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Abstract

In this paper, the signed regressor normalized subband adaptive filter (SR-NSAF) algorithm is proposed. This algorithm is
optimized by L1-norm minimization criteria. The SR-NSAF has a fast convergence speed and a low steady-state error
similar to the conventional NSAF. In addition, the proposed algorithm has lower computational complexity than NSAF
due to the signed regressor of the input signal at each subband. The theoretical mean-square performance analysis of
the proposed algorithm in the stationary and nonstationary environments is studied based on the energy conservation
relation and the steady-state, the transient, and the stability bounds of the SR-NSAF are predicated by the closed form
expressions. The good performance of SR-NSAF is demonstrated through several simulation results in system
identification, acoustic echo cancelation (AEC) and line EC (LEC) applications. The theoretical relations are also
verified by presenting various experimental results.
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1 Introduction
Fast convergence rate and low computational complexity
features are important issues for high data rate applications
such as speech processing, echo cancelation, network echo
cancelation, and channel equalization. The least-mean-
squares (LMS) and the normalized LMS (NLMS) algo-
rithms are useful for a wide range of adaptive filter applica-
tions because of their low computational complexity.
However, the performance of the LMS-type algorithms is
corrupted when the input signals are colored [1, 2].
To solve this problem, various approaches such as affine

projection algorithm (APA) [3, 4] and subband adaptive filter
(SAF) algorithm have been proposed [5–7]. In [8], a new ver-
sion of the SAF was developed based on a constrained
optimization problem referred to as normalized SAF (NSAF).
The filter update equation in [8] is similar to the update
equation in [9, 10], where the full band filters are updated in-
stead of subfilters as in the conventional SAF structure [5].

To reduce the computational complexity of NSAF and
APA, different methods were proposed. In [11], the selective
partial update NSAF (SPU-NSAF) algorithm was presented
where the filter coefficients are partially updated rather than
the entire filter at every adaptation. In [12], the dynamic se-
lection of NSAF (DS-NSAF) algorithm was introduced. In
this algorithm, the number of subbands was optimally
selected during each iteration. The fix selection NSAF (FS-
NSAF) was also introduced in [13]. In this algorithm, a sub-
set of subbands was selected during the adaptation.
There are some classes of adaptive filter algorithms

that make use of the signum of either the error signal or
the input signal, or both. These approaches have been
applied to the LMS algorithm for the simplicity of im-
plementation, enabling a significant reduction in compu-
tational complexity [14–18]. The sign algorithm (SA)
takes the signum of the error signal. This algorithm is
particularly useful against impulsive interferences [19,
20]. But, in other cases, the convergence speed of the SA
is slower than conventional one [21]. This approach was
also successfully extended to the NSAF algorithm to es-
tablish the sign SAF (SSAF) algorithm [22, 23].
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In the signed regressor LMS (SR-LMS), the signum of
the input regressors is utilized. In this algorithm, the polar-
ity of the input signal is used to adjust the filter coefficients,
which requires no multiplications. The SR-LMS has a con-
vergence speed and a steady-state error level that are only
slightly inferior to those of the LMS algorithm for the same
parameter setting [24]. To increase the convergence speed
of SR-LMS, the signed regressor NLMS (SR-NLMS) was
firstly proposed in [14]. Also, the modified version of this
algorithm (MSR-NLMS) was presented in [25]. The same
as SR-LMS, the SR-NLMS enjoys advantages similar to
those of the NLMS algorithm. Due to the normalization
factor, the steady-state error level does not depend on the
input signal power [18]. Note that no multiplications are
needed to calculate the normalization factor. But for highly
colored input signal, the convergence speed of SR-NLMS is
still low. On the other hand, there is no definition for cost
function or solving the optimization problem to establish-
ment of the signed regressor algorithms in the literature.
Due to the effective features of signed regressor adaptive

algorithms (low computational complexity and close conver-
gence speed to the conventional algorithm) and to increase
the performance of the SR-NLMS algorithm, this paper pro-
poses the signed regressor NSAF (SR-NSAF) algorithm. The
SR-NSAF is established with L1-norm optimization. A con-
straint is imposed on the decimated filter output to force a
posteriori error to become zero. This constraint guarantees
the convergence of the algorithm. This algorithm utilizes the
signum of the input regressors at each subband during the
adaptation. Again, no multiplications are required for
normalization factor at each subband. To improve the per-
formance of the SR-NSAF, the modified SR-NSAF (MSR-
NSAF) is also established. The proposed SR-NSAF and
MSR-NSAF algorithms have lower computational complex-
ity than the NSAF, SPU-NSAF, DS-NSAF, and FS-NSAF,
while they have a fast convergence rate similar to the NSAF.
In addition, the steady-state error level is also nearly close to
the NSAF. For performance evaluation of any proposed
adaptive algorithm, a theoretical analysis is essential [26].
Therefore, in the following, the energy conservation ap-
proach [27] is applied to the SR-NSAF and the mean-square
performance analysis of the proposed algorithms are
studied in the stationary and nonstationary environ-
ments. This approach does not need a white or
Gaussian assumption for the input regressors. Based
on this, the transient, the steady-state, and the stabil-
ity bounds of the SR-NSAF and MSR-NSAF are ana-
lyzed and closed form relations are derived.
What we propose in this paper can be summarized as

follows:

� The establishment of the SR-NSAF according to the
proposed cost function. This algorithm utilizes the
signum of the input regressors at each subband.

Furthermore, no multiplications are required for
normalization factor at each subband.

� Mean-square performance analysis of the SR-NSAF
algorithm in the stationary and nonstationary
environments. The theoretical expressions for transient and
steady-state performances of the SR-NSAF are extracted.

