocation.

e In order to increase the speed of convergence of
SCE-based pilot allocation, a special case is used
called EEDA-based pilot allocation.

e To increase the accuracy together with the speed of
convergence for pilot allocation, PCE-based pilot
allocation algorithm is proposed in which multiple
PDFs are used to generate the pilot sequences.

The remainder of the paper is as follows. The sys-
tem model is represented in Section 2. Section 3 covers
channel estimation approach using B-vCoSaMP, and pilot
allocation scheme for SISO and MIMO systems and pro-
posed pilot allocation methods are described in Sections 4
and 5, respectively. Numerical results are expressed in
Section 6. Eventually, concluding remarks are demon-
strated in Section 7.

Notations: Matrices and vectors are denoted by upper-
case and lowercase boldfaced letters, respectively. |.| and
()* denote the complex modulus and the conjugate of a
complex number. For a given matrix A, A7 and A" denote
its transpose and conjugate transpose, respectively, and
A;; denotes the (i, j)th element of A. For a given vector x
with its element denoted by x, ||x|l2 = v/ x!{x represents
the Euclidean norm, [x|ly = >, |#| is the /;-norm, and
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diag(x) denotes a diagonal matrix with x on its main diag-
onal. For two vectors x and y, < X,y > denotes their inner
product. For a given set A, n(A) is the number of elements
in A. C™” * " stands for the set of all complex-valued m x n
matrices, and # denotes the null set.

2 System model
Consider an Amplify-and-Forward (AF) one-way relay
network consisting of MIMO terminals (Fig. 1). The net-
work consists of a source node (S), a relay node (R), and
a destination node (D), i.e., totally there are three MIMO
nodes in a one-way AF network. Besides, source, relay,
and destination terminals are equipped by N5, Nr, and Np
transceiver antennas, respectively. The channel between
mth antenna of S and gth antenna of R is denoted by
fi1g =[fing(0), fing(D), ... fing(L — D]T and between gth
antenna of R and #-antenna of D) is denoted by g,, =
[271(0),8n (), ..., gL — DIT form = 1,2,...,Ns,
q = 12,...,Ngand n = 1,2,...,Np. All the channel
ensembles are independent static linear selective chan-
nels. Taking into account the distance between transmit-
ting and receiving antenna and the conveying distance of
light which is extremely small, the channel delay profile
is independent of transmit-receive antenna pairs. Conse-
quently, the antenna spacing can be modeled by a phase
rotation into the delay profile. Hence, all the channel
pairs in network share common delay profile where there
are L scatterers. Among these L scatterers, there are K
significant scatterers where the channel coefficients are
non-zero. These K significant scatterers are assumed to
be CN (0, 02) since each path contains multiple zero mean
independent identically distributed (i.i.d.) subpaths.
Without loss of generality, we consider OFDM trans-
mission in MIMO terminals. Consider OFDM system
with N subcarriers where N, of them are selected as
pilot subcarriers. Besides, to omit the interference of other

Fig. 1 Conceptual system model for MIMO-OFDM relay network and joint sparsity
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antenna’s pilots on each other, we consider to utilize the
orthogonal pilot allocation, i.e., not only N, subcarriers
are allocated to pilot subcarriers, but also pilot subcar-
riers assigned to other Ns — 1 transmit antennas are
reserved to be zero [19]. Thus, the number of data sub-
carriers on each of the transmit antenna is equal to
N — NgN,, assuming x,, € CN*1 as the OFDM sym-
bol before Cyclic Prefix (CP) adding to be transmitted on
the mth transmit antenna of S. In the first time slot of
the Time-Division-Duplexing (TDD), the received signal
r;forg=1,2,...,Ng is formulated as
Ns
I, = Z Xmenfmq +vy (1)
m=1

where X, is the diagonal matrix with x,, as its main diag-
onal, an is the partial Discrete Fourier Transform (DFT)
matrix with N, rows corresponding to the N, pilot sub-
carriers of mth transmit antenna and first L columns of
N x N DFT matrix, and v, is the zero mean Additive
White Gaussian Noise (AWGN) vector with variance 01,2
in the gth antenna of relay R. In the second time slot, relay
R amplifies and retransmits the received signal to the des-
tination node ). As a consequence, the received pilots in
the nth antenna of destination D could be formulated as

