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Background: Advancements in gene expression technology allow acquiring cheap and abundant data for analyzing
cell behavior. However, these technologies produce noisy, and often correlated, measurements on the transcriptional
states of genes. The Boolean network model has been shown to be effective in capturing the complex dynamics of
gene regulatory networks (GRNs). It is important in many applications, such as anomaly detection and optimal
intervention, to be able to track the evolution of the Boolean states of a gene regulatory network using noisy
time-series transcriptional measurements, which may be correlated in time.

Results: We propose efficient estimators for the Boolean states of GRNs using correlated time-series transcriptional
measurements, where the nature of the correlation and of the measurements themselves are entirely arbitrary. More
specifically, we propose new algorithms based on a hypothesis tree to compute optimal minimum mean square error
(MMSE) filtering and smoothing state estimators for a Partially-Observed Boolean Dynamical System (POBDS) with
correlated measurements. The algorithms are exact but may be computationally expensive for large state spaces or
long time horizons, in which case a process for pruning the hypothesis tree is employed to obtain an approximation of
the optimal MMSE estimators, while keeping computation tractable. Performance is assessed through a comprehensive
set of numerical experiments based on the p53-MDM2 negative-feedback loop Boolean regulatory network, where
the standard Boolean Kalman Filter (BKF) and Boolean Kalman Smoother (BKS) for uncorrelated measurements are
compared to the corresponding new estimators for correlated measurements, called BKF-CORR and BKS-CORR,

Keywords: State estimation, Partially-observed Boolean dynamical system, Correlated measurement noise,
Gene regulatory network, Boolean Kalman Filter and Smoother

1 Introduction

Gene regulatory networks (GRNs) govern the function-
ing of key cellular processes, such as the cell cycle, stress
response, and DNA repair. Several mathematical models
have been proposed to accurately capture the dynamical
behavior of GRNs. These methods include Boolean net-
works [1-3], ordinary differential equations (OED) [4, 5],
S-systems [6, 7], and Bayesian networks [8—10]. Boolean
networks were first introduced as completely observ-
able, deterministic models by Kauffman and collaborators
[11, 12]. In a Boolean network, the transcriptional state
of each gene is represented by 0 (OFF) or 1 (ON), and
the relationship among genes is described by logical gates
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updated at discrete time intervals [13]. The Boolean net-
work model has been successful in accurately modeling
the dynamics of the cell cycle in the Drosophila fruit fly
[14], the Saccharomyces Cerevisiae yeast [15], the mam-
malian cell cycle [16], and the switching behavior dis-
played by the p53 gene in tumor-suppressing pathways
[17, 18]. Several variations of the original Boolean network
models have been introduced in the literature to account
the stochasticity in the behavior of gene regulatory net-
works. These models include Random Boolean Networks
[1], Boolean Networks with perturbation (BNp) [19],
Probabilistic Boolean Networks (PBN) [2], and Boolean
Control Networks (BCN) [20, 21]. A key point is that all
aforementioned models assume that the Boolean states
of the system are directly observable. But, in practice,
this is never the case. Modern transcriptional studies
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are based on technologies that produce noisy indirect
measurements of gene activity, such as cDNA microar-
rays [22], RNA-seq [23], and cell imaging-based assays
[24, 25].

The Partially-Observed Boolean Dynamical System
(POBDS) model [3, 26] addresses the scenario encoun-
tered in practice in transcriptomic analysis by allowing
for indirect and incomplete observation of gene states.
The POBDS model is a special case of Hidden Markov
Model (HMM) with Boolean state variables. The POBDS
model unifies and generalizes most of the aforemen-
tioned Boolean network models. Several tools for the
POBDS model have been developed in recent years, such
as the optimal filter and smoother based on the minimum
mean square error (MMSE) criterion, called the Boolean
Kalman filter (BKF) [3, 26] and Boolean Kalman smoother
(BKS) [3, 27], respectively; particle filter implementation
of these filters [28]; fault detection [29]; optimal filter with
correlated noise [30]; network inference [31]; sensor selec-
tion [32]; and control [33-38]. Most of these tools are
freely available through an open-source R package called
“BoolFilter" [39, 40].