� Analysis of the mean and mean-square stability
bounds of the SR-NSAF and MSR-NSAF algorithms.

� The performance of NSAF, SPU-NSAF, DS-NSAF,
FS-NSAF, SR-NSAF, and MSR-NSAF are compared
in convergence speed, steady-state error, and
computational complexity features for system
identification, acoustic echo cancelation, and line
echo cancelation applications.

� The theoretical expressions for transient, steady-state, and
stability bounds are justified with various experiments.

The current paper is organized as follows. In Section II,
the conventional NSAF is briefly reviewed. The proposed
SR-NSAF and MSR-NSAF are presented in Section III.
Section IV presents the mean square performance analysis
of SR-NSAF. The theoretical stability bounds relations are
given in Section V. In the following, the computational
complexity of the proposed algorithm will be discussed.
Finally, before concluding the paper, the usefulness of the
introduced algorithms are demonstrated by presenting
several experimental results.
Throughout the paper, the following notations are used:

|.| Norm of a scalar

‖.‖2 Squared Euclidean norm of a vector.

‖.‖1 L1-norm of a vector.

(.)T Transpose of a vector or a matrix.

E{.} Expectation operator.

sgn Sign function.

Tr(.) Trace of a matrix.

λmax The largest eigenvalue of a matrix.

ℜ+ The set of positive real numbers.

Α⊗ Β Kronecker product of matrices Α and Β

ktk2Φ Φ-weighted Euclidean norm of a column vector t defined
as tTΦ t.

diag(.) Has the same meaning as the MATLAB operator with the same
name: if its argument is a vector, a diagonal matrix with the
diagonal elements given by the vector argument results. If the
argument is a matrix, its diagonal is extracted into a resulting vector.

vec(T) Creates an M2 × 1 column vector t through stacking the
columns of the M ×M matrix T.

vec(t) Creates an M ×M matrix T from the M2 × 1 column vector t.

2 Background on NSAF
Consider a linear data model for d(n) as
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d nð Þ ¼ xT nð Þwo þ v nð Þ ð1Þ

where wo is an unknown M-dimensional vector that we
expect to estimate, v(n) is the measurement noise with
variance σ2v and x(n) = [x(n), x(n − 1),…, x(n −M + 1)]T

denotes an M-dimensional input (regressor) vector. It is
assumed that v(n) is zero mean, white, Gaussian, and
independent of x(n). Figure 1 shows the structure of the
NSAF [8]. In this figure, f0, f1, …, fN − 1 and g0, g1, …, gN
− 1, are analysis and synthesis filter unit impulse
responses of an N channel orthogonal perfect
reconstruction critically sampled filter bank system. xi(n)
and di(n) are nondecimated subband signals. It is
important to note that n refers to the index of the original
sequences, and k denotes the index of the decimated
sequences (k = floor(n/N)). The decimated output signal is
defined as yi;DðkÞ ¼ xTi ðkÞwðkÞ where xi(k) = [xi(kN),
xi(kN − 1),…, xi(kN −M + 1)]T and w(k) = [w0(k), w1(k),
…,wM − 1(k)]

T. Also, the decimated subband error signal is
defined as ei;DðkÞ ¼ di;DðkÞ−xTi ðkÞwðkÞ. The filter update
equation for NSAF can be stated as

w k þ 1ð Þ ¼ w kð Þ þ μ
XN−1

i¼0

xi kð Þ
xi kð Þk k2 ei;D kð Þ ð2Þ

where μ is the step size and 0 < μ<2 [8].

3 Sign regressor normalized subband adaptive
filter(SR-NSAF)
Based on the principle of minimum disturbance, the SR-
NSAF is formulated by the following optimization
problem

min w k þ 1ð Þ−w kð Þk k1 ð3Þ

subject to the N constraints (i = 0, 1,…,N − 1) which are
defined as

di;D kð Þ ¼ xTi kð Þw k þ 1ð Þ ð4Þ

By applying the method of Lagrange multipliers, the
following Lagrangian function is obtained

J w k þ 1ð Þð Þ ¼ w k þ 1ð Þ−w kð Þk k1
þ
XN−1

i¼0

λi di;D kð Þ−xTi kð Þw k þ 1ð Þ� �
ð5Þ

where λi is the ith Lagrange multiplier. Using, ∂ Jðwðkþ1ÞÞ
∂wðkþ1Þ

¼ 0; we get the following relation as

sgn w k þ 1ð Þ−w kð Þ½ � ¼
XN−1

i¼0

λixi kð Þ ð6Þ

In NSAF algorithm, if the magnitude responses of the
analysis filters do not significantly overlap, the cross-
correlation between two arbitrary subband signals is
negligible compared to the auto-correlation [8]. There-
fore, by multiplying xTi ðkÞ on both sides of the above
equation from the left and neglecting the crossterms, we
obtain

xTi kð Þ sgn w k þ 1ð Þ−w kð Þ½ � ¼ λi xi kð Þk k2 ð7Þ

By defining sgn(xi(k)) =Θi(k)xi(k), sgn[w(k + 1) −w(k)]
=Υ(k)[w(k + 1) −w(k)], and multiplying sgn(xi(k)) on
both sides of (7) from the left, we get

Fig. 1 Structure of the NSAF algorithm
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Θi kð Þxi kð ÞxTi kð ÞΥ kð Þ w k þ 1ð Þ−w kð Þ½ �
¼ λiΘi kð Þxi kð Þ xi kð Þk k2 ð8Þ