Nr
Yo = XuFrhy + 2, 2)
q=1
where h,,,, = Z;\[El Bfng * 8qn is the overall channel

between S and D passing by R and S is the relay power fac-

tor which is selected as 8 = > which is selected

Pr
Ko2Ps+0/
to keep the long-term observation relay power as Pr and
F2L=1 s the partial DFT matrix with N, rows correspond-
ing to the N, pilot subcarriers of mth transmit antenna
and first 2L — 1 columns of N x N DFT matrix. Moreover,
z, is the zero mean AWGN noise vector with variance

2. Collecting all the received pilots corresponding to all
the antennas as y = [le, y2T, e ,y{,D]T, we can represent
Eq. (2) using matrix representation as

y=®h+z (3)
where @ is the overall measurement matrix defined as
Eq. (2), h e CNsNp@L=DX1 jg the overall channel vec-

. — Wl T T T T

tor defined as h = [hll, oy hy "hNSNJD] , and
z € CNpNpX1 s the overall zero-mean noise vector.
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In order to represent the channel vectors in Eq. (3) in a
block sparse form, we used a permutation matrix called
W with w; as its columns where w;j isa NsSNp(2L — 1) x 1
zero vector except on the jth position which is equal
to one. .2Since the different paths of different channels
should be positioned beside each other, we define per-
mutation matrix W = {w;} withj = s(2L — 1) + [for
s=0,1,...,NsNp —1land/ =1,2,...,2L — 1 where s is
increased first and after s = NsNp — 1 then /is increased
one unit and s begins again from the first value. Besides,
WW7T = L As an example, for the case of N5 = 2,
Np = 2,and L = 2, permutation matrix is defined as W =

T T T wl wl wl wl wl wl wl I T 17
[W1fW4’W7’W10’W2’W5fW8’W11’W3’W6’W9rw12] .

Consequently, using permutation matrix we can
reformulate the received pilot as follows;
y = ®WW'h+z
= Ve+1z (5)

where ¥ = ®W and e = W7h.

3 Distributed compressed sensing channel
estimation

CS-based approaches try to estimate channels individu-
ally while DCS-based channel estimation tries to estimate
jointly sparse channels altogether. There are different
channels in MIMO systems between the various transmit-
ting and receiving antennas. Since all the transmit anten-
nas gathered near each other and receive antennas as well,
the significant scatterers which are encountered by the
transmitted signals are the same. As a consequence, the
sparsity pattern of different transmit-receive pairs would
be the same while the channel coefficient would be com-
pletely different. Thus, utilizing DCS would be very useful.
As a result, we have used the CoSaMP method and define
itin a distributed manner to estimate MIMO channels.

3.1 B-vCoSaMP algorithm

In this subsection, we represent the B-vCoSaMP. Appar-
ently, the CoSaMP algorithm utilizes the channel sparsity.
Here, we used B-CoSaMP algorithm to estimate the joint
support of the channel responses. Finally, after calcu-
lating the support of the channels, the channel impulse
responses are estimated using LS-based estimation. The
algorithm is represented in Algorithm 1.

BXIET T L BXNFry ! 0 0
2L—1 2L—1
® 0o ... 0 BXiEF Tl L BXnERTT 0 L L 0 < CNoNyxNsNo(2L-1)
0 0 BXiFT ! L BX N FR

(4)
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Algorithm 1 B-vCoSaMP-based channel estimation
Input: the measurement matrix ¥, the received pilots e
and sparsity order K
Output: the estimation of channel impulse responses
h,,, form=1,2,...,Nsandn =1,2,...,Np
Step0:é =0, v=eandt =0
Iteration:

Step 1: Proxy of the signal is formed by & = ¥’y
Step 2: Reform the proxy to exploit the block sparsity

Q
AD =) ald-1Q+i)

i=1

Step 3: The 2K largest components are exploited Q2 =

supp{Aax}
Step 4: Merging supports of the pervious iteration and

the present one 7 = € U supp{a’~1}

Step 5: Define the indexes corresponding to 7 in other
antennas by 7' =[1 : Q] +(f" - 1Q

Step 6: Solve the LS problem to obtain coefficients

min [y - W b3

Step 7: Reform the LS based coefficients to exploit
block sparsity b()) = > <, [b((l — 1)Q + )|
Step 8: Prune to obtain the next approximation a‘ = bx

Step 9: Update the samples by v =y — Wb’

Step 10: If stop criteria not met goto Step 1, otherwise
continue with the last results