All tools for estimation, identification, and control of
POBDS have been built based on the assumption that
the measurement noise is uncorrelated over time. How-
ever, this assumption may not hold in practice, due
to the unavoidable measurement correlation existing in
most real-world applications. The first development in
this direction, for simple correlated binary measure-
ment noise, was provided in [30]. However, in prac-
tice, the measurement space is never Boolean, but is
in fact continuous-valued, such as in ¢cDNA microar-
rays [22] and live cell imaging-based assays [24], or
integer-valued, such as in RNA-seq data [41]. In this
paper, we propose new algorithms based on a hypothesis
tree to compute optimal MMSE filtering and smooth-
ing state estimators for POBDS with arbitrary corre-
lated measurements (Fig. 1). The proposed algorithms
are exact, but, for large state spaces or long time
horizons, computation is kept tractable by pruning
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the hypothesis tree, leading to an approximation of
the optimal MMSE estimators. Performance is assessed
through a comprehensive set of numerical experiments
based on the p53-MDM2 negative-feedback loop Boolean
regulatory network, where the standard Boolean Kalman
Filter (BKF) and Boolean Kalman Smoother (BKS) for
uncorrelated measurements are compared to the corre-
sponding new estimators for correlated measurements,
called BKF-CORR and BKS-CORR, respectively. In case
there is no pruning, the BKF-CORR algorithm is equiv-
alent to the filter estimator of [30] when the correlated
observation noise is binary.

The article is organized as follows. In Section 2, the
POBDS signal model with correlated observation noise
is introduced. The proposed BKF-CORR and BKS-CORR
estimators are developed in Sections 3.1 and 3.2, respec-
tively. An instance of the POBDS model for gene reg-
ulatory networks observed through various sequencing
technologies is discussed in Section 4. The performance of
the proposed estimators is assessed in Section 5, through
a comprehensive set of numerical experiments. Finally,
Section 6 contains concluding remarks.

2 POBDS with correlated measurements

In this section, we introduce the model for a POBDS
with correlated measurements. The model consists of a
state model, which is the same as the one for an ordi-
nary POBDS, and an observation model with general
autoregressive measurement noise.

2.1 State model

The system is described by a state process Xy; k =0, 1,.. .,
where X; € {0,1}? is a Boolean vector describing the acti-
vation/inactivation state of d genes at time k. The state is
assumed to be updated at time k through the following
nonlinear signal model

Xk = f(Xk_l,Uk) ® ng, (1)

for k = 1,2,..., where u;y € {0, l}d is an input at time
k £ : {0,1}* — {0,1)¢ is a Boolean function called

Fig. 1 Full hypothesis tree for a system with d Boolean variables
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the network function, “®” indicates the componentwise
modulo-2 addition, and ny € {0,1}¢ is the Boolean transi-
tion noise. The noise process {ng; k = 1,2,...} is assumed
to be “white” in the sense that the noise at distinct time
points is an independent random variable. We also assume
that noise process is independent of the initial state X and
the input sequence {ug; k = 1,2,...} is deterministic and
known.

2.2 Observation model
Let Yy be a vector containing the measurements at time &,

Y = h(Xg, vp), (2)

for k = 1,2,..., where vi is the measurement noise at
time step k. We assume that {vx; kK = 1,2, ...} has a general
autoregressive structure of the form

Vi = 8(Vk—1, Wk), (3)

where {wy;k = 1,2,...} is a white measurement noise
process and g specifies the relationship between v; and
vi_1. The initial value of the noise is set to zero, i.e.,
Vo = 0.

For a given measurement Y; and known Boolean state
X, we assume that there is a unique value of the measure-
ment noise v that is accessible through a known mapping:

Vi = 1(Ye, Xp) . (4)
For example, in the case of simple additive noise, Yx =

Xx + Vg, the inverse mapping would be r(Yg, Xi) = Y —
Xg.

3 Proposed estimators

In this section, we describe the new algorithms for com-
puting the optimal MMSE filter and smoother for a
POBDS with correlated observations.

3.1 BKF-CORR

The optimal minimum mean square error (MMSE) fil-
tering problem consists of, given observations Y;; =
(Y1,...,Yy), finding an estimator Xkl « of the state X that
minimizes

N . 2
MSE (Xk|k | Yl:k]) =E [Hxlqk - XkH | Yl:k] )

(5)

where ||.|| denotes the usual Ly vector norm. For a vector
v of size d, define v € {0, l}d via V(i) = Iy>1/2 for i =
1,...,d. It has been shown ([3], Thm. 1) that

X3 = DX [Yiad = )P (Xp = x| Yoy) v,
irel
(6)
{1,...,2d} and (xl,...,xzd) is an arbitrary
enumeration of the possible Boolean state vectors.

where I =

(2018) 2018:22
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For the standard POBDS model defined by (1)-(2)
with uncorrelated observation noise (“white noise”), the
previous estimator can be computed exactly by a recur-
sive matrix-based algorithm, called the Boolean Kalman
filter (BKF) [26]. It is our purpose in this section to
derive an algorithm to accurately and efficiently com-
pute this estimator in the case of the correlated noise
model defined by (3)-(4). Computation is based on a
hypothesis tree and is exact, but an approximate ver-
sion of the estimator is also proposed for large state
spaces or long time horizons, based on pruning the
hypothesis tree.

