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Abstract

This paper computes the Cramer-Rao bounds for the time of arrival estimation in a multipath Rice and Rayleigh
fading scenario, conditioned to the previous estimation of a set of propagation channels, since these channel
estimates (correlation between received signal and the pilot sequence) are sufficient statistics in the estimation of
delays. Furthermore, channel estimation is a constitutive block in receivers, so we can take advantage of this
information to improve timing estimation by using time and space diversity. The received signal is modeled as
coming from a scattering environment that disperses the signal both in space and time. Spatial scattering is modeled
with a Gaussian distribution and temporal dispersion as an exponential random variable. The impact of the sampling
rate, the roll-off factor, the spatial and temporal correlation among channel estimates, the number of channel
estimates, and the use of multiple sensors in the antenna at the receiver is studied and related to the mobile
subscriber positioning issue. To our knowledge, this model is the only one of its kind as a result of the relationship
between the space-time diversity and the accuracy of the timing estimation.

Keywords: Cramer-Rao bounds, CRB, Time of arrival, TOA, Mobile subscriber location

1 Introduction
Positioning of a mobile subscriber is a complex task that
has the capability of adding value to services and applica-
tions such as navigational aids, and patient and personnel
monitoring [1]. It is also useful when performing driving
tests [2] and helps to enhance the mobile network allo-
cation resources, handover decisions, etc. [3]. Permanent
research is being developed in this area with increasing
complexity [4, 5] to sustain in time the adaptation of these
principles to new emerging technologies [6, 7].
Network-based positioning is performed through the

estimation of signal parameters involved in the commu-
nication process. These parameters may include time of
arrival (TOA), direction of arrival (DOA), observed time
differences of arrival (OTDOA), signal strength (SS), etc.
Estimators based on time are preferred over those based
on bearing due to their better resolution, but hybrid tech-
niques may also be implemented to reduce positioning
variance error [8]. Furthermore, SS measurements may be
added to TOA- or OTDOA-based methods to increase
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positioning accuracy in line of sight (LOS) environments,
such as indoors, using ultra-wide band radios (UWB) or
wireless sensor networks [9–12]. The positionmay be esti-
mated from these parameters using propagation relations
or pattern recognition techniques [9, 13].
Permanent efforts have been made to characterize wire-

less channels [14–17], and practical estimators have been
derived. For instance, Bengtsson [18], Besson [19], and
Valaee [20] have described several techniques based on
signal subspace to estimate DOA and angular spread for
wireless dispersed signal, whereas Raleigh [21] and Wax
[22], among others [23] have studied the problem of Joint
Space-Time Estimation in a multipath environment.
However, since the final performance of a specific posi-

tioning technique depends on the way signal parameters
are estimated, a general comparison of the different tech-
niques is difficult. For this reason, we study the problem
of TOA estimation in both Rice and Rayleigh propagation
conditions from a Cramer-Rao perspective since the lower
bound of an unbiased estimator determines the best possi-
ble behavior in the estimation of a particular parameter of
interest. In this way, the limiting variances for timing can
be used to get an insight about the positioning accuracy.
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Other bounds besides the Cramer-Rao bound (CRB)
exist, such as the Barankin bound (BB) [24] or the Ziv-
Zakai bound (ZZB) [25]. The BB claims to be the great-
est lower bound on Mean Squares Error (MSE) for a
uniformly unbiased estimator, but it is generally incom-
putable analytically [24]; the ZZB is useful in environ-
ments such as GNSS (Global Navigation Satellite System),
where the signal-to-noise ratio (SNR) is very low and the
CRB cannot be used. However, we prefer the use of the
CRB since it is adequate for modeling Gaussian processes
[25, 26]. In addition, it is useful to identifying if a partic-
ular estimator is the minimum variance unbiased (MVU)
estimator and if a MVU estimator really exists. Further-
more, in the case that such a MVU estimator does not
exist, it can still predict the performance of maximum
likelihood estimates in an approximate sense for certain
conditions of high (SNR) or when a large number of
observations is available [26].
In addition to the deterministic CRB which models

some parameters as unknown deterministic variables as
in our case, the Bayesian CRB (BCRB) models some
unknown parameters as random. However, it has been
reported that in certain cases, results predicted by CRBs
or BCRBs are too optimistic and some modifications
to the classical CRBs have been proposed lately. This
requires the postponement of the application of an expec-
tation operator required for Fisher information matrix
(FIM) computation, in a way that matrix inversion is per-
formed first and then as a second step, an expectation
operator is applied to compute the modified CRB (MCRB)
[27]. These latter variations of the CRBs are out of the
scope of this paper.
Although other approaches exist in the computation of

the CRB for TOA, to the best of our knowledge, our model
is in fact the most complete of its kind in the literature,
since it incorporates a way to take into account spa-
tial and temporal correlation among channel estimates,
and the impact of the roll-off factor, in addition to the
number of sensors and the number of estimates that are
typical from other approaches [28–32]. Our model also
assumes an exponential dispersion for delays, which is
characteristic of mobile channels, instead of just a few
paths [28–31, 33, 34]. Furthermore, we provide asymp-
totic expressions for the general case, suitable for high
levels of SNR and a large number of channel vector
estimates [35, 36].
Finally, it is important to point out that our model

assumes no biased measurements; in other words, we
assume that the first arrival, although weak due to the
shadowing (non LOS condition), is in fact related to the
LOS component. In fact, the non LOS (NLOS) condi-
tion is an important issue for the location problem and
therefore its identification and mitigation are still a cur-
rent research topic [37–46]. For example, it is conceptually

interesting to consider the use of Bayesian mechanisms
which take advantage of system dynamics and add any
previous knowledge available, in order to smartly select,
among a set of measurements, those with the capacity to
lead to a more confident estimation. Some of these strate-
gies use variations of the Kalman filter (KF) to incorporate
this intelligence into the Positioning Computing Func-
tion [42–44] and employ some lateral information such as
the signal quality indicator associated with LOS/NLOS in
[42] or prior knowledge to adjust NLOS data toward the
corresponding LOS values [40].
The structure of the paper is as follows. Section 2

first introduces the assumptions on the signal model and
presents a brief discussion related to signal dispersion and
the coherence time for delays, which is required prior
to introducing the channel model, and lastly the proce-
dures to compute the true CRBs as well as the asymptotic
expressions for the timing. Section 3 presents the CRBs
characteristics for LOS and NLOS models and contrasts
these results with those provided by a practical timing
estimator. Section 4 summarizes the main observations,
conclusions and recommendations.

2 Signal model
2.1 Model assumptions
The following assumptions are taken into consideration:

AS 1. Channel introduces multipath propagation; there-
fore, the signal is dispersed in space and time from the
LOS component. Statistical independence for angular and
temporal dispersion processes is assumed. Independence
is a reasonable assumption because each path is affected in
a different and unpredictable way by the propagation envi-
ronment. The first TOA is the parameter of interest for
the problem, while the angular parameters are nuisance
parameters required for the characterization of the CRB.

AS 2. Despite the channel having a coherence time for the
taps amplitudes [47, 48], delay and even angle information
may remain within tolerable limits much longer due to the
high proportion between light speed and mobile speed,
and the relatively great distances between transmitter and
receiver. Therefore, many channel estimates can be col-
lected in time so as to improve the accuracy of the timing
and angle estimates [49].

AS 3. The first arrival is analyzed as the one bearing
timing for position information. Measures for TOA are
computed from channel estimates available at the receiver
through a correlation function. A full maximum like-
lihood (ML) estimation of all propagation parameters
(delays and angles) is considered an approach that is
too expensive in a dispersive channel, where the num-
ber of parameters could be too large, and might lead to
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inconsistent estimates if the available number of channels
is low.

AS 4. Noise present in the channel estimates is white
and Gaussian, which is a reasonable assumption after the
matched filter [50]. Our analysis does not strictly consider
a multi-user environment, but this assumption is reason-
able even in this case since all other users have been at
least partially canceled.

AS 5. The power angular spectrum (PAS) is symmetric
and dispersive and exhibits just a single mode with the
mean value associated to the right angular position of the
transmitter (the UE if the PAS is computed at the base
station (BS)). Gaussian and Laplacian [15, 51–54] models
usually describe the marginal probability P(θ) in (1):

P(θ) =
∫

P(θ , τ)dτ (1)

A single modality is a reasonable assumption as long as
the channel bandwidth is large, and therefore the channel
estimated at chip time includes only rays impinging from a
narrow solid angle. Furthermore, some experimental evi-
dence shows that the probability of having more than a
cluster in a typical urban environment reaches 13% and it
reduces to 8% in suburban areas [15].