Step 11: Solve the LS problem

. A2
min [ly — Wrel|;
e

Step 12:h = UTe

Obviously, exchanging the formation of the vectors
between DCS and CS are repeated in Algorithm 1. Conse-
quently, we try to explain it here. As explained before, e =
[e1,ea,... ,eQ(ZL_l)]T is the DCS-formed channel model
where Q = NsNp. Actually, ¢; for i = 1,2,...,Q are
related to the first path of different channel pairs and i =
Q+1,Q+2,...,2Qare related to the second path of dif-
ferent channel pairs. Consequently, we can represent it by
eifori=((—-1)Q+[1:Q]land/=[1:2L — 1] to clarify
the DCS-formed representation. Hence, in Algorithm 1,
to sum up all the paths in one vector, we should sum
every Q-element of DCS-formed vector and consider it
as the corresponding paths. This reformation is repre-
sented in Step 2 of Algorithm 1. Actually, in Step 2, we try
to accumulate the calculated measurements coherently in
order to organize the proxy. Moreover, to represent the
DCS form into CS form, we should extend the DCS form
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selections by using (f" —1)Q +[1: Q], where T is selected
path from DCS form representation.

We consider the B-CoSaMP algorithm to represent the
support of the vectors. Actually, support estimation deter-
mines the non-zero paths of channel estimation vector.
To improve the accuracy of support estimation, block
representation helps CoSaMP algorithm. Consequently,
using B-CoSaMP we determine the significant paths of all
the channel pairs in the network. Besides, at the end of
the algorithm, we decide to calculate channel coefficients
by LS equation to improve the accuracy of the estima-
tion. LS equation is solved based on the support of the
algorithm which is extracted from B-CoSaMP. In other
words, B-CoSaMP represented that LS estimation should
be solved only on the significant paths which are deter-
mined. Hence, we combine LS channel estimation and
B-CoSaMP together and generate the B-vCoSaMP. We
should consider that in the LS part of the channel estima-
tion, the LS equation is only solved for K indices of the
measurement matrix which are estimated by B-CoSaMP.
In fact, we used two interactive tools called block repre-
sentation and LS estimation to increase the accuracy of
estimation. Block representation enhances the precision
of support estimation, and LS estimation improves the
accuracy of coefficient estimation. Accordingly, two main
features of channel estimation are increased attractively
by exploiting the block representation and LS estimation.
Consequently, in simulation results, the performance is
developed expectedly.

3.2 Complexity analysis

Here, we discuss the complex multiplications which are
loaded in each of the states in Algorithm 1 to repre-
sent the complexity of the algorithm. Firstly, in Step 1
of Algorithm 1, the number of complex multiplications
to proceed the proxy is NpN,. Furthermore, in Step 6
NpN, complex multiplications are performed. Besides,
NsNp(2L — 1) complex numbers are multiplied in Step 9
and finally in Step 11 number of complex multiplications
is NpN,. Hence, the overall complexity of the proposed
algorithm is of order 3NpN,, + NsNp(2L — 1).

4 Pilot allocation for compressed channel
estimation

CS-based approaches try to estimate channels individu-
ally while DCS-based channel estimation tries to deter-
mine jointly sparse channels altogether. As a result of
adjacent antenna sitting, the sparsity pattern of differ-
ent transmit-receive pairs would be the same while the
channel coefficient would be completely different. Thus,
utilizing DCS-based channel estimation would be very
useful. The measurement matrix could be generated using
random pilot subcarriers to estimate the channels. More-
over, increasing the accuracy and bandwidth efficiency
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of channel estimation could be guaranteed using optimal
pilot allocation based on RIP optimization. As stated,
since there is no polynomial time approach to evaluating
RIP, instead, mutual coherence is used which is com-
putationally tractable. Hence, we introduce the mutual
coherence at first and then minimize it using proposed
population-based algorithms.

Here, we consider the SISO-OFDM system for simplic-
ity and then extend the results to MIMO case. The mutual
coherence of measurement matrix is the orthogonality
between the columns of it and can be defined as

¢i'9)
p{®} = max ———— (6)

i# |l pilllljll

where ® is the measurement matrix and ¢; is the ith
column of it. According to the previous section, the mea-
surement matrix is ® = X,,F2X~1. Consequently, by
considering equal energy pilot symbols and unit energy
partial Fourier transform matrix F21~1, we can define the

mutual coherence using

202
_ —j —)a)l/N
w{®} = max e /2 i=22) (7)
AN g

where A; and A; are pilot subcarriers among N avail-
able subcarriers. In other words, mutual coherence can
be expressed as the maximum off-diagonal entry of Gram
matrix G{®) = ®" & if ® is orthonormal [20]. Obviously,
to minimize the mutual coherence, we have to choose
pilot subcarriers which minimize Eq. (7). Moreover, in this
equation, the pilot positions A; and A; are selectable and
could be considered as the design criteria. Besides, this
problem is combinatorial and should be optimized using
iterative search methods. Here we use probability-based
methods to minimize Eq. (7). In the following section, the
proposed algorithms are explained. To estimate channel
using DCS-based approach, we should extend the mutual
coherence to MIMO case.