Consider a new “state” vector Z; =[ Xy, vi]? consisting
of the pair of state vector and observation noise and cor-
responding “transition” noise vector 5 =[ny, wg], which
leads to the “state” model

o= [3)- [Tanis™

Vi g(Vik_1, Wi) (7)
= q(Zg-1,Mk—1)
with observation model
Yi = h(Xy, vi) = h(Zy). (8)

Our approach is to compute P(Xy | Y1.x) based on the
probabilities of all possible realizations of the state trajec-
tory (Zo, Z1, . . ., Zy) given the data Y.k, which allows the
computation of the optimal MMSE filter in (6).

The trajectories can be arranged in a hypothesis tree
containing pairs. At time k = 0, using the fact that vo = 0,
there are 2 possible realizations

z(()i) = (XO = xi; Vo = 0) ’ (9)
with probabilities

i = P(Zo=2) = P(Xo=x), (10)

fori e I = {1,...,2”1}. At time k = 1, each pair in (9)
leads to 24 additional pairs
zgi’j) = (X1 = xj,vl = r(Yl,xj)) , (11)

for (i,j) € I = I x I, where we used the relationship
(4). Each of these 29 x 24 = 224 pairs corresponds to the

terminal point of a unique trajectory { z(()i), zy’j )} through

time k = 1. The probability of this trajectory is

il = P(z1=2".20 =2’ | Y1)
=P(zi=2"120=2) P (2 =12{)

=P(X1 =% |Xo=x) p(vi = (Y1, %)) | vo = 0) 7§,

(12)
for (i,)) € b.
At time k, there are 2t1D9 pajrs
z](fo’il'”’ik) = (X = x*, v = r (Y, xik)) . (13)
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The probability of each of the unique 2*+1¥ trajec-

tories [ng), z(lio’il), . ,zlgio’il""i")} through time k can be

computed recursively as

R (T A
=P (Zk _ zl((io,h...,ik) | Zpy = z]((ig,il.“,ik_l))
P (Zk_l =gy Yl:k—l)
=P (Xk=xik | X411 = xik*1> p (Vk —r (Yk,xik) Ives

: (0,81 - if—1)
= k-1
= r(Yk,l,x )) T 11k—1 .

(14)

for (ig,i1...,ix) € Ixy1, where = I x --- x I (k
times). Since the state and noise transition probabilities,
P(Xy | Xx_1) and p(vg | vk_1), are assumed to be known,
this provides an efficient way to recursively compute the
probability of all trajectories.

Now, since the event [Xk = xik] is equal to the disjoint
union of all trajectories that end at X; at time k, it is
clear that the conditional probability P (X; = x | Y1) is
equal to the sum of the conditional probabilities of those
trajectories:

P(Xp =x*|Yig) = (15)

(0,1 -+ +»ik)
> T

(80-+ik—1) €lk

for ix € I. Substituting this in (6) allows us to write the
optimal MMSE estimator simply as

SMS (l0,i1- k) i
Xk\k = Z Tk Xk,

(60501 i) €l 41

(16)

However, one can easily appreciate that the number of
trajectories will quickly become intractable as the number
of genes d and the horizon k increase. For example, for a
network with eight genes, there will be 240 = 1.1 x 1012
trajectories after only k = 4 time points. To make the
computation feasible, at each time k, we prune the trajec-
tories with probability smaller than a threshold € > 0, by
removing the corresponding pairs (ig, ij .. ., ix) from the
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index set [;41. The probabilities of the surviving trajec-
tories are renormalized to add up to one, and the state
estimator in (16) is computed on the reduced index set.
Then, the surviving nodes are expanded, and the process
is repeated. A larger value of € results in more computa-
tional savings and a faster estimator, but at an increased
loss of accuracy, and vice-versa. The resulting filter is
called the BKF-CORR estimator. The effect of ¢ on the
performance of the BKF-CORR estimator is investigated
in Section 5.

3.2 BKS-CORR

The optimal filter uses the data Yi.x observed up to the
current time k to estimate the state at the current time k.
By contrast, the (fixed-interval) smoother uses data Y;.r
that have been collected and stored “off-line” up to time
T to estimate the states at any time point in the interval
0<k<T.

In Fig. 2a, it can be seen that the filtering process needs
only a forward step for estimating the state at the last
time point. In contrast, the smoothing process presented
in Fig. 2b requires both forward and backward processes
for state estimation over the fixed interval.