Where

Θi kð Þ ¼ diag
1

xi kNð Þj j ;
1

xi kN−1ð Þj j ;…;
1

xi kN−M þ 1ð Þj j
� �

ð9Þ
and

Υ kð Þ ¼ diag
1

w0 k þ 1ð Þ−w0 kð Þj j ;…;
1

wM−1 k þ 1ð Þ−wM−1 kð Þj j
� �

ð10Þ
If the number of subbands is large enough, xi(k) may

be approximately assumed white [26, 28]. Therefore, by
displacing the matrices in (8) and using (4), we obtain

Υ kð ÞΘi kð Þxi kð Þei;D kð Þ ¼ λixi kð Þ xi kð Þk k1 ð11Þ
Where kxiðkÞk1¼ sgnðxTi ðkÞÞxiðkÞ . Now, by

multiplying sgnðxTi ðkÞÞ on both sides of (11) from the
left, the Lagrange multipliers are given by

λi ¼
sgn xTi kð Þ� �

Θi kð ÞΥ kð Þxi kð Þei;D kð Þ
xi kð Þk k1

� �2 ð12Þ

Substituting (12) into (6) leads to

Υ kð Þ w k þ 1ð Þ−w kð Þ½ � ¼
XN−1

i¼0

sgn xTi kð Þ� �
Θi kð ÞΥ kð Þxi kð Þei;D kð Þ
xi kð Þk k1

� �2 xi kð Þ

ð13Þ
By multiplying Υ−1(k) on both sides of (13) from the

left and rearranging the diagonal matrices, the filter
coefficients of the update equation for SR-NSAF is
established as

w k þ 1ð Þ ¼ w kð Þ þ μ
XN−1

i¼0

sgn xi kð Þ½ �
xi kð Þk k1

ei;D kð Þ ð14Þ

where μ is again the step size and should be selected in
the stability bound.1 To avoid being divided by zero, it is

common that the denominator of the update equation is
replaced by ϵ + ‖xi(k)‖1, where ϵ is the regularization
parameter. Table 1 summarizes the SR-NSAF algorithm.
It is interesting to note that for N = 1, and f0 = 1, the

SR-NSAF in (14) reduces to

w nþ 1ð Þ ¼ w nð Þ þ μ
sgn x nð Þ½ �
x nð Þk k1

e nð Þ ð15Þ

which is the SR-NLMS algorithm [14]. In this case, the
output error is given by e(n) = d(n) − xT(n)w(n).
In [25], the new version of SR-NLMS was proposed

based on clipping of the input signal. When the absolute
value of the sample is larger than the average of the ab-
solute values of the input samples, the clipped sample is
used to update coefficients. The performance of SR-
NSAF can be improved by applying the proposed idea in
[25] in each subband. Therefore, the new version of SR-
NSAF which is called modified SR-NSAF (MSR-NSAF)
is established based on the procedure in Table 2.

4 Mean square performance analysis of SR-NSAF
in stationary environment
The filter coefficients update equation in SR-NSAF can
be represented as

w k þ 1ð Þ ¼ w kð Þ þ μ sgn X kð ÞF½ �W kð ÞFTe kð Þ ð16Þ
where F is the K ×N matrix whose columns are the unit
pulse responses of the channel filters of a critically
sampled analysis filter bank,2 F = [f0, f1,…, fN − 1 ], X(k) is
the M × K input signal matrix which is defined as

X kð Þ ¼ x kNð Þ; x kN−1ð Þ;…; x kN− K−1ð Þð Þ½ � ð17Þ
and

d kð Þ ¼ d kNð Þ; d kN−1ð Þ;…; d kN− K−1ð Þð Þ½ �T ð18Þ
Also, (k) = [ϵI + diag {diag{FTXT(k) sgn[X(k)F]}}]−1, and

e kð Þ ¼ d kð Þ−XT kð Þw kð Þ ð19Þ
is the error signal vector. In the theoretical convergence

Table 1 The SR-NSAF
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analysis, we need to obtain the time evolution of the
Efk~wðkÞk2Φg, where ~wðkÞ ¼ wo−wðkÞ is the weight-
error vector, and Φ is any Hermitian and positive-
definite matrix. When Φ = I (I is the identity matrix),
the mean square deviation (MSD) and when Φ = R (R
is the autocorrelation matrix of the input signal), the
excess mean square error (EMSE) expressions are
derived.
The weight error vector update equation for SR-NSAF

can be written as

~w k þ 1ð Þ ¼ ~w kð Þ−μ sgn X kð ÞF½ �W kð ÞFTe kð Þ ð20Þ

From (1) and (19), the error vector, e(k), can be
described as

e kð Þ ¼ XT kð Þ~w kð Þ þ v kð Þ ð21Þ

Substituting (21) into (20) yields

w k þ 1ð Þ ¼ ~w kð Þ−μ sgn X kð ÞF½ �W kð ÞFT XT kð Þ~w kð Þ þ v kð Þ� �
ð22Þ

By taking the Φ-weighted norm from both sides of
(22), we obtain

~w k þ 1ð Þk k2Φ ¼ ~w kð Þk k2Ψ þ μ2vT kð ÞY kð Þv kð Þ
−μ~wT kð ÞΦ sgn X kð ÞF½ �W kð ÞFTv kð Þ
−μvT kð ÞFWT kð Þ sgn X kð ÞF½ �ð ÞTΦ~w kð Þ
þμ2 ~wT kð ÞX kð ÞY kð Þv kð Þ þ μ2vT kð ÞYT

kð ÞXT kð Þ~w kð Þ
ð23Þ

where

Y kð Þ ¼ FWT kð Þ sgn X kð ÞF½ �ð ÞTΦ sgn X kð ÞF½ �W kð ÞFT

ð24Þ

and

Ψ ¼ Φ−μΦZ kð Þ−μZT kð ÞΦþ μ2ZT kð ÞΦZ kð Þ ð25Þ

Also in (25), Z(k) = sgn[X(k)F]W(k)FTXT(k). By
applying the expectation into both sides of (23), we
obtain