4.1 Extension to MIMO

In order to design optimal pilot sequences for differ-
ent transmit antennas in MIMO-OFDM relay networks,
we should define the mutual coherence for measurement
matrix ¥ in Eq. (5). Since ¥ is a column-wise permu-
tation of ®, at first, we should consider the impact of
permutation of columns on the mutual coherence.
Theorem 1. Assuming ® as an orthonormal measure-

ment matrix and its columns as ¢; fori = 1,2,...,n. We
rir; ... riry, o
0 .. 0 rir; ... Tiry, 0
G{®} = oo .
o ... 0
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define ® as a column-wise permutation of ®. Then, it can
be demonstrated that

p{®} = u{®} (8)

We consider ® = [ 1, ¢, @3, ..., ¢,] and without loss
of generality consider ® as the substitution of the second
and third columns of ®; consequently, it can be expressed
as ® = [¢1, $3, 2, . . ., Pu]. According to the definition of
mutual coherence, we should calculate G{®} = &7 ® as
below:

¢rd1 o172 ¢ b3 ... B b

o5 o1 5y dE s ... By
G{®} = . . 9)

o1 ¢l b2 D3 ... B dn
Thus, u{®} = maxxj1<jj<n |¢1H¢j|. On the other hand,
it can be represented that

o1 o3 oty ... d oy
o5 1 5 b3 D5 ... Ly

G(d) = | ¢’ ¢f'ts dfdn ... ¢)'0n (10)
o1 oligs dllgn ... ¢l

Consequently, u{®} = max;j1<ij<n |¢f{¢j| = u{d}
which indicates the equality of both mutual coher-
ence. Therefore, the permutation of measurement matrix
columns will not effect the mutual coherence value.

Considering Theorem 1, one can deduce that instead of
calculating u{¥}, it is enough to calculate ;{®} since W is
the column-wise permutation of ®. According to Eq. (2),
we can represent ® as

ro..o
0T ..O0
®— 11)
00..T
where
r— (ﬁxlp?*l BXELT ;6XNSF12VLS’1) (12)

is Np x Ng(2L—1) complex matrix with T; = SX;F7*~! for
i = 1,2,...,Ns as the sub-matrices. Moreover, we con-
sider 2L — 1 columns of I';as y;; forj = 1,2,...,2L — 1.
Hence, I'; = [71,1:)’1’,2’ . ..,yi,ZL_l]. In order to calcu-
late the mutual coherence of ®, we should consider its
Gram matrix G{®} = ®®. Accordingly, using Eqgs. (11)
and (12), we can formulate it as in Eq. (3.2) where 0 is
(2L —1) x (2L — 1) zero matrix.

.0

.0

¢ CNoNs(2L—1)xNpNs(2L—1) (13)

H rH
T, ... Ty,
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Therefore, the mutual coherence of measurement
matrix in DCS-based channel estimation for MIMO-
OFDM system consists of mutual coherence of different
SISO-OFDM systems two by two. Consequently, we can
consider the mutual coherence using measurement matrix
W or calculating the following:

w{¥} = | max, i, I} (14)
where u{I';,T';} = w{I';} and u{I';, T} is the largest off-
diagonal absolute value of I''T;. Hence, in order to cal-
culate the mutual coherence of the MIMO-OFDM mutual
coherence, it is sufficient to calculate all the available
SISO-OFDM pairs and consider the largest value as the
mutual coherence.

Another important consideration is the orthogonality
of the pilot sequences for each of the transmit anten-
nas. In fact, to omit the interference of the different
pilot sequences, we generate orthogonal pilot sequences
and then transmit zero subcarriers in the other antennas’
pilot subcarriers. Consequently, in creating different pilot
sequences, we should consider orthogonality of the pilot
sequences. The pilot allocation for a N = 16 subcarrier
MIMO-OFDM system utilizing orthogonal pilot place-
ment and Ns = 2 transmit antennas depicted in Fig. 2.
In the following, we would consider algorithms to design
pilot sequences.