AS 6. A continuous power spectrum is used in delay for
the marginal function P(τ ) in (2):

P(τ ) =
∫

P(θ , τ)dθ (2)

It is assumed to fit an exponential shaping [47], estimated
at a fraction of the chip time. For the extraction of timing
information, the same angular distribution for all delays
is assumed. This may not be very realistic, but it allows
for reducing the number of parameters in the model and
keeps the problem tractable [34, 54].
Note that our basic model may be used to study some

NLOS scenarios since each tap of the channel impulse
response is a zero mean random variable. Certainty, an
LOS situation implies a non-zero mean where the first
arrival is considered as the one conveying unbiased loca-
tion of the UE. Therefore, and in order to achieve more
general results, this basic model has been enhanced to
introduce the LOS condition as a symmetric kernel for
the angular distribution with a peak discontinuity at the
true angular position of the source, as it is described in
Section 2.4.2.

AS 7. A first-order autoregressive (AR) Markov process
for the evolution of the channel along the time due to
Doppler is assumed [55].
This model is very convenient for the purpose of loca-

tion, since only a few parameters of interest are going to

be computed, rather than all delays and angles which are
usually nuisance parameters. First arrival is the desired
parameter, since in most cases, positioning accuracy just
slightly improves with the use of the whole multipath
coming from the LOS nodes in comparison with the use
of their first components only [33, 56]. Furthermore, in
a practical positioning system deployment, the transmis-
sion of these parameters to a remote device is required
[57], so a lower number of parameters reduces the signal-
ing channel bandwidth.

2.2 Coherence time and delay dispersion
Channel estimation is limited bymobility. Coherence time
corresponds to the interval in which the channel is essen-
tially considered time invariant, and it is related to the
inverse of the Doppler variation. It is easy to perceive
that timing estimation will be affected at least by an error
related to the displacement of the MS (mobile station) in
the observation interval. Hence, this coherence time for
the first arriving signal may be related with the maximum
allowed delay uncertainty (η) introduced by the move-
ment and the radial component of the speed vector (vr) of
the mobile, as it was commented in [35]. When vr is very
small, errors due to displacements are also small and the
number of available channel estimates required to keep a
specified uncertainty grows, and hence a practical limit
has to be imposed to the observation time Ta cq (asso-
ciated with the latency experienced by the user in the
availability of the position) in order to deliver the timing
to the Position Computing Function (PCF). Therefore, the
number of channel estimates reaches a finite limit.
Figure 1 exhibits a set of characteristics related to the

mean number of channel vector estimates (K), the mobile
speed and the expected accuracy in TOA estimation for
typical parameters of a Wideband Code Division Multiple
Access (WCDMA) system, a chip rate of 3.84 Mcps and
a timeslot of 666.66 μs [35, 36]. Note that the maximum
number of observations is limited by the acquisition time
and the mobile speed. A faster MS will have less time for
channel acquisition, and a compromise will be required to
achieve the best timing accuracy.
From a systemic viewpoint, mobile location may be

improved when system dynamics [49] and previous
knowledge from the statistics of the measures are used
[42] and also from the use of a heterogeneous set of
measurements [12, 44, 49].

2.3 Signal model
The observed signal is a set of K channel vector estimates
collected over a set of Ns sensors. Each channel vector
estimate z is of length N, and it is estimated from cor-
relation of a known sequence with the received signal.
Notations of frequent use within this paper are summa-
rized in Table 1.
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Fig. 1 Expected number of channel estimates available to achieve
timing in terms of the subscriber speed. Results are exhibited for a
maximum acquisition time of 1.5 s and several different allowed
timing errors ε , given as fractions of chip time

The signal received by j-th sensor is noted as y(j)(t) and
is expressed in (3) as the summation of multipath com-
ponents and noise n(j)(t). Each replica of the transmitted
signal x(t) arriving at delay τi is affected by (i) a time-
varying unit-power steering coefficient bij(t), associated
with the path impinging angle in relation to the antenna
array geometry; (ii) the path attenuation factor γi(t); and
(iii) a time invariant (over time intervals of length KTs)
Doppler frequency fi, where Ts is the time between two

Table 1 Notations

Notation Description

N, K ,Ns Respectively, the number of lags at the observation
windows, the number of channel vector estimates,
and the number of sensors at the antenna array

z ∈ CNKNs×1 Vector containing the channel estimates

w ∈ CNKNs×1 Vector containing the estimation noise

Rz Correlation matrix for channel estimates

Rφ(ρ) Spatial correlation matrix (spatial correlation vector)

T(α) Temporal correlation matrix (temporal correlation
coefficient)

Ps , σ 2
w Respectively, the signal power factor and the noise

variance

Gs(β) Pulse shaping matrix (roll-off factor)

�τ (λn) Diagonal matrix that models delay dispersion (coher-
ence bandwidth)

bφ(ρ) LOS expected spatial signature (spatial correlation
vector)

αt(α) LOS expected temporal vector (temporal correlation
coefficient)

g(k0) Pulse shape vector for the first arrival

Description of notations frequently used within the text

consecutive channel estimates:

y(j) (t) =
Npaths∑
i=1

bij (t) γi (t) x (t − τi) ej2π fit+n(j) (t) (3)

The i-th index discriminates the component within the
multipath, and Npaths is the number of impinging paths
at the receiver. The transmitted signal x(t) corresponds to
the convolution of a pseudo-noise sequence p(n) with the
symmetric pulse shape g(t):

x (t) =
∑
n

g (t − nT)p(n) (4)

where T is the symbol time. A correlator estimates the
channel from the received signal y(j)(t) at each sensor
j, and temporal lag s, with the help of the pseudo-noise
sequence p(n) of Np symbols,

z(j)s (t) = 1
Np

∑
n

y(j) (t + τs + nT) p∗ (n) (5)

where z(j)s (t) corresponds to the estimated channel coef-
ficient at j-th sensor and s-th lag, as a function of time.
Replacing (3) in (5), assuming zero mean noise, using
the fact that the sequence p(n) has unit power and is
temporally uncorrelated, and the assumption that within
Np symbols the steering coefficient and the path atten-
uation factor remain constant, and by discarding some
cumbersome algebraic details, (5) becomes (6):

z(j)s (t) =
Npaths∑
i=1

bij (t) γi (t) ej2π fitg (t − τi + τs)+w(j)
s (t)

(6)

The Eq. (6) above shows that the estimated channel
is obtained synchronously with the transmission time;
therefore, we can assume t = kTs and hence temporal
variation of z(j)s (t) depends on k in (7) and also Doppler
frequencies are re-scaled:

z(j)s (k) =
Npaths∑
i=1

bij (k) γi (k) ej2π fiTskg (τs − τi)+w(j)
s (k)

(7)

The residual noise componentw(j)
s (t) is given by (8) and

may be modeled as a zero mean complex white Gaussian
random process (AS4).

w(j)
s (k) = 1

Np

∑
k

n(j) (kTs + τs + kT) p∗ (k) (8)

Furthermore, taking into consideration that the mul-
tipath signal in our model has an exponential distribu-
tion and that the observation window is large enough
to capture most of the energy from this scattered signal,
and also considering just one arrival per lag, Npaths in
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(7) has been set as equal to the number of lags N in the
observation window. Therefore, by stacking the channel
coefficients at s-th lag described by (7), the channel vector
estimation at sensor j and at slot k, results in z(j) (k). This
vector may be expressed in terms of the shaping pulse and
the noise estimation vector w(j) (k) as in (9),

z(j) (k) = Gsb(j) (k) + w(j) (k) (9)

where the i-th element of vector b(j) (k) contains b(ij) (k) ·
γi(k) · exp(j2π fiTsk) and the i-th column of the NxN
square matrix Gs contains the shaping pulse delayed by τi
samples:

Gs (β) = 1√
Ts (1 − β/4)

[
gs1 gs2 . . . gsN

]
(10)

Observe that each one of the pulse shape vectors, gsi, in
(10) may be modeled as in (11), where its elements gk=s−i
refer to the shaping pulse sampled at g(τs−τi) as described
by (12):

gTsi = [ g1−i · · · 1 · · · gN−i
]

↑
i th element

(11)

gk =
sinc

(
k

Nspc

)
cos
(

πβk
Nspc

)

1 − (2βk/Nspc
)2 (12)

Nspc corresponds to the number of acquired samples per
chip time. The length N of vectors in (9) and (11) is the
number of lags in channel estimates.
From (9), we can compute correlation matrix for two

channel estimates obtained from slots k and m, and sen-
sors j, j′, as in (13):