E ~w k þ 1ð Þk k2Φ
� 	 ¼ E ~w kð Þk k2Ψ

� 	
þ μ2E vT kð ÞY kð Þv kð Þ� 	 ð26Þ

To simplify the recent relation, we need the
independence assumptions. The matrix X(k) is assumed
an independent and identically distributed sequence
matrix [2, 27]. This assumption guarantees that ~wðkÞ is
independent of both Ψ and X(k). Therefore,

Table 3 The computational complexity of NSAF and SR-NSAF

Computation Multiplications

xiðnÞ ¼ fTi xðnÞ. The input signal, x(n), is K × 1 NK

diðnÞ ¼ fTi dðnÞ. The desired signal, d(n), is K × 1 NK

eðnÞ ¼ PN−1
i¼0 g

T
i eiðnÞ NK

ei;DðkÞ ¼ di;DðkÞ−xTi ðkÞwðkÞ M

wðk þ 1Þ ¼ wðkÞ þ μ
PN−1

i¼0
xiðkÞ

kxiðkÞk2 ei;DðkÞ 2 M + 1

wðk þ 1Þ ¼ wðkÞ þ μ
PN−1

i¼0
sgn½xiðkÞ�
kxiðkÞk1 ei;DðkÞ 1

Total Complexity for NSAF 3 M + 3NK + 1

Total Complexity for SR-NSAF M + 3NK + 1

Table 2 The MSR-NSAF
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Ψ ¼ Φ−μΦE Z kð Þf g−μE ZT kð Þ� 	
Φ

þ μ2E ZT kð ÞΦZ kð Þ� 	 ð27Þ

The second term of the right hand side of (26) can be
presented as

E vT kð ÞY kð Þv kð Þ� 	 ¼ E Tr v kð ÞvT kð ÞY kð Þ� �� 	
¼ Tr E v kð ÞvT kð Þ� 	

E Y kð Þf g� �
ð28Þ

Since EfvðkÞvT ðkÞg ¼ σ2vI, we obtain

E ~w k þ 1ð Þk k2Φ
� 	 ¼ E ~w kð Þk k2Ψ

� 	
þ μ2σ2

vTr E Y kð Þf gð Þ ð29Þ

Applying the vec(.) operation on both sides of (25) and
using vec(PΦQ) = (QT⊗ P)vec(Φ) lead to

ψ ¼ ϕ−μ E ZT kð Þ� 	� I
� �

ϕ−μ I� E ZT kð Þ� 	� �
ϕ

þ μ2 E ZT kð Þ � ZT kð Þ� 	� �
ϕ

ð30Þ

where ψ = vec(Ψ), and ϕ = vec(Φ). Therefore, by
defining the matrix P as

P ¼ I−μ E ZT kð Þ� 	� I
� �

−μ I� E ZT kð Þ� 	� �
þ μ2 E ZT kð Þ � ZT kð Þ� 	� � ð31Þ

we obtain

ψ ¼ Pϕ ð32Þ

Defining

φ ¼ vec E sgn X kð ÞF½ �W kð ÞFTFWT kð Þ sgn X kð ÞF½ �ð ÞT
n o
 �

ð33Þ

we get

Tr E Y kð Þf gð Þ ¼ φTϕ ð34Þ

Finally, (26) can be stated as

E ~w k þ 1ð Þk k2ϕ
n o

¼ E ~w kð Þk k2Pϕ
n o

þ μ2σ2vφ
Tϕ ð35Þ

This equation is related to ~wð0Þ as

Fig. 2 Number of multiplications versus the filter length for NSAF, DS-NSAF, FS-NSAF, SPU-NSAF and proposed SR-NSAF with N = 8

Table 4 Computational complexity of the family of NSAF
algorithms

Algorithm Multiplications

NSAF[8] 3M + 3NK + 1

SPU-NSAF[11] 2M + SL + 3NK + 1

DS-NSAF[12] ð1þ 2 NðkÞ
N ÞMþ 3NK þ N

FS-NSAF[13] 2Mþ ðNs
N ÞMþ 3NK þ 1

Proposed SR-NSAF M + 3NK + 1

Shams Esfand Abadi et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:21 Page 6 of 23



E ~w kð Þk k2ϕ
n o

¼ E ~w 0ð Þk k2Pkϕ

n o
þ μ2σ2vφ

T Iþ Pþ…þ Pk−1� �
ϕ

ð36Þ

By substituting R for Φ, and defining r = vec(R), the
transient behavior of SR-NSAF can be predicted by (35). From
this recursion, we can obtain EMSE, when k goes to infinity.
Therefore, the EMSE in the steady-state can be stated as

EMSE ¼ μ2σ2vφ
T I−Pð Þ−1r ð37Þ

The MSE and the EMSE are related as

MSE ¼ EMSEþ σ2
v ð38Þ

Also, the steady state mean square coefficient
deviation (MSD) is given by

Fig. 4 NMSD learning curves of NSAF, SR-NSAF, and MSR-NSAF with N = 4 and different values of μ

Fig. 3 Impulse response of the car echo path (M = 256)
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MSD ¼ μ2σ2
vφ

T I−Pð Þ−1vec Ið Þ ð39Þ

It is important to note that selecting F = I and N = K =
1 lead to the performance analysis of SR-NLMS and
MSR-NLMS algorithms, which was not presented in [14,
25]. This analysis can be successfully extended to non-
stationary environment. In Appendix 1, the mean-square
performance analysis of the SR-NSAF is presented in the
nonstationary environment.