Given observations Yj.7, the optimal MMSE (fixed-
interval) smoothing problem consists of finding an esti-
mator )A(k‘T of the state Xg, for 0 < k < T, which
minimizes

A~ ~ 2
MSEXy1 | Yr.1) = E [HX/qT - ka | Yl:T] ,

(17)
It can be shown that the solution is
X%[; = m = ZP(Xk = x| Yl:T) xik |
ikE[
(18)

It is instructive to compare the previous two equations
to (5) and (6), respectively. For the standard POBDS model
with uncorrelated observation noise, the estimator in (18)

Xk:|k:
(e, O O ¢ ¢ ¢ O—O
Y, Yo Y3 Y1 Y,

»
>

Forward Step

(a)

X1|T Xo|r XS‘T Xr_1r X1
O—0O ¢ o o —_—— ¢ * o o——o0
Y, Yo Y, Yr1 Yr

»
>

Forward Step

<
]

Backward Step
(b)

Fig. 2 Schematic diagram of filtering and smoothing processes. a Filter. b Fixed-interval smoother
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can be computed exactly by a matrix-based algorithm,
called the Boolean Kalman Smoother (BKS) (3, 27]. In
this section, an exact MMSE smoother for a POBDS with
correlated measurement defined by (3)—(4) is proposed.

The proposed smoother, called the BKS-CORR estima-
tor, contains forward and backward steps. In the forward
process, given a sequence of measurements Yj.7, one
runs the proposed filter in Section 3.1 from time 0 to T
to compute the filtering trajectories and their associated
probabilities. Then, the backward process uses those val-
ues in a recursive fashion to compute the smoothed state
estimate.

The filter at time step 7' creates 2719 unique trajec-
tories { z(()"’), ... ,z(TLO’”'”"LT) } with associated probabilities

a0 for (ig, i1, ..., ir) € Ir41. Clearly, the filtering

and smoothing solutions in the last time step (at time step T')
are the same. One can obtain the smoothed estimator by
first computing the following smoothed posterior proba-
bilities using the forward trajectories:

(@i,--iT—1) (iQse-iT—1) (ip)
Tr-1r = P<ZT71 =Zr_, oo Zy =120 | Yl:T)
(igy--si—1iT) (6T —1)
= ZP(ZTzzT ’ZT—I =Zr_ 4
irel

oo Ly = Z(()iO) \ YI:T)

@0k T—150T)
= Tr T )
irel
(19)
for (ig,...,ir—1) € Ir. The process can be repeated

to compute the smoothed probability backwards to any
desired time step via

(@05 sik—1) _ (@05 »lk—1,ik)
—yr = e . (20)
irel
for (ig,...,ix_1) € Ir and k = 1,...,T. The optimal

MMSE smoother at time k can then be computed as

(0 rik) i
Z nle Xk,

(#0,i1 5 ik ) €Dk 41

X}y = E[X [ Yur] =

(21)

The pruning process to make computation efficient is
done in the forward process only, by using the same
process described in the previous section.

4 Partially observed gene regulatory networks

In this section, we describe a specific instance of the
POBDS model with correlated measurements in (1)—(3),
which allows the application of the proposed BKF-CORR
and BKS-CORR estimators to Boolean gene regula-
tory networks observed through noisy correlated gene-
expression data.

(2018) 2018:22
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4.1 Gene regulatory network state model

The state model adopted here is motivated by gene
pathway diagrams commonly encountered in biomedical
research, in which genes act to activate or inhibit the activ-
ity of other genes. The network function in (1) is expressed
in component form as f = (f1, . . ., f;), where each compo-
nent f; : {0,1}*¢ — {0,1} is a Boolean function given by

1, Y4 agx() + bi +u(i) > 0,
0, XLy agx() + bi +u(i) <0,
where a;; and b; are the system parameters. The former
can take three values: a;; = +1 if there is positive regu-
lation (activation) from gene j to gene i; a; = —1 if there
is negative regulation (inhibition) from gene j to gene i;
and a;; = 0 if gene j is not an input to gene i. The lat-
ter specifies regulation biases and can take two values:
b; = +1/2 if gene i is positively biased, in the sense
that an equal number of activation and inhibition inputs
will produce activation, and the reverse being the case if
b; = —1/2. The proposed network function is depicted
in Fig. 3, where the threshold units are step functions that
output 1 if the input is nonnegative, and 0, otherwise.

The process noise ng in (1) is assumed to have inde-
pendent components distributed as Bernoulli(p), where
the noise parameter p gives the amount of “perturba-
tion” to the Boolean state process; the closer it is to
p = 0.5, the more chaotic the system will be, while a
value of p close to zero means that the state trajecto-
ries are nearly deterministic, being governed tightly by the
network function. From (1), the transition probabilities
P (Xy = x' | X¢_1 = X)) of the state process, required for
computation of the hypothesis tree probabilities in (14),
take the form

P(Xy=x"|Xp1 =%) =P (ng = (X, 0) ® x')

fix,w) = (22)

IE6d ) @x |11 (1) d=IIfCowex]ln
(23)

=p

x(d)

—O fd(xa U)

Fig. 3 Network model
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@ﬁp
=N

WIP1 MDM2

(a)

dna_dsb =0
(no stress)

dna_dsb =1
(DNA damage)

Fig. 4 a—c Activation/repression pathway diagram and state transition diagrams corresponding to a constant input dna_dsb = 0 (no-stress) and
dna_dsb =1 (DNA-damage) for the P53-MDM2 negative-feedback loop Boolean network model with negative regulation biases

fori,j=1,..., 24, where ||x||; denotes the number of 1’s
in the Boolean vector x.