E
{
z(j) (k) z(j

′)H (m)
}

= GsE
{
b(j) (k)b(j′)H (m)

}
GT
s + σ 2

wIN

= ρjj′α
k−mGs (β)�τGT

s (β) + σ 2
wIN

(13)

where β is the roll-off factor shaping the transmission
pulse, and �τ is a diagonal matrix that models signal tem-
poral dispersion and its exponential power contribution.
The last factorization is possible under the assumption of
statistical independence for angular and temporal disper-
sion processes (AS 1) and also for multipath propagation
and Doppler shift mechanisms. In fact, the i, l element of
the signal correlation matrix

E
{
b(j) (k)b(j′)H (m)

}
i,l

=
{
E
{
bij (k) γi (k) ej2π fiTsk ·

·b∗
lj′ (m) γl (m) e−j2π flTsm

}

E
{
b(j) (k)b(j′)H (m)

}
i,l

= ρjj′rilαk−mδil

(14)

adopts the definitions:

E
{
bij (k) b∗

lj′ (m)
}

= ρjj′ ;

E
{
ej2πTs(fik−flm)

}
= αk−m;

E {γi (k) γl (m)} = rilδil
rii = E {γi (k) γi (m)} = Pse−λn(i−k0)u (i − k0)

(15)

where ρjj′ refers to the correlation between signatures at
sensors j and j′; α refers to temporal correlation between
channel estimates in two consecutive slots when temporal
variation has been modeled as a first-order AR Markov
process (AS 7); and ril refers to the correlation between
delays in lags i and l, and k0 refers to the TOA of the first
path.
In particular, ril is zero for paths at different lags since

they fade independently and are assumed to be uncor-
related. Furthermore, the form of rii in (15) responds to
the assumption of having an exponential power delay pro-
file (AS 6) with parameter λn, and it is very suitable for a
NLOS condition.
Additionally, if vectors are arranged as

w = [w(1)(1)T . . . w(1)(K)T · · ·w(Ns)(K)T
]T

z = [ z(1)(1)T . . . z(1)(K)T · · · z(Ns)(K)T
]T (16)

both signal and noise components may be described as
temporally stationary, complex Gaussian random pro-
cesses with certain means and correlation matrices. Noise
is zero mean, temporally uncorrelated and independent of
the propagation channel vectors and of variance σ 2

w.
When estimates in z are achieved under an NLOS

condition, channel angular spread will tend to increase
[15, 38]. Such is the case, for instance, of a receiver at a
mobile station (MS) in an urban environment. In this case,
propagation is Rayleigh [35], and z may also be modeled
as zero mean with correlation matrix Rz. The general case
for themodel, however, corresponds to have LOS and Rice
propagation [58]. In this case, the mean vector, μz, is not
null. It could be the case for a receiver at the base station
(BS) in a suburban environment. Therefore, we can model
noise and signal as in (17):

w ∼ CN
(
0, σ 2

wI
)
, z ∼ CN (μz,Rz) (17)

The correlation matrix for channel estimates,

Rz = E
{
zzH

}
(18)

is related to channel estimates at different slots, sensors
and lags.
The correlation matrix, Rz, may be written in the form

Rz = Rφ(ρ) ⊗ T(α) ⊗ PsGs (β) �τ (λn)Gs
H (β) + σ 2

wI
(19)

in terms of their temporal and spatial components
[36, 58]. In this expression, the dispersed signal power fac-
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tor, Ps, refers to the variance of the received estimated
path-power for first arrival from temporally dispersed sig-
nal in the case of Rayleigh propagation. Additionally, the
temporal correlation matrix, T(α), takes into consider-
ation the temporal variation for the channel, and it is
assumed to be equal for all delays; the spatial correlation
matrix, Rφ(ρ), contains the correlation coefficients for
signatures between sensors; and ⊗ denotes the Kronecker
product [59].
The exponential model used for delays is usually pro-

posed in channel models, and it is given by

{�τ }i,i = exp [− (i − k0) λn]u (i − k0) (20)

in terms of both, the first arrival position k0, and
the dimensionless parameter λn. This latter is inversely
related to delay spread normalized by the symbol time,
and therefore it is closely related to channel coherence
bandwidth [47, 48]. In the following, λn will be called the
normalized coherence bandwidth.
The spatial correlation matrix, Rφ(ρ) is modeled as

Rφ (ρ) =

⎡
⎢⎢⎢⎣

1 ρ12 · · · ρ1Ns
ρ∗
12 1 · · · ρ2Ns
...

...
. . .

...
ρ∗
1Ns

ρ∗
2Ns

· · · 1

⎤
⎥⎥⎥⎦ (21)

where dependency with the source mean bearing and its
angular spread meets through the correlation vector ρ, as
will be explained later in (27)
T(α) is modeled as a first-order AR Markov process,

T(α) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 α α2 · · · αK−1

α 1
. . . αK−2

α2 . . .
...

. . .
αK−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(22)

α is the temporal correlation coefficient between two con-
secutive vector samples, and ρij is the spatial correlation
coefficient between sensors i and j. Note also that Gs is
proportional to the identity matrix when sampling at the
symbol rate.
Regarding the temporal correlation between consec-

utive estimates, the channel vector correlation matrix
may be modeled as a Fully Coherent Dispersed (FCD)
Source, a Partially Coherent Dispersed (PCD) Source, or
an Incoherent Dispersed (ICD) Source. The general case
corresponds to PCD, FCD being a particular case where
estimates are completely correlated (α = 1), and ICD the
case where estimates are uncorrelated (α = 0) [35, 36].
In the case of Rice propagation, the first arrival has

a non-null mean and disturbs the exponential distribu-
tion for delays. Expression (9) turns into (23), where f0 is

the Doppler frequency for the LOS component, and g(k0)

identifies the pulse shape vector for this arrival:

z(j) (k) = b0j (k) γ0 (k) ej2π f0Tskg(k0)

+ Gsb(j) (k) + w(j) (k)
(23)

Note that the right part of the summation in (23) cor-
responds to the dispersed NLOS signal and has a null
expected value. Moreover, since delay dispersion and
Doppler are assumed independent, the mean channel gain
is computed as follows in (24) where the time dependency
of the steering vector has been discarded since its value is
expected to remain unchanged for the LOS path along the
position acquisition (AS 5).

E
{
z(j) (k)

}
= E

{
b0jγ0 (k) ej2π f0Tskg(k0)

}

= A0E
{
b0j
}
E
{
ej2π f0Tsk

}
g(k0)

(24)

where A0 corresponds to the mean signal level for the
LOS component. If μz denotes the mean channel vector
arranged as z andw, in (16), it could be expressed in terms
of the spatial signature for the LOS component bφ , the
expected Doppler vector αt , and the pulse shape vector for
first arrival g(k0), as

μz = E {b} ⊗ E
{
ej2π f0Tsk

}
⊗ A0g(k0) (25)

The spatial signature described by the LOS component
when a uniform linear array (ULA) is used may be com-
puted geometrically using a signal angular distribution
[60], as in

bφ = E {b}
with[E {b}]n = E

{
bn
}

= 1√
2π�φ

π∫

−π

e
− (φ−φ0)

2

2�2
φ e−jnπ sin(φ)dφ

(26)

In this case, spatial distribution is modeled as Gaussian
(AS 5), centered around φ0, with angular spread �φ

and subscript n corresponds to the sensor position for
nε[ 0,Ns−1]. The angular spread corresponds to the stan-
dard deviation of the direction of arrivals from multipath
components at the receiver when a normalized version of
the PAS is used as the weighting function. Some works
report that Laplacian distribution can provide a good
match to this angular distribution [15, 53, 61]; but when
it is used in (27) instead of a Gaussian distribution, mean-
ingless variations are achieved.
Remembering that the correlation matrix Rφ described

in (27) is related to (26), the expected spatial signature in
(28) results.
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[
Rφ

]
n1,n2 = E

{
bn1b

∗
n2
}

with E
{
bn1b

∗
n2
} = 1√

2π�φ

π∫

−π

e
− (φ−φo)2

2�2
φ e−j(n1−n2)π sin(φ)dφ

(27)

bφ (ρ) = [ 1 ρ12 ρ13 . . . ρ1Ns

]H (28)
Note from (25) and from the fact that temporal variation

due to Doppler may again be modeled as a first-order AR
Markov process (AS 7), as the temporal vector, αt(α), is a
function of α, and it takes the form

αt(α) = [ 1 α α2 . . . αK−1 ]T (29)

Therefore (25) becomes:

μz = bφ(ρ) ⊗ αt(α) ⊗ A0g(k0) (β) (30)

2.4 Computing the Cramer-Rao bounds for delay
estimates

Highlighting the importance of Cramer-Rao bound not
only as ameans to quantify errors from a set of parameters
to be estimated but also as a modeling tool since it allows
for the evaluation of the impact of various parameters in
the estimation error, we will continue with the deriva-
tion of this bound for our model, introduced mainly in
(17), (19), and (30). Consequently, the following parameter
vector is defined in (31), where k0 is the time of arrival nor-
malized for the chip time, λn is the normalized coherence
bandwidth, ρ is a vector containing the real and imaginary
parts of the complex correlation coefficients among sen-
sors, and the remaining parameters have previously been
defined. All of them except k0 are nuisance parameters.