5 Mean and mean-square stability of the SR-NSAF
Taking the expectation from both sides of (22) leads to

E ~w k þ 1ð Þf g ¼ Ef~w kð Þ−μ sgn X kð ÞF½ �W kð ÞFT

XT kð Þ~w kð Þ þ v kð Þ� �g
ð40Þ

From (40), the convergence to the mean of the SR-
NSAF is guaranteed for any μ that satisfies

Fig. 6 NMSD learning curves of NSAF, DS-NSAF, FS-NSAF, SPU-NSAF, SR-NSAF, and MSR-NSAF with N = 8 and μ = 0.5

Fig. 5 NMSD learning curves of the NSAF (N = 4 and 8), SR-NSAF, and MSR-NSAF (μ = 0.05)
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μ <
2

λmax E sgn X kð ÞF½ �W kð ÞFTXT kð Þ� 	� � ð41Þ

Equation (35) is stable if the matrix P is stable
[27]. From (31), we know that P = I − μM+ μ2N,
where M= E{ZT(k)}⊗ I + I⊗ E{ZT(k)}, and N =
E{ZT(k)⊗ ZT(k)}. The condition on μ to guarantee
the convergence in the mean-square sense of the SR-
NSAF algorithms is

0 < μ < min
1

λmax M−1N
� � ; 1

max λ Hð Þ∈ℜþ� �
( )

ð42Þ

where H ¼
1
2M − 1

2N
I 0

� �
.

6 Computational complexity
Table 3 compares the computational complexity of the
NSAF and SR-NSAF algorithms. This table shows that
the number of multiplications in SR-NSAF is lower than

Fig. 8 NMSD learning curves of NLMS, SR-NLMS, NSAF, DS-NSAF, FS-NSAF, SPU-NSAF, and SR-NSAF with N = 8

Fig. 7 NMSD learning curves of NSAF, DS-NSAF, FS-NSAF, SPU-NSAF, SR-NSAF, and MSR-NSAF with N = 8
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NSAF. Table 4 summarizes the number of multiplica-
tions at each iteration for different NSAF algorithms. In
this table, M, N, K, B, S, L, Ns, and N(k) are the filter
length, the number of subbands, the length of channel
filters, the number of blocks, the number of blocks to
update, the length of blocks, the number of selected sub-
bands (fix), and the number of selected subbands (dy-
namic), respectively. For NSAF, the exact computational
complexity of this algorithm is 3M + 3NK + 1 multiplica-
tions [11]. From [11], we obtain that the computational
complexity of SPU-NSAF is 2M + SL + 3NK + 1 multipli-
cations. In comparison with NSAF, the reduction in
number of multiplications is M − SL, which is consider-

able for large values of M. Also, the DS-NSAF needs ð1
þ2 NðkÞ

N ÞM þ 3NK þ N multiplications [12]. Due to the
selection of subbands during the adaptation, the number
of multiplications will be reduced in DS-NSAF. The
exact number of multiplications in FS-NSAF is 2M þ ðNs

N Þ
M þ 3NK þ 1. Compared with SPU-NSAF, FS-NSAF, and

DS-NSAF algorithms, the proposed SR-NSAF algorithm
needs 2M multiplications less than NSAF algorithm.
Figure 2 compares the number of multiplications versus
the filter length for NSAF, FS-NSAF, DS-NSAF, SPU-NSAF
(B = 4, S = 1, 2, 3), and proposed SR-NSAF with N = 8. As
we can see, the number of multiplications in SR-NSAF is
significantly lower than other algorithms.

7 Simulation results
We demonstrated the performance of the proposed
algorithm by several computer simulations in a system
identification (SI), acoustic echo cancelation (AEC) and
line echo cancelation (LEC) setups. The impulse
response of the car echo path with 256 taps (M = 256)
has been used as an unknown system in the experiment
[29] (Fig. 3). The filter bank used in the NSAF
algorithms was the extended lapped transform (ELT) (N
= 2, 4, and 8) [11, 30]. In all simulations, we show the

normalized mean square deviation (NMSD), E½kwo−wðkÞk2
kwok2 �,

which is evaluated by ensemble averaging over 20
independent trials.

7.1 System identification: AR(2) input signal
In this experiment, the input signal is an AR(2) signal
generated by passing a zero-mean white Gaussian noise
through a second-order system TðzÞ ¼ 1

1−0:1z−1−0:8z−2 . An
additive white Gaussian noise was added to the system
output, setting the signal-to-noise ratio (SNR) to 30 dB.
Figure 4 compares the convergence of the NSAF, SR-
NSAF, and MSR-NSAF algorithms with N = 4 for differ-
ent step sizes (1, 0.2, and 0.05). As we can see, for large
values of the step size, the fast convergence rate and

Fig. 9 NMSD learning curves for tracking performance of NSAF, DS-NSAF, FS-NSAF, SPU-NSAF, SR-NSAF, and MSR-NSAF with N = 8 and μ = 0.5

Table 5 Number of multiplications for various NSAF algorithms
until convergence in SI and AEC applications

Algorithm No. of multi. in SI No. of multi. in AEC

NLMS 15,380,000 –

SR-NLMS 5,654,000 –

NSAF 1,537,000 184,440,000

SPU-NSAF 1,473,000 176,760,000

DS-NSAF 1,224,000 146,880,000

FS-NSAF 1,409,000 169,080,000

Proposed SR-NSAF 1,025,000 123,000,000
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high steady-state error are occurred and small step size
leads to the slow convergence rate and a low steady-
state error. Figure 5 shows the performance of the SR-
NSAF, MSR-NSAF, and conventional NSAF for the
number of subbands N = 4 and 8. The step-size was set
to μ = 0.05. By increasing the number of subbands in all
algorithms, the convergence rate is improved and the
computational complexity is also increased. The results

show that the SR-NSAF, and MSR-NSAF algorithms
have close performance to the conventional NSAF. Fur-
thermore, the computational complexity of SR-NSAF
and MSR-NSAF is lower than NSAF.
The performance of the proposed SR-NSAF and MSR-