4.2 Gene-expression observation model

We employ here an additive Gaussian noise observation
model even though the methodology proposed in the
paper is entirely general and could be applied in prin-
ciple to any observation model satisfying constraints (3)
and (4). A Gaussian model is appropriate for modeling
gene-expression data from technologies such as cDNA
microarrays [22] and live cell imaging-based assays [24], in
which gene expression measurements are continuous and
unimodal (within a single population of interest) [42—45].
Let Yy = (Yi(1),...,Yr(d)) be a vector containing the
measurements at time k, for k = 1,2, . ... The component
Y«(j) € R is the abundance measurement corresponding
to transcript j, which is modeled as

Yi() = 1) (1—=Xe()) + 1) Xe() + vi(),  (24)
forj = 1,...,d, where the parameters ;L}Q and ,ujl spec-
ify the mean abundance of transcript j in the inactivated

Table 1 Parameter values used in the numerical experiments

Parameter Value

Initial distribution P(Xg) a/16,..., 1/16)
Pruning parameter € 0.01,0.05,0.0.1
Correlation parameter n 0.25,0.50,0.75
Mean in inactivated state 40

Mean in activated state ! 60

Standard deviation o 10,15

and activated states, respectively, and {vi;k = 1,2,...}
is the measurement noise process, with a standard AR(1)
structure

Vi = nvi_1 + (1 —n)wg, (25)

where 0 < 5 < 1 is a correlation parameter, and
{we; kK = 1,2,...} is a multivariate zero-mean white
Gaussian noise process, with wy ~ A(0, ). The value
n = 0 corresponds to uncorrelated observation noise,
where as n = 1 corresponds to maximum correlation.
Clearly, the conditional distribution v | vi_j, required
to compute the hypothesis tree probabilities in (14), is a
multivariate Gaussian N (v, 2g).

5 Results and discussion

In this section, we present the results of detailed numer-
ical experiments to assess the performance of the pro-
posed BKF-CORR and BKS-CORR estimators. We base
our experiments on the well-known p53-MDM2 negative-
feedback gene regulatory network [17, 18]. The p53 gene
codes for the tumor suppressor protein p53 in humans,
and its activation plays a critical role in cellular responses
to various stress signals that might cause genome insta-
bility. The gene regulatory network consists of four genes,
ATM, p53, Wipl, and MDM?2, and the input “dna_dsb,
which indicates the presence of DNA double strand
breaks.

The pathway diagram for this network is presented in
Fig. 4a. We can see that ATM is the transductor gene for
the DNA damage signal, which eventually activates p53
through inactivation of MDM2. However, there is also a
negative-feedback loop between p53 and ATM through
Wipl, so that p53 is expected to display an oscillatory
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Table 2 Average correct state estimation rates over 1000 independent runs for time series with length T = 40
No-stress DNA-damage
b o n BKF BKF-CORR BKS BKS-CORR BKF BKF-CORR BKS BKS-CORR
0.01 10 0.25 0.89 0.92 0.93 0.96 0.88 091 0.96 0.97
0.50 0.86 091 0.88 0.95 0.78 091 0.87 0.97
0.75 0.86 091 0.88 0.95 044 0.90 042 0.97
15 0.25 0.87 0.89 0.90 0.92 0.83 0.86 0.93 0.95
0.50 0.86 0.88 0.88 0.92 0.69 0.84 0.81 0.94
0.75 0.86 0.88 0.88 092 043 0.85 047 0.94
0.05 10 0.25 0.73 0.78 0.79 0.84 0.71 0.76 0.83 0.88
0.50 0.64 0.77 0.68 0.84 0.53 0.75 0.62 0.87
0.75 0.59 0.77 0.62 0.84 0.35 0.76 0.35 0.87
15 0.25 0.65 0.67 0.70 0.73 0.58 0.63 0.71 0.75
0.50 0.61 0.67 0.64 0.73 048 0.62 0.58 0.75
0.75 0.60 0.63 0.68 0.74 0.31 0.62 032 0.75

behavior under DNA damage [17]. On the other hand,
under no stress, it is known that all four proteins are
inactivated in the steady state [46].