� =
[
k0, λn,β ,Ps, σ 2

w,α, ρT ,A0
]T

ρ = [ρ1,Re, ρ2,Re, . . . , ρNc,Re, ρ1,Im, ρ2,Im, . . . , ρNc,Im
]T
(31)

Note that in case of a Rayleigh fading channel, there is
not a dominant LOS path and thereforeA0 is zero andmay
be discarded, reducing the parameter vector to (32).

� =
[
k0, λn,β ,Ps, σ 2

w,α, ρT
]T

ρ = [ρ1,Re, ρ2,Re, . . . , ρNc,Re, ρ1,Im, ρ2,Im, . . . , ρNc,Im
]T
(32)

Since channel vector estimates being stacked in z are
assumed complex Gaussian distributed, the probability
density function for z is expressed as in (33), and the
Cramer-Rao bounds for the parameters in (31) corre-
spond to the diagonal elements within the inverse of the
FIM. Furthermore, FIM elements for the Rice LOS model
may be expressed as it is seen in (34) [26] and in the case
of Rayleigh fading as given in Eq. (35). Also note that Rz

corresponds to the covariance matrix for the general Rice
case in (34) and it is equal to the correlation matrix for
the Rayleigh case in (35) since the mean is null for this
latter case.

p (z) = 1
πK .Ns.N det (Rz)

exp
[−(z − μz)

HR−1
z (z − μz)

]

(33)

[
FLOS

�

]
pq

= −E
[

∂2 ln
{
p (z;�)

}
∂�p∂�q

]

= tr
(
R−1
z

∂Rz
∂�p

R−1
z

∂Rz
∂�q

)

+ 2Re
(

∂μH
z

∂�p
R−1
z

∂μz
∂�q

)
(34)

[F� ]pq = −E
[

∂2 ln
{
p (z;�)

}
∂�p∂�q

]

= tr
(
R−1
z

∂Rz
∂�p

R−1
z

∂Rz
∂�q

) (35)

2.4.1 Cramer-Rao bounds for the NLOS Rayleigh fading
model

It will be shown below that (35) becomes (36) when R−1
z

and their partial derivatives are computed and replaced in
the expression above.

F� =
Ns∑
k=1

K∑
k1=1

Gk,k1J� ′GT
k,k1 + C1e(6)

Npe
(6)
Np

T+

+
2N∑
q1=1

2N∑
q2=1

C(q1,q2)
2 e(6+q1)

Np e(6+q2)
Np

T
(36)

Expression (36) illustrates the way that the required
FIM (F� ) gains information from the contribution of each
available channel estimate through the eigenvalues from
both the temporal- and spatial- correlation matrices. In
fact, Gk,k1 matrix, and C1 and C(q1,q2)

2 coefficients allow
this update in a computationally efficient manner. Gk,k1
has a global impact since it weighs the partial FIMs (J� ′ )
computed at each new iteration by taking advantage of the
structure of the power delay profile in �τ . On the other
side, C1 refers to the diagonal term for the parameter α,
and C(q1,q2)

2 to the crossed terms related with the corre-
lation coefficients of the spatial correlation matrix Rφ .
Terms in (36) are defined in expressions (37)–(43). In par-
ticular, it is a worth noting that a singular value decompo-
sition has been performed over the temporal correlation
matrix T, and over the spatial correlation matrix Rφ , as it
is shown in (37), being λ

(k)
t and λ

(k1)
φ the eigenvalues of T

andRφ respectively. Similarly, u(k)
t and u(k1)

φ correspond to
the eigenvectors of these correlation matrices. Nc in (37)
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is the number of parameters associated with the spatial
correlation matrix and therefore depends on the array size
Ns, with Np being the total number of parameters in our
model and K the number of channel vector estimates.

T = Ut�tUH
t ,Ut =

[
u(1)
t ,u(2)

t , . . . ,u(K)
t

]

�t = diag
[
λ

(1)
t , λ(2)

t , . . . , λ(K)
t

]

Rφ = Uφ�φUH
φ ,Uφ =

[
u(1)

φ ,u(2)
φ , . . . ,u(Ns)

φ

]

�φ = diag
[
λ

(1)
φ , λ(2)

φ , . . . , λ(Ns)
φ

]

e(q)
v = [0, . . . , 0, 1, 0, . . . , 0]Tv

↑
q th element

Np = 6 + 2Nc; Nc = Ns (Ns − 1) /2

(37)

See in (38) as � ′ differs for each new k and k1 since the
parameter γk,k1 in (40) refers to the signal power weighted
by the respective spatial and temporal eigenvalues. Gk,k1
also depends on the partial derivatives of these eigenval-
ues as related to the temporal correlation factor α and
from the spatial correlation coefficients in ρ.

� ′ = [k0, λn,β , γk,k1 , σ 2
w
]TGk,k1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 λ

(k)
φ λ

(k1)
t 0

0 0 0 0 1

0 0 0 Psλ(k)
φ

∂λ
(k1)
t

∂α
0

0 0 0 Ps
∂λ

(k)
φ

∂ρ
λ

(k1)
t 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6+2Nc)x5

(38)

These derivatives are described in (39) and (40).

∂λ
(k)
φ

∂ρ
=
⎡
⎣ ∂λ

(k)
φ

∂ρ1,Re
,

∂λ
(k)
φ

∂ρ2,Re
, . . . ,

∂λ
(k)
φ

∂ρNc ,Re
,

∂λ
(k)
φ

∂ρ1,Im
,

∂λ
(k)
φ

∂ρ2,Im
, . . . ,

∂λ
(k)
φ

∂ρNc ,Im

⎤
⎦
T

(39)

γk,k1 = λ
(k)
φ λ

(k1)
t Ps

λ̇
(k1)
t = dλ

(k1)
t
dα

u̇(k1)
t = du(k1)

t
dα

(40)

The partial FIMs required in (36) are described as in
(41), where the partial correlation matrix Rk,k1 takes the
form in (42).

{
J� ′
}
pq = tr

(
R−1
k,k1

∂Rk,k1
∂� ′

p
R−1
k,k1

∂Rk,k1
∂� ′

q

)
(41)

Rk,k1 = Psλ(k)
φ λ

(k1)
t Gs�τGT

s + σ 2
wIN (42)

C1 and C(q1,q2)
2 coefficients are described in (43).

C1 = −Ps2
Ns∑
k=1

K∑
k1=1

K∑
l1=1

[
λ

(k)2
φ

(
λ

(k1)
t − λ

(l1)
t

)2
u(k1)
t

H
u̇(l1)
t u(l1)

t
H
u̇(k1)
t .

.tr
{
R−1
k,k1Gs�τGT

s R
−1
k,l1Gs�τGT

s

}]

C(q1,q2)
2 = −Ps2

Ns∑
k=1

Ns∑
l=1

K∑
k1=1

⎡
⎣λ

(k1)2
t

(
λ

(k)
φ − λ

(l)
φ

)2
⎛
⎝u(k)

φ

T ∂u(l)
φ

∂ρq1

⎞
⎠

×
⎛
⎝u(l)

φ

T ∂u(k)
φ

∂ρq2

⎞
⎠ .tr

{
R−1
k,k1Gs�τGT

s R
−1
l,k1Gs�τGT

s

}⎤⎦

(43)

Derivations are certainly quite algebraically extensive,
and their main steps will be commented on briefly.
First of all, R−1

z is expressed as in (44) by using the
Kronecker product properties [59], with Rk,k1 defined as
in (42):

R−1
z =

Ns∑
k=1

u(k)
φ u(k)H

φ ⊗
K∑

k1=1
u(k1)
k u(k1)H

k ⊗
N∑

k2=1
e(k2)
N e(k2)H

N R−1
k,k1

(44)

Derivatives required in (35) must also be computed,
and it is easy to show how they take the form described
in Eq. (45), being A, B, and C the matrices exhibited in
Table 2.