NSAF algorithms have been compared with other NSAF
algorithms in Fig. 6. These algorithms are NSAF [8], DS-
NSAF [12], FS-NSAF [13], and SPU-NSAF algorithm in

Fig. 11 NMSD learning curves of NSAF, DS-NSAF, FS-NSAF, SPU-NSAF, SR-NSAF, and MSR-NSAF with N = 4. Under-modeling scenario, speech
input signal

Fig. 10 NMSD learning curves of NSAF, DS-NSAF, FS-NSAF, SPU-NSAF, SR-NSAF, and MSR-NSAF with N = 4. Exact-modeling scenario, speech
input signal
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[11]. Eight subbands have been used (N = 8) and the
step-size was set to μ = 0.5. In FS-NSAF, the number of
selected subbands (Ns) out of the number of subbands
(N) was set to 4. For SPU-NSAF algorithm, the number
of blocks (B) was set to 4 and the number of blocks to
update (S) was set 3 and 2. As we can see, the proposed
SR-NSAF and MSR-NSAF have a comparable perform-
ance to the family of NSAF in terms of the convergence

speed and the steady-state error. In addition, the compu-
tational complexity of the introduced algorithms are
lower than other algorithms.
In Fig. 7, the step-size was set to 0.5 in NSAF algo-

rithm and to make the comparison fair, the step-sizes
for other NSAF algorithms were chosen to get ap-
proximately the same steady-state NMSD as NSAF.
For DS-NSAF and FS-NSAF, the step-size was set to

Fig. 13 Impulse response of the line echo path

Fig. 12 NMSD learning curves for tracking performance of NSAF, DS-NSAF, FS-NSAF, SPU-NSAF, SR-NSAF, and MSR-NSAF with N = 4. Exact-modeling
scenario, speech input signal. Echo path changes at a certain index
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Fig. 15 Error signals with NSAF, SR-NSAF, and MSR-NSAF algorithms

Fig. 14 Far-end signal from real speech and echo signal
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0.5. In SPU-NSAF, the step-sizes for S = 2 and S = 3
were set to 0.32 and 0.42, respectively. Finally, this
value for SR-NSAF was set to 0.32 and for MSR-
NSAF, the step-size was set to 0.4. The NMSD learn-
ing curves show that the SR-NSAF and MSR-NSAF
have a comparable performance with those of the
family of NSAF algorithms. In Fig. 8, we compared
the NMSD learning curves of NLMS and SR-NLMS
algorithms with the family of NSAF algorithms. For

this simulation, the number of multiplications until
convergence was also presented in Table 5. This table
indicates that the number of multiplications in SR-
NSAF is 1025000 which is significantly lower than
other algorithms.
For tracking performance analysis, we consider

a system to identify the two unknown filters with
M = 200, whose z-domain transfer functions are
given by

Fig. 17 NMSD learning curves of NSAF and SR-NSAF with N = 8 and μ = 0.5 in nonstationary environment for different values of σ2q

Fig. 16 Segmental ERLE curves of NSAF, SR-NSAF and MSR-NSAF algorithms
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W1 zð Þ ¼
X99
n¼0

z−n−
XM−1

n¼100

z−n ð43Þ

and

W2 zð Þ ¼ −
XM−1

n¼0

z−n ð44Þ

where the transfer function of optimum filter
coefficients will be W1(z) for n ≤ 5 × 103 and the
transfer function of optimum filter coefficients will

be W2(z) for 5 × 103 ≤ n ≤ 10 × 103. Figure 9 compares the
tracking performance of SR-NSAF and MSR-NSAF with
other NSAF algorithms. The number of subbands and the
step-size were set to 8 and 0.5. As we can see, the SR-
NSAF and MSR-NSAF have a close performance to the
conventional NSAF algorithm.

7.2 Acoustic echo cancelation (AEC): speech input signal
For AEC setup, we consider both the exact and under-
modeling scenarios. For the under-modeling scenario,
the NMSD is calculated by padding the tap-weight

Fig. 19 Simulated and theoretical MSE learning curves of SR-NSAF for different values of N

Fig. 18 Simulated steady-state NMSD of NSAF and SR-NSAF with N = 8 as a function of the step-size for different value of σ2q
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vector of the adaptive filter with M − J zeros (J=length of
adaptive filter which is shorter than that of the unknown
system in this case) [31]. In the exact-modeling scenario,
the echo path is truncated to the first 128 tap weights
[before the dotted line in Fig. 3]; in the under-modeling
scenario, the length of the echo path is set to 256. For
both scenarios, the length of all the adaptive filters is set
to 128. Speech input signal is used as input signal for
AEC setup [26].
Figures 10 and 11 compare the performance of

proposed SR-NSAF and MSR-NSAF algorithms with
other NSAF algorithms in exact and under modeling

scenarios. The number of subbands (N) was set to 4.
In FS-NSAF, the number of selected subbands (Ns)
out of the number of subbands (N) was set to 2. As
we can see, the proposed SR-NSAF and MSR-NSAF
have a comparable performance to the family of
NSAF in terms of the convergence speed and the
steady-state misalignment with lower computational
complexity. Table 5 shows the number of multiplica-
tions until convergence for different NSAF algorithms.
This table indicates that the proposed SR-NSAF has
significantly lower computational complexity than
other algorithms.