5 Proposed pilot allocation algorithms

In this section, we will propose three algorithms based
on the population and probability, to optimize the com-
binatorial problem in Eq. (6). As mentioned, these algo-
rithms work based on the probability function and try to
sample the PDF using different populations and do this
until convergence of the PDF to the steady state. Here,
max; j;-+j leiaz e /2 Om=2nlN| is the fitness function
which should be optimized. In order to decrease the com-
putational complexity in fitness function we used Eq. (14).
Evidently, there are lots of zero elements in matrix W
which are unnecessary to be multiplied. Hence, we used
Eq. (14) to optimize the computations in fitness function
evaluation. Moreover, this optimization is done over the
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search space S which is composed of ( AA[; ) candidate. Since
the exhaustive search over search space S is intractable,
we consider probability-based approaches to optimize it
using initial generation G° where I different individuals
are found in each generation.

5.1 Sequential Cross-Entropy-based pilot allocation
approach

As discussed, this method is a probability-based approach
which constructs each generation towards better objective
function. In fact, SCE samples from a PDF and learns the
new population from J best individuals in the current gen-
eration. Since sampling from PDF is used as the primary
approach in producing different generations, the SCE will
be more robust than other population-based algorithms
which work by mutation and crossover in trapping into
a local minimum. Here, we need a PDF called P to gen-
erate individuals by sampling it. At first, we consider the
fitness function, generation, and individuals as before. In
this approach, to construct each generation the PDF P
is used. This PDF represents the probability of selection
of each element of the individual. Construction of this
PDF is based on J elite individuals with best objective
function and the PDF of the previous iteration. Mathemat-
ically, we assume each generation individuals by a vector
of probability

2¢(Q) = [pe(G1), pe(G)s - - ., P (GN)]"

where p,(G;) refers to the probability of obtaining a value
of 1 in the ith element of G. At each generation, using
the probability vector, py(G), I individuals are obtained.
In order to do random sampling by the PDF of pg(g),
we first generate the Cumulative Density Function (CDF)
(P), and then, using a random number between 0 and 1
and the inverse of CDF P, the sample is randomly gen-
erated. Each of these I individuals are evaluated and J
best of them (J < I) are selected. We denote them by
Q‘il, Qi], e Qﬁ,. These selected individuals are used to
update the probability vector by

(15)

J
Per1(@) = (1= 1pg(@) + 7 > G (16)

j=1

Antenna

Pilot subcarriers

E Zero subcarriers

N

Subcarriers

Fig. 2 Orthogonal pilot allocation representation using N = 16 subcarriers and N, = 3 pilot
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where 7 € (0,1] is a parameter of algorithm. Since the
probability behavior of populations is evident, possibility
of getting stuck in a local minimum is lower. The stage-by-
stage algorithm is represented in Algorithm 2. The stop
criteria is based on the PDF, and when the probability
function contains zero and 1/NsN,, it means that the best
possible value for pilot allocation is obtained.

Algorithm 2 Sequential Cross-Entropy-based pilot allo-
cation

1. Initialize the population G° using I random individual

2: while stop criteria not met do

3= Sort the individuals in G4 in ascending order
according to fitness function

4. SelectJ of the individuals in G¢ with the best objec-
tive value and establish subset Qfl forj=1,2,...,]

Construct PDF pg(G) using gj{l and Eq. (16)
Generate the CDF PP, using the py(G)
fori=1to/do
Generate NsN, random numbers in interval
[0,1]
9 Using the inverse of CDF (]P’g_ 1), sample the prob-
ability function and generate the new individual
without repeat and generate the new generation

® N >«

Gg+1
10  end for
11: end while

5.2 Special case of SCE (z = 1)—extension of [18]
Considering PDF update criteria in Eq. (16), if we assume
v = 1, the update process will not be affected by the
previous generation, i.e.,
J
Pen(©@ =7 Y Gy (17)
j=1
As a result, the memory of PDF will be omitted. Wang
et. al. in [18] proposed this approach called as the EDA
for the SISO-OFDM system. Here, we extend the EDA-
based algorithm for generating Ngs different orthogonal
sequences for the MIMO-OFDM system. In [18], it is
noted that matching the sequences with the best sequence
in every stage is mandatory, but in the following theorem,
it is proved that matching to the sequence is not manda-
tory at all, since matching the sequences is obtained using
circular shifting of the unmatched sequences. This phe-
nomenon is considered in the following Theorem.
Theorem 2. Assuming ® as an orthonormal measure-
ment matrix and defining ® as a row-wise permutation of
®. Then, it can be demonstrated that

p{®} = u{®) (18)
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Here, we consider ® = [¢1; ¢2; ¢3;. . .; ¢n] where ¢; is
1 x L complex vector. On the other hand, we assume ® =
[01; P3; P2; - . . ; Py, then mutual coherence for both of the
measurement matrices can be calculated as the maxi-
mum off-diagonal entry of Y 7 ; ¢LH ¢;. Consequently, the
mutual coherence for both of the matrices are the same
and row-wise permutation does not change the mutual
coherence.