∂Rz
∂�p

= A ⊗ B ⊗ C (45)

For example, when a derivative relative to k0 is required,
the corresponding value of p within the table is “1,” and
therefore, the corresponding result is assembled as in (46).

∂Rz/∂�p=1 = ∂Rz/∂k0 = Rφ ⊗Tk ⊗ Ps∂�τ /∂k0 (46)

From inserting Eqs. (44) and (45) in (35), and after
some simplifications, (47) originates. Finally, by replacing

Table 2 Elements required in (45) to assemble the FIM in (35) for
a Rayleigh fading channel

p �p A B C

1 k0 Rφ TK Ps∂�τ /∂k0

2 λn Rφ TK Ps∂�τ /∂k0

3 β Rφ TK Ps∂
(
Gs�τGT

s
)
/∂β

4 Ps Rφ TK Gs�τGT
s

5 σ 2
w INs IK IN

6 α Rφ ∂T/∂α PsGs�τGT
s

7:Np ρp−6 ∂Rφ/∂ρp−6 TK PsGs�τGT
s

General modeling of a NLOS dispersed signal
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the values from Table 2, as in the example above, and
rearranging terms, expression (36) is reached.[

F�

]
pq =

=
Ns∑
k=1

Ns∑
l=1

u(k)
φ

H

Apu(l)
φ u(l)

φ

H

Aqu
(k)
φ ·

·
K∑

k1=1

K∑
l1=1

u(k1)
K

H

Bpu
(l1)
K u(l1)

K

H

Bqu
(k1)
K tr

×
(
R−1
k,k1CpR

−1
l,l1Cq

)

(47)

Furthermore, expression in (35) allows further simplifi-
cations when the sampling is performed at the chip rate. If
it is the case,Gs in (19) becomes the identity matrix I, and
the roll-off factor may be discarded, reducing the number
of parameters required to compute the Fisher matrix [36].
More details about these simplifications may be found in
Section AF1.1 within Additional file 1.

2.4.2 Cramer-Rao bounds for the LOS Rice fadingmodel
In case of an LOS condition, fading is Rice and therefore
the mean channel vector estimate μzz is not null, and it is
described in (30) in terms of the expected spatial signature
bφ , the Doppler vector αt , the pulse shaping vector for the
first arrival g(k0), and the mean signal level for the LOS
component A0. All these components were described in
(21)–(29).
Since themean channel vector is different to zero for the

LOS case, the parameter vector is described in (31) and
the computation of the FIM in (34) adds some derivatives
that must also be computed. It is easy to show these take
the form

∂μz
∂�p

= D ⊗ E ⊗ F (48)

being D, E, and F, the vectors contained in Table 3. For
instance, when a derivative relative to k0 is required, the
corresponding value of p within the table is one, and the
derivative in (48) becomes as in (49):

Table 3 Definition of elements in (48) required for additional
derivatives in (34) when computing the FIM

p �p D E F

1 k0 bφ αt A0∂g(k0)/∂k0

2 αn – – –

3 β bφ αt A0∂g(k0)/∂β

4 Ps – – –

5 σ 2
w – – –

6 α bφ ∂αt/∂α A0gk0

7: Np−1 ρp−6 ∂bφ/∂ρp−6 αt A0gk0

Np A0 bφ αt gk0

Modeling of a LOS Rice fading channel

∂μz/∂�p=1 = ∂μz/∂k0 = bφ ⊗ αt ⊗ Ao∂g(k0)/∂k0 (49)

It may be shown that (34) becomes (50) when R−1
z in (49)

and the partial derivatives in (48) are replaced within (34).

FLOS
� = F� + 2Re

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1TNs

Ns∑
k=1

u(k)
φ u(k)

φ

H

	

	 ∂bz
∂�p

∂bHz
∂�q

1Ns
.1TK

K∑
k1=1

u(k1)
T u(k1)

T

H

	

	 ∂αt
∂�p

∂αT
t

∂�q
1K .

∂g(k0)
T

∂�p
R−1
k,k1

∂g(k0)
∂�q

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(50)

In the expression above, F� corresponds to the FIM for
the NLOS model in (36), but since the parameter A0 was
added for the LOS model, Gk,k1 in (38) must be replaced
for GLOS

k,k1 in (51). Furthermore, 	 notes the Hadamard
Product.

GLOS
k,k1 =

[
Gk,k1
0

]
(7+2Nc)x5

(51)

Computing the CRBs from the previous equations may
be computationally expensive, especially when the num-
ber of available channel vector estimates K is high. Fur-
thermore, expressions for FCD sources require another
more suitable factorization. Therefore, asymptotic expres-
sions when K is high and adequate expressions for FCD
sources have been computed in [35, 36]. See Sections
AF1.2 and AF1.3 within Additional file 1.

2.5 CRBs in timing estimation and the extent of
positioning errors

In order to put CRB results in relation to potential errors
introduced in terms of distance range, (52) will be used,
where e corresponds to the range error estimation, c to
light speed, and Tc to the system chip time.

e = c.
√
CRB (k0)Tc (52)

Consequently, an estimation error standard deviation of
one chip time results in a range error in the order of 240 m
for IS-95 and around 80 m forWCDMA since chip period
is a little more than three times higher for IS-95 in rela-
tion to WCDMA. In the sequel, a WCDMA system will
be referred to by default.

2.6 Coherence bandwidth and CRBs
As was mentioned previously, channel coherence band-
width, Bc, is proportional to the normalized coherence
bandwidth λn, and to the chip rate, Rc. The exact propor-
tionality factor depends on the application but is lower
than 1/(2π) [47, 48]; therefore, it will be set to 1/10 as
shown in (53), and the estimation error of this bandwidth
may be related to the CRB for λn as:
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Bc ≈ 1
10

λnRc (53)

eBc ≈ 1
10

Rc
√
CRB (λn) (54)

Through the use of (54), it is easy to understand that error
estimation for the coherence bandwidth is close to 1% of
chip rate when the square root of the CRB is close to
1/10. It would correspond for example to an uncertainty
of around 38 kHz for a WCDMA system and around of
12 kHz for IS-95.

2.7 Timing estimation: the minimum variance method
This section introduces the minimum variance (MV)
TOA estimator, a practical method available in the lit-
erature [49], in order to compare its behavior with that
described by our CRBs.
Remembering that our data is a collection of K channel

vector estimates infected with noise, recorded in a time
interval of duration KTs as follows:

y(τ ; k) =
L∑

i=1
ai(k)g(τ − τi)

+v(τ ; k); ai(k), v(τ ; k) ∈ C ∀k = 1, ...,K

(55)

where τi and ai(t) refer respectively to the delays and
the time-varying amplitudes of the L propagation paths,
g(τ ) to the pulse shape, and v(τ ; n) to the noise which
is assumed temporally, not correlated among successive
slots (n).
When the discrete Fourier transform (DFT) is com-

puted from channel vector estimates, (56) results:

y(w; n) =
L∑

i=1
ai (n) g (w) exp

(−jwτi
)+ v (w; n) (56)

And the delays’ estimation problem turns into the estima-
tion of the position of spectral lines. Stacking the samples
of the transformed domain in a single vector, (56) may be
rewritten as (57):

y(n) =

⎡
⎢⎢⎢⎣

y (ωo; n)

y (ω1; n)
...

y (ωM−1; n)

⎤
⎥⎥⎥⎦ =

L∑
i=1

ai(n)Geτi

+v(n) = GEτa(n) + v(n)

(57)

where G is a diagonal matrix containing the DFT of the
raised cosine pulse shaping filter and Eτ is defined below:

Eτ = [ eτ1 · · · eτL

]
eτi

= [e−jwoτi e−jw1τi . . . e−jwpτi
]T (58)

The MV solution performs signals separation through the
filter w, as it is shown below, where the noise term ṽ(n)

also accounts for the non-interesting paths:

z(n) = wHy(n) = aj(n)wHGeτj + wH ṽ(n) (59)

The filter satisfies that wH Geτ j = 1, and an improved
performance is achieved when w is chosen so as to maxi-
mize the output SNR or equivalently minimizing the noise
output power:

w = argmin
w∗ wHE

{
y(n)y(n)H

}
w

subject to wHGeτj = 1
(60)

This minimization is performed using Lagrange multipli-
ers, with J being the cost function in Eq. (61):

J = wHRyw + λ
(
wHGeτj − 1

)
(61)

And the achieved MV solutions for both the filter w and
the spectral representations for delays as follow [62]:

w(τ ) = R−1
y Geτ

eHτ GHR−1
y Geτ

P(τ ) = 1
eHτ GHR−1

y Geτ

(62)

Note that one filter is found per each delay, and that the
final power delay spectrum does not include the explicit
expression of the filter. The determination of the timing
for the first arrival from P(τ ) requires the use of a thresh-
old to avoid confusing the noise or the first side lobe with
the true arrival [62].