Fig. 21 Simulated and theoretical NMSD learning curves of SR-NSAF for different values of N

Fig. 20 Simulated and theoretical MSE learning curves of SR-NSAF for different values of μ
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The tracking capability is examined by shifting the
acoustic impulse response to the right by 10 samples at
a certain time step. Figure 12 compares the tracking
performance of SR-NSAF and MSR-NSAF with other
NSAF algorithms in exact modeling scenario. The num-
ber of subbands was set to 4. As we can see, the SR-
NSAF and MSR-NSAF have close performance to the
conventional NSAF algorithm.

7.3 Line echo cancelation
In communications over phone lines, a signal traveling
from a far-end point to a near-end point is usually
reflected in the form of an echo at the near-end due to
mismatches in circuity. The purpose of a line echo
canceller (LEC) is to eliminate the echo from a received
signal. Figure 13 shows the impulse response sequence
of a typical echo path which was taken from G168

Fig. 22 Simulated and theoretical NMSD learning curves of SR-NSAF for different values of μ

Fig. 23 Simulated and theoretical MSE, MSD and EMSE learning curves of SR-NSAF with N = 4 and μ = 0.5
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standard [32]. Figure 14 shows the far-end signal from
real speech and echo signal (page 347 in [33]).
In this simulation, the length of the adaptive filter

is 128. Figure 15 shows the error signals based on
NSAF, SR-NSAF, and MSR-NSAF algorithms. The
number of subbands, and the step-size were set to 4
and 0.5, respectively. As we can see, SR-NSAF and
MSR-NSAF have close error performance to NSAF
algorithm. Furthermore, the computational complex-
ity of SR-NSAF and MSR-NSAF is considerably
lower than that of NSAF. Also, to measure the
effectiveness of the proposed algorithms, we have
computed the echo return loss enhancement (ERLE).
The ERLE is obtained by evaluating the difference
between the powers of the echo and the error signal.
The segmental ERLE estimates were obtained by
averaging over 140 samples. The segmental ERLE
curves for the measured speech and echo signals
were shown in Fig. 16. This figure illustrates that
the proposed algorithms and conventional NSAF
have comparable ERLE performance.

7.4 Performance in nonstationary environment
Figure 17 presents the NMSD learning curves of NSAF and
SR-NSAF in nonstationary environment. The unknown
system changes according to the random walk model. We
assume an independent and identically distributed se-
quence for q(n) with autocorrelation matrix Q ¼ σ2

qI [27].
The number of subbands and the step-size were set to 8
and 0.5 and different values for σ2

q (0:00025σ2
v and 0:0025σ2

v)
have been chosen in simulations. This figure shows that the
steady-state NMSD in nonstationary environment is larger
than stationary environment. We also observe that the con-
vergence speed of SR-NSAF is faster than NSAF for both
values of σ2

q . To justify these results, we presented Fig. 18.
This figure shows the simulated NMSD values as a function
of the step-size for NSAF and SR-NSAF in stationary and
nonstationary environments. The step-size changes from 0.
1 to 1. The results show that in the stationary environment,
the simulated NMSD values for NSAF are lower than SR-
NSAF. In the nonstationary environment, there is an
optimum value for the step-size that minimizes NMSD.
This fact can be seen for σ2q ¼ 0:00025σ2v . Since the NMSD

Table 6 Stability bounds of the SR-NSAF and MSR-NSAF for different values of N

Algorithm 2
λmaxðEf sgn½XðkÞF�WðkÞ FTXT ðkÞgÞ

1
λmaxðM−1NÞ

1
maxðλðHÞ∈ℜþÞ μmax

SR-NSAF (N = 2) 5.7899 1.3786 4.5400 1.3786

SR-NSAF (N = 4) 5.1303 1.3768 4.2693 1.3768

SR-NSAF (N = 8) 4.2324 1.3704 3.9672 1.3704

MSR-NSAF (N = 2) 7.4337 1.6387 5.2346 1.6387

MSR-NSAF (N = 4) 6.4078 1.6355 4.7916 1.6355

MSR-NSAF (N = 8) 4.9383 1.6302 4.1312 1.6302

Fig. 24 Simulated steady-state MSE of SR-NSAF with N = 2, 4, and 8 as a function of the step-size
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learning curves were obtained for μ equal to 0.5, the SR-
NSAF has slightly better performance than NSAF in non-
stationary environment.

7.5 Theoretical performance analysis
7.5.1 Simulation results for transient performance
The theoretical results presented in this paper are
confirmed by several computer simulations for a

system identification setup. In this case, the unknown
system has 16 randomly selected taps. Figures 19 and 20
show the simulated and theoretical MSE learning
curves of SR-NSAF algorithm. The simulated learning
curves are obtained by ensemble averaging over 100
independent trials. The theoretical learning curve are
obtained from (36). In Fig. 19, different values for N
have been selected. The good agreement between

Fig. 26 Simulated and theoretical steady-state MSE of SR-NSAF with N = 2, 4, and 8 as a function of the step-size

Fig. 25 Simulated steady-state MSE of MSR-NSAF with N = 2, 4, and 8 as a function of the step-size
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theoretical and simulated learning curves is observed.
Figure 20 presents the results for different values of
μ. As we can see, there is good a agreement between
simulated and theoretical learning curves. In Figs. 21
and 22, the simulated and theoretical NMSD learning

curves were presented. The same as Figs. 19 and 20,
different values for N and μ were chosen. Again, a
good agreement can be seen in both figures. Figure 23
presents the theoretical and simulated MSE, MSD,
and EMSE learning curves for SR-NSAF algorithm.