Specifically, in the EDA-based algorithm which is rep-
resented in [18], after circular shifting J best sequences,
the PDF of the current stage is calculated by counting
the number of used subcarriers in J selected placements.
Obviously, the counting process is independent of the cir-
cular shifting. Another drawback of the algorithm can be
considered as trapping in the local minima, since the cur-
rent PDF is considered without taking into account pre-
vious ones. Apparently, the PDF is stuck in local minima
more rapidly, and thus, the algorithm would be termi-
nated. Although the speed of convergence is more than
SCE algorithm, the accuracy is less since local minima
trapping has occurred more rapidly. This algorithm is
considered in Algorithm 3.

Algorithm 3 Extended EDA-based pilot allocation

1: Initialize the population G° using I random individual

2: while stop criteria not met do

3. Sort the individuals in G$ in ascending order
according to fitness function

4:  SelectJ of the individuals in G® with the best objec-
tive value and establish subset Qf pforj=1,2,...,]

Construct PDF p,(G) using Qf ;and Eq. (17)
Generate the CDF P, using the p,(G)
fori=1to/do
Generate NsN, random numbers in interval
[0,1]

9: Using the inverse of CDF (IP’g’l), sample the prob-
ability function and generate the new individual
without repeat and generate the new generation
Gor1

10: end for
11: end while

5.3 Parallel Cross-Entropy-based pilot allocation
algorithm

As mentioned, in SCE-based pilot allocation algorithm,

the risk of trapping in local minima is lower than the

EEDA-based approach. But, the convergence speed is

absolutely inferior to the other EEDA-based approach. In

order to improve the convergence speed of the SCE-based
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algorithm, we have proposed PCE-based pilot allocation
plan. PCE considers « number of points in search space
S and tries to converge the PDF of these points to steady
state, simultaneously. Hence, since « points are con-
sidered simultaneously, trapping in one local minimum
is lowered than before. Moreover, working on a differ-
ent number of PDFs at the same time accelerates the
convergence of the proposed method. This algorithm is
represented in Algorithm 4.

As demonstrated in Algorithm 4, the difference of the
PCE and SCE is considered in pipelining the update PDF
and generations. In other words, in each iteration of the
algorithm, generation update is performed on « pipelined
branches. Moreover, these « pipelined branches are uti-
lized to update « different PDFs. As a consequence, the
random sampling is done over « different PDFs, where
a different generations are constructed. This approach
uses more computational calculations in each iteration
which can be handled by parallel-processing supporting
hardware. In the other hand, we obtain two significant
advantages including conservative behavior in impacting
by local minima trapping and lower number of iterations
in convergence. Thus, utilizing PCE-based pilot alloca-
tion will confirm two critical aspects of pilot allocation
algorithms.

Algorithm 4 Parallel Cross-Entropy-based pilot alloca-
tion
1: Initialize the population Q?ﬂ using / random individ-
ual
2: while stop criteria not met do
3 forlo=1toado

4 Sort the individuals in gfa in ascending order

5: Select J of the individuals in g;'; with the best
objective value and establish subset gf’; il forj =
1,2,...,]

6: Construct PDF pé”(g) using gi,ﬁ ; and Eq. (16)

7: Generate the CDF Pé" using the pé" (9]

8: fori=1to/do

9: Generate NsN, random numbers in interval

[0,1]
10: Using the inverse of CDF, sample the proba-

bility function and generate the new individual
without repeat and generate the new genera-
tion g‘é‘ﬂrl

11: end for

122 end for

13: end while

6 Numerical results
In this section, the numerical results are collected to rep-
resent the performance of the proposed SCE-, EEDA-, and
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PCE-based pilot allocation algorithms. In all the simula-
tions, the number of OFDM subcarriers is N = 512, and
16-ary quadrature amplitude modulation (16-QAM) with
Gray coding is utilized. Among N available subcarriers,
there are N, subcarriers as pilot subcarriers. Various val-
ues are assigned to N, in different simulations. Without
loss of generality, in MIMO scenarios the number of trans-
mitting and receiving antennas for all the nodes are 2,
i.e, Ns = Ng = Np = 2. Sparse Rayleigh fading chan-
nels in the networks are modeled using Finite Impulse
Response (FIR) filters with L taps where K number of
taps are non-zero and are i.i.d. using zero mean and unit
variance complex Gaussian distribution. Furthermore, all
the results are averaged over 1000 independent channel
ensembles.