3 Results
In the following section, several results will be shown for
the CRBs for TOA in case of Rayleigh and Rice fading
channels and also for the practical MV estimator in (62).

3.1 Performance of asymptotic expressions
Figure 2 compares the CRBs behavior for the estimated
timing k0 as a function of the temporal correlation for
various values of the number of the observed channel

Fig. 2 CRB of the first arriving path k0 in terms of the temporal
correlation coefficient α. Results for the square root of the CRB are
displayed for different sizes K, of the record containing the channel
vector estimates, for both the asymptotic (dashed) and no asymptotic
(solid) expressions. SNR has been set to 20 dB, delay spread to 5 Tc ,
and for two sensors in the antenna array
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estimates, K, for the NLOS Rayleigh fading model in (35).
Results were provided by using both the exact expressions
in (36) and the expressions achieved with the use of the
asymptotic eigenvalues frommatrix T in (37) as described
in the section “AF1.2” of Additional file 1. Asymptotic
expressions for the first arrival timing k0 fit very closely to
exact ones for as few as 10 observations for this high SNR
of 20 dB as it is shown in Fig. 2. However, higher values of
K were required when SNR were poor. For instance, when
SNR was set to 0 dB, instead of 10 observations, 50 obser-
vations were required to have a similar performance along
the whole range of the temporal correlation. CRBs of the
normalized coherence bandwidth λn are more sensitive
to the temporal correlation coefficient than their analog
expressions for timing and 50 observations were required
to achieve a good fitting for a SNR of 20 dB [35, 36]. For
both parameters, the largest differences were achieved for
a high temporal correlation coefficient very close to one
where expected accuracies rapidly degrade.
Since timing is the parameter of interest for loca-

tion purposes and based on the analysis exhibited in
Fig. 1, it is expected that the average value of K will
be larger than 100, very accurate results may be pro-
vided from the use of these asymptotic expressions , with
the advantage of reducing computational burden since
derivatives related to to the temporal correlation factor

α were explicitly computed instead of using numerical
methods.

3.2 CRBs for timing and normalized coherence
bandwidth for the NLOS Rayleigh fading model

Figure 3 provides information about the behavior of the
CRBs for the normalized coherence bandwidth λn within
�τ in (20), in terms of SNR, and several values of α for
the case of having different configurations at the antenna
array. Specifically, the graphics at the top of Fig. 3 refer
to the case of including two sensors at the antenna array
while the graphics at the bottom of Fig. 3 refer to the
case of including four. Note that the error bounds for
this parameter are reduced for smaller temporal correla-
tion coefficients. In fact, an improvement was registered
when correlation shifted from 1 to 0. Recall that this sit-
uation corresponds to subscribers changing from low to
high speed respectively, or when channel estimates are
achieved from more separated slots. CRB always dimin-
ished for higher SNRs, with some limiting floor value,
which was significantly higher for the high temporal cor-
relation case. This behavior also appears in CRBs for
timing as shown in Figs. 4, 5, and 6. Note for example
that the value of this error bound for the coherence band-
width in Fig. 3 degraded from a value slightly better than
3% for the PCD source case (α = 0.9) to around 9% for

Fig. 3 CRB of the normalized coherence bandwidth λn in terms of the SNR. Results are provided for different values of the temporal correlation α,
different values for the angular delay spread, and different values for the number of sensors K. The number of channel vector estimates K has been
set to 50, the delay spread to 5 Tc , and the roll-off factor to one. a Top left: angular spread set to 5° and two sensors. b Top right: angular spread set
to 18° and two sensors. c Bottom left: angular spread set to 5° and four sensors. d Bottom right: angular spread set to 18° and four sensors
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Fig. 4 CRB of the first arriving path k0 for different values of the SNR. Results are provided for different values of the temporal correlation α and
different angular spreads for the received signal. The number of sensors is 1 (solid) and 4 (solid bullet). Delay spread set to 5 Tc , for 50 channel vector
estimates. a Left: angular spread set to 5°. b Right: angular spread set to 10°

the FCD case when the SNR was set to 10 dB, two sensors
were used and the source angular spread corresponded to
5°. Furthermore, an improvement of the estimation lower
than 25% was achieved when changing from two sensors
to four. In addition, some slight reduction in the error
bound was shown when angular spread increased from
5° to 18°.
In addition, Fig. 4 shows the behavior of the CRB for

the first arrival, when observations from signals received
at multiple sensors were available. This figure compares
the case of having just one sensor with the case where four
sensors in λ/2 were used in two environments with angu-
lar spreads of 5° and 10°, which could be the case of UL
measurements. These results showed that addingmultiple
antennas improved the accuracy of estimates significantly,
but that angular spread did not significantly influence
delay estimation. However, the improvement due to a
higher angular spread resulted more important for lower
delay spreads [35], and the best situation corresponded
precisely to having completely uncorrelated sensors. In
fact, the CRBs degraded as angular spread decreased. Dif-
ferences were not really significant in relative terms, since

computed errors were between 0.095 and 0.125 of the
chip time, but they were more visible in range terms. For
instance, range errors for a SNR of 15 dB were between
7.5 and 10 m for WCDMA and between 23 and 30 m
for IS-95.
Furthermore, the inclusion of multiple sensors provided

similar gains in timing accuracy, from moderate to high
SNR, regardless of the value of the temporal coefficient. A
gain factor of around two was achieved. In range terms,
this means that error decreased from 16 to 8 m for ICD
sources in a WCDMA system when a four sensor array
was used instead of a single sensor.
Results from Figs. 1, 2, 3, and 4 above were achieved

using a sampling equal to the chip rate, while Figs. 5 and
6 exhibit results for timing error bounds when sampling is
faster than the chip rate. In particular, Fig. 5 shows that a
marginal improvement in the timing error bound was per-
formed when roll-off factor β was modified from 0.5 to
1.0. For example, there was an improvement of just around
10% for a SNR of 15 dB for ICD sources. It accounts for
less than a meter in range terms. However, due to the
sampling being twice as fast, a gain of two was achieved

Fig. 5 CRB of the first arriving path k0 for different values of the SNR. Results are provided for different values of the temporal correlation α, delay
spread set to 2Tc , and two different roll-off factors. One sensor and 50 channel vector estimates are available. The sampling rate set to twice the chip
rate. a Left: set to 0.5. b Right: β set to 1.0
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Fig. 6 CRB of the first arriving path k0 for different values of the SNR. Results are provided for different values of the temporal correlation α, different
values of delay spread, and different values of angular spread. Four sensors and 50 channel vector estimates are available. The sampling rate set to
twice the chip rate, and a roll-off factor of 0.5. a Top left: delay spread set to 5Tc , angular spread set to 18°. b Top right: delay spread set to 5 Tc ,
angular spread set to 5°. c Bottom left: delay spread set to 2Tc , angular set to 18°. d Bottom right: delay spread set to 2Tc , angular spread set to 5°

in the whole observed SNR range with independence of
the temporal correlation factor α. For example, the timing
error for a SNR of 40 dB was reduced to around the half
(0.08 Tc) when the sampling rate was doubled as can be
shown comparing Fig. 5 with results in [35].
Furthermore, Fig. 6 shows similar results in the tim-

ing error with independence of the angular and delay
spread of the source. Again, major improvements were
associated with a lower degree of correlation for the

measures; however improvements related to angular and
delay spreads were lower than a fewmeters in range terms.
These improvements were performed for wider angular
spreads, especially when SNR was low. This gain reduced
for higher SNRs where errors tended to a minimum floor
of of 0.04 Tc, a corresponding range error of around 3 m
in WCDMA.
Finally, Fig. 7 exhibits the timing error bound in terms

of the number of estimates for different configurations of

Fig. 7 CRB of k0 as a function of the number of channel vector estimates K. Results are provided for different values of the temporal correlation
coefficient α, SNR=10 dB, and a delay spread of 5 Tc . a Left: one sensor. b Right: four sensors and two possible scenarios: uncorrelated sensors case
and a low angular spread case (angular spread of 5°)
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Fig. 8 CRB of the first arriving path k0 as a function of dispersed SNR. Results are provided for different values of the temporal correlation coefficient
α and for different values of the LOS component power. Two sensors and 50 channel vector estimates are available. The sampling rate set to twice
the chip rate and a roll-off factor of 0.5. Delay spread set to 2 Tc and angular spread set to 5°. Bearing direction is the broadside. a Left: LOS power set
3 dB lower than the dispersed signal power. b Right: LOS power set 3 dB higher than the dispersed signal power

the antenna array and several temporal correlation fac-
tors among the observed estimates. This figure shows that
the first arrival timing estimation error bound improves
as the number of channel vector estimates K increases. In
the case of highly temporally correlated channel estimates,
results showed the difficulty to reduce the error bounds,
even for a large number of observations (high values of K)
or whenmultiple antennas were used. As an example, note
that in Fig. 7 left that error reduced to the third from 4.8
to 1.2 m in range terms, in case of α = 0.9; and to just half
from 9.6 to 4.8 mwhen α = 0.999 andK passed from 10 to
100. The influence of the angular spread is another factor
to be considered: spatial uncorrelated sensors allowed a
better estimation of the timing, but improvement consid-
ered in range terms wasmore important in cases of having
highly temporally correlated estimates since in this case,
for example, it accounted for around 8 m for K = 100
and just around of 1.5 m when channel estimates were
temporally uncorrelated.