Fig. 28 Simulated and theoretical NMSD learning curves of SR-NSAF with N = 8 and μ = 0.5 in nonstationary environment for different values of σ2q

Fig. 27 Simulated and theoretical steady-state MSE of MSR-NSAF with N = 2, 4, and 8 as a function of the step-size
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Good agreement between simulated and theoretical
learning curves is observed.

7.5.2 Simulation results for stability bounds
Table 6 shows the theoretical values of the mean and
mean square stability bounds of SR-NSAF and MSR-
NSAF algorithms. These values were obtained from (41)
and (42). To justify these values, the simulated steady-
state values of MSE were obtained. The steady-state
MSE is obtained by averaging over 500 steady-state sam-
ples from 500 independent realizations for each value of
μ for a given algorithm. The step-size (μ) changes from
0.05 to μmax. Figures 24 and 25 show the results for dif-
ferent values of N. As we can see, the theoretical values
for μmax from Table 6 show good estimation of the sta-
bility bounds of SR-NSAF and MSR-NSAF algorithms.
In [25], it was shown that the stability bound of MSR-
NLMS is larger than that of SR-NLMS. It is interesting
to note that this observation can be seen for the pro-
posed algorithms. We observe that the stability bound of
MSR-NSAF is larger than that of SR-NSAF algorithm.

7.5.3 Simulation results for steady-state performance
Figures 26 and 27 show the theoretical and simulated
steady-state MSE values of SR-NSAF and MSR-NSAF al-
gorithms as a function of the step-size. The step-size (μ)
changes from 0.05 to 1. The theoretical steady-state
MSE values are obtained from (38). As we can see, there
is good agreement between simulated and theoretical
steady-state MSE values in both figures. For large
values of the step-size, the agreement is slightly devi-
ated. These figures show that the steady-state MSE

values for MSR-NSAF are lower than those of SR-
NSAF. This fact was also obtained for SR-NLMS and
MSR-NLMS algorithms in [25].

7.5.4 Theoretical results in nonstationary environment
The theoretical and simulated NMSD learning curves
in nonstationary environment were presented in Fig.
28. The theoretical learning curves were obtained
from (47). The number of subbands and the step-size
were set to 8 and 0.5. Various values for σ2q (0:00025

σ2v , 0:0025σ
2
v , and 0:025σ2v ) have been selected in this

simulation. Good agreement between the simulated
and theoretical learning curves is observed in nonsta-
tionary environment. In Fig. 29, the simulated and
theoretical steady-state NMSD as a function of the
step-size have been shown. The theoretical values
were obtained from (49). This figure shows that there
is an optimum step-size which minimizes the steady-
state NMSD in nonstationary environment.

8 Conclusion
In this paper, the NSAF algorithm with signed regressor of
input signal was established. The optimization problem was
formulated by L1-norm minimization. The result of this
optimization leads to the sign operation on the input
regressors at each subband. The computational complexity
of the proposed SR-NSAF was lower than previous NSAF
family while it had close convergence performance to the
NSAF. Therefore, the SR-NSAF is a suitable candidate for
many applications. To increase the performance of SR-
NSAF, the MSR-NSAF was introduced. The performance

Fig. 29 Simulated and theoretical steady-state NMSD of SR-NSAF as a function of the step-size in nonstationary environment for different values of σ2q
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of the SR-NSAF was confirmed by several computer simu-
lations in SI, AEC, and LEC applications. Also, the theoret-
ical mean-square performance analysis and the stability
bound of the proposed algorithms were studied and con-
firmed by different experiments.

9 Endnotes
1The theoretical stability bound of SR-NSAF is

presented in Section VI. These values are justified in
Section VIII

2K is the length of the channel filters.

10 Appendix
10.1 The theoretical relations in nonstationary
environment
In the nonstationary environment, the unknown system
(wo) is assumed time-variant which is changed according
to the following random walk model [27, 33].

wo k þ 1ð Þ ¼ wo kð Þ þ q kð Þ ð45Þ
where the random sequence of q(k) is a zero mean, an
independent and identically distributed sequence with
autocorrelation matrix Q = E{q(k)qT(k)} and independent
of x(kN) and v(k) [33]. Now by defining ~wðkÞ ¼ woðkÞ−
wðkÞ, the weight error vector update equation can be
expressed as

~w k þ 1ð Þ ¼ ~w kð Þ
þ q kð Þ−μ sgn X kð ÞF½ �W kð ÞFTe kð Þ

ð46Þ
By taking the Φ-weighted norm from both sides of

(46), then expectation, and following the same approach
for stationary environment, we get

E ~w k þ 1ð Þk k2ϕ
n o

¼ E ~w kð Þk k2Pϕ
n o

þ μ2σ2vφ
Tϕ

þ Tr QΦð Þ ð47Þ
When k goes to infinity, the steady-state EMSE in

nonstationary environment is given by

EMSE ¼ μ2σ2vφ
T I−Pð Þ−1r

þ Tr Qvec I−Pð Þ−1r� �� � ð48Þ
and the steady-state MSD is obtained as

MSD ¼ μ2σ2
vφ

T I−Pð Þ−1vec Ið Þ
þ Tr Qvec I−Pð Þ−1vec Ið Þ� �� � ð49Þ

It is important to note that there is an optimal value
for the step-size that minimizes the steady-state EMSE
in the nonstationary environment [33] (Chapter 7). This
effect comes from the second term in (48). In this term,
the inverse of the step-size (μ−1) will appear, which has
different effects on EMSE. For large values of the step-

size, this term will be small and the effect of the nonsta-
tionary environment on EMSE will be small and the per-
formance will be similar to the stationary case (Fig. 29).
For small values of the step-size, this effect will be large
and the EMSE will be large. Therefore, there is an opti-
mal value for the step-size that minimizes EMSE in non-
stationary environment. More explanations about this
issue can be found in [33].
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