These behaviors are captured nicely by the gene regula-
tory network model proposed in Section 4.1. Letting the
state vector be Xy = (ATM, p53, Wipl, MDM?2), the gene
interaction parameters a;; can be read off Fig. 4a:

a1 =0, ap=0, az=-1, asa=0
a1 =41, axp =0, axz=-1, ay=-1
21 22 23 24 (26)
az1 =0, azx=+1, azx3=0, azxu=0
ay =-1, ap=+1, ay=+1, au=0

The input vector is uy = (dna_dsb,0,0,0) and is
assumed here to be held constant at one of its possible
two values: DNA damage, ux = (1,0,0,0), or no stress,

u; = (0,0,0,0), for k = 1,2,.... We assume negative reg-
ulation biases, b; = —1/2, for i = 1,...,d. This leads to
two state transition diagrams, corresponding to each pos-
sible value of the input dna_dsb, which are depicted in
Fig. 4b, ¢). We can see that under no-stress, “0000” is a
singleton attractor state, while the other states are tran-
sient; on the other hand, under DNA damage, there is
a cyclic attractor corresponding to an oscillation of p53
along with the other proteins in its regulatory pathway.
This reproduces the known biological behavior described
previously.

The mean expressions for activated and inactivated
genes are assumed to be the same for all genes, with values
o and u1, respectively, specified in Table 1. In addition,
the covariance matrix for the noise wy is assumed to be
constant and equal to ¥ = ‘7215’ with the value of o
specified in Table 1.

| BKF-CORR BKS-CORR
© | @
o o
< 3
fiea) <or J fea) g -
= \\ =
o T T T T T o T T T T T
1 10 20 30 40 1 10 20 30 40
Time Time

(a) DNA-damage

(b) no-stress

Fig. 5 Average correct state estimation rates for the BKF-CORR and BKS-CORR estimators under a DNA-damage and b no-stress conditions
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Table 3 Effect of the pruning parameter on performance and
running time

BKF-CORR BKS-CORR
€ Est. rate Time Est. rate Time
0.01 0.76 1033 0.88 15.76
0.05 0.72 541 0.84 8.56
0.10 0.62 1.72 0.73 2.34

Table 2 displays the average rate of correct state esti-
mation for the standard BKF and BKS, which are optimal
for uncorrelated noise but suboptimal in this case. The
pruning parameter is set to be € = 0.01. As expected, the
performance of the BKF-CORR and BKS-CORR estima-
tors is better than that of the BKF and BKS estimators in
various cases. As expected, the difference is more obvious
for larger correlated noise.

Performance across the board is worse in the presence
of large process and measurement noises. One can also see
that better estimation is obtained in the “no-stress” con-
dition in comparison to “DNA-damage” case. This can be
explained by the attractor structure of each system, shown
in Fig. 4b, c. Under no-stress, the system spends a signifi-
cant amount of time in the rest state 0000, whereas under
DNA damage, more states are visited due to the cyclic
attractor, which makes the state estimation process more
challenging.
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Figure 5 displays the average correct state estimation
rates Ey over 40 time steps using 1000 independent runs,
defined as

1000

Ep = Z i @® Xeill1s
i=1

(27)

for k = 1,...,40, where )A(k,lf is the estimate of the true
state Xy ; in the ith iteration. The error Ek takes a value
between 0 and 1. When Ey is close to 0, the proposed esti-
mator has accurately estimated the transcriptional state
of all genes at time step k over all independent runs. By
contrast, a value of £y close to 1 corresponds to the max-
imum possible estimation error at time step k. For the
plot in Fig. 5, the process noise intensity, pruning param-
eter, and correlation rate are assumed to be p = 0.01,
€ = 0.1, and n = 0.1, respectively. The standard devi-
ation of the measurement noise is also assumed to be
o = 10. In both cases, the BKF-CORR and BKS-CORR
estimators have performed accurately, leading to small
average estimation error. However, the BKS-CORR esti-
mator has smaller error on average in comparison to the
BKF-CORR estimator throughout the interval. This is due
to the fact that the smoother uses future observations,
but the filter uses only the observations up to the present
time. The average estimation error is larger in the early
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steps, due to the initial uniform distribution assumed over
the Boolean states. However, as time goes on, the aver-
age error quickly becomes small. One can notice that the
difference between the average estimation errors of
the BKF-CORR and BKS-CORR estimators is larger in
the presence of DNA damage. This can be justified by the
fact that the p53-MDM2 network in the presence of the
DNA damage has a cyclic attractor (see Fig. 4), as opposed
to the no-stress condition in which “0000” is a singleton
attractor. Clearly, the estimation in the presence of the
cyclic attractor is more challenging than that of a single-
ton attractor. Thus, the use of future data in the smoothing
process makes the estimation process more accurate in the
middle of the interval. Finally, as expected, at the end of
the horizon (i.e., k = T), the filter and smoother are equiv-
alent (since no future data is available), and as a result,
the same average error can be seen for both estimators
in that case.