Interpretation of results should be made very carefully
when the number of observations is analyzed in relation
with the time correlation factor α, since channel estimates
achieved from two consecutive slots will exhibit a higher
temporal correlation factor compared to those performed
using much more separated slots; and also considering
that the coherence time for delays reduces for higher
mobile speeds and therefore limits the availability of new
estimates.
On the other hand, and from the perspective of the com-

putation of CRBs, the use of uncorrelated sensors implies
a reduction in complexity since the spatial correlation in
(31) disappears as a nuisance parameter and computation
therefore becomes simpler and faster.

3.3 CRBs for timing and normalized coherence
bandwidth for the LOS Rice fading model

This section shows behavior of the error bounds for the
timing k0 and the normalized coherence bandwidth λn in

Fig. 9 CRB of the normalized coherence bandwidth λn in terms of the dispersed SNR. Results are provided for different values of the temporal
correlation coefficient λ, and for different values of the LOS component power. Two sensors and 50 channel vector estimates are available. The
sampling rate set to twice the chip rate and a roll-off factor of 0.5. Delay spread set to 2Tc and angular spread set to 5°. Bearing direction is the
broadside. a Left: LOS power set 3dB lower than the dispersed signal power. b Right: LOS power set 3 dB higher than the dispersed signal power
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case of the LOS Rice model in (50). Particularly, Figs. 8
and 9 exhibit exhibit these bounds as a function of the dis-
persed SNR for two different values of the average LOS
power: 3 dB above and 3 dB below the dispersed signal.
First of all, note that the timing error reduced for higher
temporally correlated environments when a LOS compo-
nent was present. This behavior was precisely the opposite
of what was registered for a NLOS condition. Further-
more, timing bounds computed for this LOS model were
lower than those expected for the NLOS condition, and
they reduced as LOS power increased. Improvement
achieved for higher temporal correlation is almost neg-
ligible for temporal correlation factors higher than 0.99.
For example, note that the timing error for a SNR of
15 dB and an ICD source (α = 0) with a LOS power
3 dB below the dispersed signal power when two sensors
were used corresponded to 5.5 × 10−2 Tc. This bound
reduced to 4.8 × 10−2 Tc for a PCD source (α = 0.9),
and to 3.0 × 10−2 Tc for a FCD source (α = 0.99999).
When the LOS power increased to 3 dB higher than the
dispersed signal power, the bound reduced from 3.2×10−2

Tc to 2.5 × 10−2 Tc and finally to 1.5 × 10−2 Tc for ICD
(α = 0), PCD (α = 0.9), and FCD (α = 0.99999) cases,
respectively. In range terms, it means that distance error
went from around 4.4 m (ICD) to 2.4 m (FCD) for the first

case and from 2.6 to 1.2 m for the latter. Another inter-
esting observation is the fact that timing error reduced
without bound when SNR increased for this LOS model.
This indicates that timing accuracy would be theoreti-
cally limited just by SNR in cases of a dominant LOS
condition.
These results perhaps seem to be too optimistic, but

they are consistent with themodel structure that supposes
the LOS signal is perfectly characterized. In fact, if the sig-
nal we are looking for is practically deterministic, which it
is especially true in high SNR conditions; it is possible to
estimate the timing with a very high accuracy.
On the other hand, the bounds for the normalized

coherence bandwidth λn seemed not to be disturbed for a
change in the LOS power level, and the tendency in rela-
tionship to the temporal correlation coefficient remained
consistent as in the NLOS model. For example, note from
Fig. 9 that the error bounds were somewhat higher than
those expected from the NLOS model, but they were
also bound limited when SNR increased. In this case, the
minimum error bound achievable was around 1.2%. This
slight degradation exhibited in CRB for the LOS model is
derived from the fact that the vector of unknown param-
eters included a new parameter to estimate [26], and due
to the fact that this new LOS parameter did not disturb

Fig. 10 CRB of the first arriving path k0 as a function of the signal bearing. Results are provided for different values of the power level of the LOS
component and various values of the temporal correlation coefficient α. 50 channel vector estimates are available. The sampling rate set to twice
the chip rate, and a roll-off factor of 0.5. Delay spread set to 2Tc , angular spread set to 5° and the dispersed SNR set to 10 dB. a Top left: two
sensors—ICD source (α = 0). b Top right: two sensors—highly temporal correlated source (α = 0.99). c Bottom left: four sensors—ICD source
(α = 0); d Bottom right: four sensors—highly temporal correlated source (α = 0.99)



Játiva and Vidal EURASIP Journal on Advances in Signal Processing  (2018) 2018:19 Page 16 of 20

Fig. 11 CRB of k0 as a function of the roll-off factor of the shaping pulse. Results are provided for different values of the dispersed SNR when the LOS
power level is 0 dB higher than the dispersed signal and an ICD source (α = 0). 50 channel vector estimates are available. The sampling rate set to
twice the chip rate, delay spread set to 2 Tc , angular spread set to 5°, and four sensors. a Left: bearing=0°. b Right: bearing=45°

temporal dispersion statistics in the model. However, it is
important to point out, that a LOS condition is associated
with a less dispersed signal both temporally and spatially
[15, 17, 42], and this fact has to be considered in the
analysis to extract proper conclusions from these results.
Furthermore, from a positioning viewpoint, timing is the
most relevant parameter, and the coherence bandwidth
can be considered a nuisance parameter. Nevertheless,
from a systemic perspective this parameter could pro-
vide some additional information about the quality of the
measure [42].
Figures 10 and 11 relate space-time diversity with the

timing error bounds for our Rice fading model. Particu-
larly, Fig. 10 shows the behavior of this bound with the
mean direction of arrival of the received signal for dif-
ferent power values of the LOS component when the
dispersed SNR was set to 10 dB. The impact of tem-
poral correlation is also assessed by comparing results
performed for ICD sources on the left of the figure with
those achieved for PCD sources on the right side. Further-
more, the gain introduced for the use of a larger number
of sensors is also exhibited by comparing graphics at the
top (two sensors) with those at the bottom (four sensors).
First of all, it is interesting to note that the timing error

reached a minimum for values close to 30° and that this
improvement became more important in relative terms
for higher levels of the LOS component and for more tem-
porally correlated signals, since in these cases, the possibly
became almost deterministic and was easier to be dis-
criminated from noise. Furthermore, for this LOS model,
a better gain was performed from the introduction of new
sensors for the case of PCD sources. For example, a gain
factor of around 1.35 was achieved when passing from
two sensors to four in case of ICD sources and this fac-
tor increased to around two for PCD sources (α = 0.99).
Bearing also impacted the timing error performance. A
higher gain was found when the mean signal bearing was

around 35°, and the range of the improvement region
widened around this bearing when more sensors were
added and a higher LOS power was available. This gain
decayed when the LOS path weakened and the Rice prop-
agation turned into Rayleigh. Gains associated bearing
reduced the timing error below half for high power LOS
signals, and these errors were reduced around 45% when
the LOS power changed from−3 to 3 dB over the disperse
component when four sensors were used.
On the other hand, Fig. 11 relates the CRB for the timing

error with the roll-off factor of the shaping pulse, the SNR,
and also with the signal bearing. Results in this figure
demonstrated that the timing error bound improved for a
higher roll-off factor when the signal arrived directly from
the broadside (Fig. 11—left), especially for high signal to
noise ratios. This enhancement is possibly related with the
sharper form of the first arrival related to the increase in
the bandwidth. However, the gain with roll-off factor was
negligible when bearing changed to 45° (Fig. 11—right)
due the better array performance for this bearing.
For example, note from the graphics that as the tim-