6.1 Comparison of the proposed algorithms

In this part, we compare the performance of the pro-
posed algorithms in view of decreasing p. To evaluate
the performance, we consider N, = 25 pilot subcarriers
for each antenna which distributed orthogonally using
SCE, EEDA, and PCE approaches and L = 25 channel
taps with K = 3 significant non-zero. As a comparison
standard, we consider the optimized pilot allocation
in [11] where GA was utilized to generate orthogonal
pilot sequences. The comparison is evaluated using
the minimal mutual coherence n and distribution of
w. Distribution of u is illustrated in Fig. 3. Specifically,
in EEDA-based approach (Fig. 3b), the convergence
is acquired in 52nd iteration, where it is acquired for
PCE-based approach (Fig. 3a) and SCE-based approach
(Fig. 3¢) in 123rd and 186th, respectively. Expectedly, the
distribution of p in each iteration is getting closer in all
the three methods. It is caused by the convergence of
probability function which is sampled in each iteration.
As can be seen, the value of minimum p in the last
iteration is better for the case of PCE-based approach,
since the algorithm examines some of the local minimum
points together through the global minimum while in
the other approaches the algorithm examines just one
point. Specifically, the p values are with a sample pilot
sequence which is obtained in each algorithm and are
compared with each other in Table 1. GA-based approach
algorithm is used to generate the pilot sequence, as well.
As represented in Table 1, the minimum achieved mutual
coherence is 0.2227 reported by PCE-based approach
which was expected for the sake of multiple point examin-
ing. Moreover, the supremacy of the proposed SCE-based
approach to the EEDA-based approach is represented
by the difference between 0.2360 and 0.2439. Finally, the
obtained value by GA-based approach in [11] is the worse
approach. Hence, three proposed methods can be ordered
as PCE-, SCE-, and EEDA-based approaches from mini-
mum mutual coherence approach while all of them are
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Table 1 Sample pilot sequences and their mutual coherence

a which have been achieved by different proposed approaches
1 and comparison to the method in [11]
0.65F + T b
1 Alg.  SCE EEDA PCE GA
0.6 - T b
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°'55’3 é % ! T I ] N 1 2 1 2 1 2 1 2
T +
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3 ! ! + +
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0s | better than GA-based approach. In the following section,
SF 1
|
|

we will consider the performance of the proposed pilot
| sequences utilizing the Normalized Mean Square Error
(NMSE) and Bit Error Rate (BER) performance metrics.

o
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T

1 distribution
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|
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035 i 1 ‘ i | 6.2 Evaluating MSE and BER performance
4 i i ‘ + Here, we consider the applicability of the. proposed algo-
03f —+ | ! ‘ ! : rithm and the obtained pilot sequences utilizing two main
T T ! E characteristics of channel estimator called NMSE and
0.251 i i i 1 BER. The channel is characterized by L = 25 taps where
‘ ‘ ‘ ‘ ‘ ‘ ‘ i K = 3 of them are significant non-zero taps. NMSE is
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NMSE = 19
Numc ; Iy 13 (9
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where h is the complete channel vector and h is its estima-
tion. Moreover, Nyc is the Monte Carlo iteration which
is 1000. BER is evaluated using Monte Carlo simulation
using Nc individual simulation.

In Fig. 4 these two performance metrics are com-
pared. Apparently, decreasing the mutual coherence will
cause a better NMSE metric and BER performance. As
illustrated in Fig. 4a, the MSE of PCE enjoys from the
mutual coherence approximately 1 and 2.5 dB rather
than SCE- and EEDA-based approaches, respectively.
Moreover, from BER point of view, the BER gain caused
by mutual coherence supremacy is approximately 3 and
6 dB for BER = 2 x 1072 to SCE and EEDA-based
approaches, respectively. The BER for the case of Full
CSI is represented as a comparison metric. Evidently,
by utilizing N, = 25 optimized pilots on each antenna,

—e—PCE
—&—SCE

NMSE (dB)

_40 I I I I I

0 5 10 15 20 25 30
SNR (dB)
10°
Full CSI
—e—PCE
—e—SCE
EEDA
107 F 3
[v4
w
o
102 F
10-3 1 1 1 1 1
0 5 10 15 20 25 30
SNR (dB)

Fig. 4 Performance comparison for different pilot allocation algorithms.

a NMSE performance metric and b BER performance metric
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the performance is almost 3 dB away from the optimal
performance which could be compensated using other
facilities. Actually, using optimized pilots will lead to
90% spectral efficiency which is one of the most critical
characteristics of the system.