Next, the effect of the pruning parameter on perfor-
mance and computational time is examined. Table 3 dis-
plays the average correct estimation rate and running time
of the proposed methods for different pruning parame-
ters, computed over 1000 independent runs for sequences
of length T = 40. The process noise intensity and the
standard deviation of measurements are assumed to be
p = 0.05and 0 = 10, respectively. The system is assumed
to be in the DNA-damage condition. As mentioned pre-
viously, as the pruning rate € increases, running time
decreases, but performance decreases. In this case, the
performance of both the BKF-CORR and BKS-CORR esti-
mators decreases significantly for € = 0.10, but it does not
vary much by moving from € = 0.01 to ¢ = 0.05. The
choice of € depends principally on the amount of available
resources and time-limit constraints.

Figure 6 displays sample original and estimated state tra-
jectories of all genes obtained by the BKF-CORR and the
BKF estimators on a single time series of length 40, with
correlation parameter n = 0.2, p = 0.05, ¢ = 0.1, and
o = 10. It is clear that the gene states are better tracked
by the BKF-CORR algorithm in comparison to the BKF.
Notice that less gene activity can be observed in the case
of no-stress condition due to the singleton rest attractor of
the system, whereas several oscillations can be seen under
DNA damage due to the existence of a cyclic attractor.

6 Conclusions

In practice, the existence of correlation between data
points acquired from gene expression technologies should
be expected, and there is a need for accurate estimation
of transcriptional states of genes under these conditions.
In this paper, gene regulatory networks observed through
noisy correlated gene-expression data were modeled with
a modified Partially-Observed Boolean Dynamical Sys-
tem (POBDS) model that accounts for measurement
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noise correlation. The BKF-CORR and BKS-CORR algo-
rithms for state estimation from correlated measurements
were proposed, which are built on a hypothesis tree and
an efficient pruning process to keep the computation
tractable. Numerical results demonstrated that the pro-
posed BKF-CORR and BKS-CORR estimators achieve
good state tracking performance under modest computa-
tional requirements.

Abbreviations

BKF: Boolean Kalman Filter; BKS: Boolean Kalman Smoother; BKF-CORR:
Boolean Kalman Filter for correlated measurements; BKS-CORR: Boolean
Kalman Smoother for correlated measurements; GRNs: Gene regulatory
networks; MMSE: Minimum mean square error; POBDS: Partially-Observed
Boolean Dynamical System

Funding
The authors would like to acknowledge the support of the National Science
Foundation through NSF awards CCF-1320884 and CCF-1718924.

Authors’ contributions

MI proposed the algorithms based on the hypothesis tree and carried out the
numerical experiments. UB proposed the original idea of studying POBDS with
correlated measurement noise. Both authors made significant contributions in
the writing of the manuscript. Both authors read and approved the final
manuscript.

Ethic approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 25 October 2017 Accepted: 19 March 2018
Published online: 04 April 2018

References

1. SAKauffman, Metabolic stability and epigenesis in randomly constructed
genetic nets. J. Theor. Biol. 22(3), 437-467 (1969)

2. I Shmulevich, ER Dougherty, W Zhang, From Boolean to probabilistic
Boolean networks as models of genetic regulatory networks. Proc. IEEE.
90(11), 1778-1792 (2002)

3. MImani, U Braga-Neto, Maximum-likelihood adaptive filter for
partially-observed Boolean dynamical systems. IEEE Trans. Signal Process.
65,359-371(2017)

4. T Chen, HL He, GM Church, et al, in Pacific Symposium on Biocomputing.
Modeling gene expression with differential equations. vol. 4, (1999), p. 40

5. MSYeung, J Tegnér, JJ Collins, Reverse engineering gene networks using
singular value decomposition and robust regression. Proc. Natl. Acad. Sci.
99(9), 6163-6168 (2002)

6.  SKikuchi, D Tominaga, M Arita, K Takahashi, M Tomita, Dynamic modeling
of genetic networks using genetic algorithm and S-system. Bioinformatics.
19(5), 643-650 (2003)

7. SKimura, Klde, A Kashihara, M Kano, M Hatakeyama, R Masui,

N Nakagawa, S Yokoyama, S Kuramitsu, A Konagaya, Inference of
S-system models of genetic networks using a cooperative coevolutionary
algorithm. Bioinformatics. 21(7), 1154-1163 (2004)

8. N Friedman, M Linial, | Nachman, D Pe’er, Using Bayesian networks to
analyze expression data. J. Comput. Biol. 7(3-4), 601-620 (2000)

9. KMurphy, S Mian, et al, Modelling gene expression data using dynamic
Bayesian networks. (Technical report, Computer Science Division,
University of California, Berkeley, CA, 1999)