ing error reduced from 3 × 10−2 Tc for a roll-off factor
of 0.5 to around 2 × 10−2Tc for a roll-off factor of 1.0
when four sensors were used, the dispersed SNR was
set to 20 dB, and signal arrived directly from the broad-
side (Fig. 11—left). On the other hand, when direction
of arrival changed to 45°, timing error kept very close
to 0.85 × 10−2 Tc with independence of the roll-off fac-
tor for the same signal conditions (Fig. 11—right). Of
course, lower errors were achieved when a larger num-
ber of sensors were used. The behavior described by these
results is very reasonable since modifying the pulse shape
to a higher roll-off implies the availability of a higher
bandwidth, and therefore the reduction of the side lobes.
Therefore, it helps to reduce the probability of missing
the first arrival during the estimation stage. Furthermore,
the array geometry responds to bearing, and it can help
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Fig. 12Minimum variance spectrum for timing estimation. This result is provided for a SNR of 10 dB, an ICD source (α = 0), 75 channel vector
estimates available; the sampling rate set to twice the chip rate, delay spread set to 2Tc , angular spread set to 5°, and four sensors

to discriminate the LOS component from the dispersed
signal.

3.4 Practical estimators and CRBs
Figure 12 exhibits the TOA-MV power spectrum com-
puted using (62) for a NLOS signal model as described by
(17) and (19) for an ICD source, when SNR=10 dB, K=75
channel estimates, and Ns = 4 sensors for a sampling
of twice the chip rate. The threshold has been com-
puted properly [62] over the noise floor to avoid an early
detection due to the first side lobe. On the other hand,
Fig. 13 shows the root mean square error (RMSE) for the
first timing as a function of SNR and the temporal cor-
relation coefficient, computed over 2,500 realizations for
two different configurations by using the MV approach.
Both groups of results were computed for K = 50 esti-
mates, N = 20 chip times, an angular spread of 5°, and a
delay spread of 2 Tc, and they are compared with results
achieved for the CRBs. Results on the left correspond to
a configuration with Ns = 1 sensor and a sampling of
twice the chip rate, while results to the right corresponds

to Ns = 4 sensors and sampling performed to the chip
rate. Estimated errors exhibited for the case of an ICD
source are slightly higher than those provided for the
corresponding bounds, especially when just one sensor
is available. However, higher errors have been measured
when the temporal correlation increases especially when
SNR is low. When SNR increases the error decays to the
minimum as was expected. When Ns = 4, errors also
diminish as before, but although error tries to attain the
CRB at high values of SNR, the minimum error is finally
higher than the expected by the CRBs. These results pro-
vide evidence of the strengths and weakness from both
the CRBs and the practical estimator at hand. In essence,
the proper behavior of the MV-timing estimator has been
verified by the bounds for the best possible scenario: an
ICD source. However, the impossibility of this method to
attain the bounds inmore aggressive scenarios reveals that
the current formulation of this algorithm is possibly not
taking advantage of all the information provided by the
temporal and spatial diversity and therefore it is not the
MVU estimator. On the other hand, these discordances

Fig. 13 Root mean square error of the first arriving path k0 for different values of the SNR. Results are provided for different values of the temporal
correlation α, and different configurations of the antenna array, a delay spread of 2 Tc , 50 channel vector estimates available, and an angular spread
of 5°. The roll-off factor set to 0.5. a Left: one sensor and the sampling rate set to twice the chip rate. b Right: one sensor and the sampling rate set to
the chip rate
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remind us that the CRB is an optimistic model for any
unbiased estimator that alerts us about the inherent dif-
ficulties of performing the estimation. In this case, the
bounds are a warning about addressing the temporal cor-
relation of the estimates in order to get the best results
out of the method. High correlated estimates result in
ill-conditioned matrices degrading the behavior of this
practical estimator.

4 Conclusions
This paper describes the use of the CRBs to study the
impact of various factors involved in signal TOA esti-
mation for a mobile scenario modeled by a space-time
dispersive channel for both Rayleigh and Rice fading prop-
agation situations, and therefore, it explores the difficul-
ties and opportunities associated with timing estimation
in LOS and NLOS environments.

1. In particular, our model makes a contribution by taking
into account the spatial and temporal correlation among
channel estimates, and the impact of the roll-off factor
of the shaping pulse, in addition to the number of
sensors and the number of estimates that are typical
from other approaches. It also includes an exponential
dispersion for delays which is characteristic of mobile
channels instead of just a few paths as in prior approaches.
Furthermore, this paper also includes some
asymptotic expressions for certain interesting cases
related to with high speed and low speed subscribers.

2. Due to the close relationship between timing and
positioning, this model does contribute to insight not
only to the TOA estimation but also to its impact on
positioning.

From results in Section 3, the following conclusions can
also be derived:

1. Estimation errors for the timing and the normalized
coherence bandwidth decrease when the SNR
increases; but this improvement is highly conditional
depending on the propagation scenario and the type
of source. In the case of NLOS Rayleigh propagation,
these estimation errors degrade rapidly when passing
from PCD sources to FCD sources, reaching a limit
floor at high SNRs, so a higher SNR does not force a
lower error. On the other hand, in case of LOS Rice
propagation, the larger improvement is achieved
when passing from an ICD source to a PCD source,
and timing accuracy improves practically without
bound for higher SNRs.

2. The bounds for the normalized coherence bandwidth
λn seem not to be disturbed by a change in the LOS
power level; results remain as in the NLOS model.

3. Estimation errors, for the timing and the normalized
coherence bandwidth, also decrease when the

number of observations increases, but again this
reduction is very conditioned on the propagation
scenario and the kind of source: ICD, PCD, or FCD.
In the case of NLOS, a larger record of observations
is required to keep the accuracy for higher temporal
correlations among channel estimates; however in
the case of a LOS scenario, an uncorrelated dispersed
signal component implies a random perturbation
that degrades the accuracy on the signal of interest.

4. The use of multiple antennas introduces not just new
observations but also diversity, and therefore it helps
to improve accuracy. However, the impact of these
improvements is associated with temporal and
spatial coherence of the scattered signal. For the
NLOS condition, inclusion of multiple sensors
provides similar gains in timing accuracy, from
moderate to high SNR, regardless of the value of the
temporal coefficient. A gain factor of around two is
achieved when passing from one sensor to four,
confirming the observations in [31]. However, in
LOS condition, this gain almost doubles in the case
of highly PCD sources, and the bearing also impacts
the timing error performance. This gain decays when
the LOS path weakens and the Rice propagation
turns into Rayleigh. Improvements are always
obtained when an antenna array is used instead of a
single sensor, and certain improvements of around
20% are also achieved when passing from a narrow
spread source to a spatially well-scattered signal.

5. Under a non line of sight (NLOS) condition, the roll
off factor has negligible effect on error bounds, while
under LOS condition, a higher roll-off factor helps to
improve the bound for the timing error, possibly due
to the sharper form of the first arrival in this case,
related to the increase in the bandwidth.

6. CRBs provide a useful and optimistic insight about
the estimation problem that may help to achieve
practical and efficient estimators.

Finally, the following recommendations should be taken
into account:

1. In spite of our CRB model providing valuable
information about the timing estimation error,
careful attention is required to extrapolate these
results to the mobile subscriber positioning issue,
due to the different nature of Rayleigh and Rice
propagation models. For example in obstructed
environments, the shadowing may lead to important
delay spreads, while in LOS condition, low delays are
expected. In addition, some obstructed scenarios
may lead to signal clustering, and if that is the case,
even with the first arrival being accurately estimated,
the positioning could be biased. Fortunately, there are
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some methods to identify these scenarios [33, 40, 63]
and to reduce the harmful effects of this NLOS condition.

2. Errors from the measures translate directly into
range errors for positioning based on TOA, and these
certainly degrade the subscriber’s positioning.
However, it would be inappropriate to think about
the range errors as final positioning errors.
Positioning is a more complex procedure that
involves the acquisition from signals transmitted and
received from different parts of the network, and
therefore it is also dependent on the problem
geometry. However, the use of larger data records
dramatically reduces the positioning error, and
therefore it is very important to determine the
coherence time of delays and angles to take advantage
of this situation. In fact, positioning accuracy is very
sensitive to the subscriber mobility, being the highest
error associated with static equipment in NLOS
condition, due to the impossibility to taking
advantage of temporal diversity.
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