In order to compare the results with previous
approaches in the literature, we have done the simulations
using GA-based pilot allocation approach together with
PCE-based approach. Hence, these two methods could be
compared from spectral efficiency point of view utilizing
NMSE and BER performance metrics (Fig. 5). For the
simulations, the number of N, = 30 is selected. The
performance comparison represents the superiority of
the proposed method from NMSE and BER performance

NMSE (dB)

0 5 10 15 20 25 30
SNR (dB)

10°

Full CSI
—e—PCE

—=—GA

BER

103 I I I I I
0 5 10 15 20 25 30

SNR (dB)
Fig. 5 Performance comparison of proposed method and GA-based
pilot allocation algorithm. a NMSE performance metric and b BER
performance metric
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metric overview. Apparently, in NMSE and BER the PCE-
based approach outperforms the GA-based algorithm
almost 4 dB, quantitatively. Furthermore, comparing
Figs. 4 and 5, the performance of GA-based algorithm
for N, = 30 is identical to the SCE-based approach for
N, = 25 pilot numbers. Hence, utilizing the proposed
methods, the spectral efficiency will increase more
than 1% rather than other spectral efficient DCS-based
approaches.

6.3 Performance comparison with the other estimation
method

In this part of simulation results, the simulations are per-
formed in comparison to the well-known CoSaMP algo-
rithm in order to evaluate the benefits of the proposed
method. In this simulation, the number of channel path
is considered to be L = 30, where K = 3 of them are
significant non-zero paths. Moreover, the number of pilot
subcarriers for each transmitting antenna is considered to
be N, = 40. To evaluate the performance merits of the
proposed methods, we considered two different scenarios.
In the first scenario the pilot allocation is performed ran-
domly, while in the second scenario the pilot is allocated
using the proposed PCE-based algorithm. The BER results
of them are represented in Fig. 6. As illustrated in Fig. 6a,
using the random pilots together with the CoSaMP-based
channel estimation method, results in irreducible BER
around 107! while this is not encountered in case of
proposed B-vCoSaMP-based channel estimation method
until 1072, Moreover, utilizing proposed PCE-based pilot
allocation which is shown in Fig. 6b, the BER is decreased
in both cases but the proposed method is still better than
the other method and approximately 2 dB away from the
ideal case.

6.4 The effect of significant paths of channel

The last simulation results are devoted to the impact
of channel significant paths on the channel estimation
performance. In order to evaluate the performance, we
change the significant paths from K = 2 to K = 4.
The BER performance is compared using random pilot
allocation and optimized PCE-based pilot allocation. The
channel paths are again L = 30 and the pilot num-
ber is N, = 40 for each of the transmitting antennas.
Expectedly, increasing the number of significant path will
decrease the sparsity order of the channel which makes its
estimation harder. As a consequence, using N, = 40 ran-
dom orthogonal pilots, will not be applicable in case of
K = 4 significant paths (BER is shown in Fig. 7). More-
over, for the case of K = 3, utilizing optimized PCE-based
pilots will improve the performance while it is comparable
with the case of K = 2 and approximately 1 dB away from
K = 2, while this gap is around 3.5 dB in case of random
pilot allocation.
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Fig. 6 Performance comparison of proposed method and
CoSaMP-based channel estimation algorithm. a BER performance
using random pilot allocation and b BER performance using
optimized PCE-based pilot allocation

7 Conclusions

In this paper, we have considered the channel estima-
tion problem in AF MIMO-OFDM relay networks using
DCS-based approaches. Firstly, the channel estimation
method proposed is called B-vCoSaMP where the chan-
nel estimation is improved utilizing block sparsity of
MIMO channels and LS estimation. In order to improve
the performance of the estimation, we design three dif-
ferent algorithms to minimize the mutual coherence of
the resultant channel estimation measurement matrix.
The proposed methods are based on the Cross-Entropy
optimization and include SCE-, EEDA-, and PCE-based
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BER
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Fig. 7 Performance comparison of proposed method in case of
different significant paths of the channel. a BER performance using
random pilot allocation and b BER performance using optimized
PCE-based pilot allocation

approaches. Utilizing just one local minimum point in
SCE and EEDA, the performance is worse than PCE-based
approach. Multi-point tracking ability of PCE makes it
possible to increase the accuracy and speed of the pilot
sequence determination algorithm.
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