Imani and Braga-Neto EURASIP Journal on Advances in Signal Processing (2018) 2018:22

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33

34

B-E Perrin, L Ralaivola, A Mazurie, S Bottani, J Mallet, F d’Alche-Buc, Gene
networks inference using dynamic Bayesian networks. Bioinformatics.
19(suppl_2), 138-148 (2003)

. SA Kauffman, Metabolic stability and epigenesis in randomly constructed

genetic nets. J. Theor. Biol. 22, 437-467 (1969)

SA Kauffman, Homeostasis and differentiation in random genetic control
networks. Nature. 224, 177-178 (1969)

| Shmulevich, ER Dougherty, S Kim, W Zhang, Probabilistic Boolean
networks: a rule-based uncertainty model for gene regulatory networks.
Bioinformatics. 18(2), 261-274 (2002)

R Albert, HG Othmer, The topology of the regulatory interactions predicts
the expression pattern of the segment polarity genes in drosophila
melanogaster. J. Theor. Biol. 223(1), 1-18 (2003)

FLi, TLong, Y Lu, Q Ouyang, C Tang, The yeast cell-cycle network is
robustly designed. Proc. Natl. Acad. Sci. U S A. 101(14), 4781-6 (2004)

A Faure, A Naldi, C Chaouiya, D Thieffry, Dynamical analysis of a generic
Boolean model for the control of the mammalian cell cycle.
Bionformatics. 22(14), 124-131 (2006)

E Batchelor, A Loewer, G Lahav, The ups and downs of p53: understanding
protein dynamics in single cells. Nat. Rev. Cancer. 9, 371-377 (2009)

R Layek, A Datta, Fault detection and intervention in biological feedback
networks. J. Biol. Syst. 20(4), 441-453 (2012)

| Shmulevich, ER Dougherty, Probabilistic Boolean networks. (SIAM,
Philadelphia, 2009)

D Cheng, H Qi, A linear representation of dynamics of Boolean networks.
|EEE Trans. Automatic Control. 55(10), 2251-2258 (2010)

D Cheng, H Qi, Z Li, Analysis and control of Boolean networks: a semi-tensor
product approach. (Springer, 2010)

Y Chen, ER Dougherty, ML Bittner, Ratio-based decisions and the
quantitative analysis of cDNA microarray images. J. Biomed. Opt. 2(4),
364-374(1997)

A Mortazavi, BA Williams, K McCue, L Schaeffer, B Wold, Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods. 5(7),
621-628 (2008)

J Hua, C Sima, M Cypert, GC Gooden, S Shack, L Alla, EA Smith, JM Trent,
ER Dougherty, ML Bittner, Dynamical analysis of drug efficacy and
mechanism of action using GFP reporters. J. Biol. Syst. 20(04), 403-422
(2012)

SZ Dadaneh, X Qian, M Zhou, Bnp-seq: Bayesian nonparametric
differential expression analysis of sequencing count data. J. Am. Stat.
Assoc. (2017) just-accepted

U Braga-Neto, in Signals, Systems and Computers (ASILOMAR), 2011
Conference Record of the Forty Fifth Asilomar Conference On. Optimal state
estimation for Boolean dynamical systems (IEEE, 2011), pp. 1050-1054
M Imani, U Braga-Neto, in 2015 IEEE Global Conference on Signal and
Information Processing (GlobalSIP). Optimal state estimation for Boolean
dynamical systems using a Boolean Kalman smoother (IEEE, 2015),

pp. 972-976

M Imani, U Braga-Neto, Particle filters for partially-observed Boolean
dynamical systems. Automatica. 87, 238-250 (2018)

A Bahadorinejad, UM Braga-Neto, Optimal fault detection and diagnosis
in transcriptional circuits using next-generation sequencing. [EEE/ACM
Trans. Comput. Biol. Bioinform. (2015)

LD McClenny, M Imani, U Braga-Neto, in the 42nd IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP 2017).
Boolean Kalman Filter with correlated observation noise (IEEE, 2017)

M Imani, U Braga-Neto, in 2015 49th Asilomar Conference on Signals,
Systems and Computers. Optimal gene regulatory network inference using
the Boolean Kalman filter and multiple model adaptive estimation (IEEE,
2015), pp. 423-427

M Imani, U Braga-Neto, in 2017 51th Asilomar Conference on Signals,
Systems and Computers. Optimal finite-horizon sensor selection for
Boolean Kalman filter (IEEE, 2017)

M Imani, U Braga-Neto, Control of gene regulatory networks with noisy
measurements and uncertain inputs. IEEE Trans. Control Netw. Syst.
(2018). https://doi.org/10.1109/TCNS.2017.2746341

M Imani, U Braga-Neto, Point-based methodology to monitor and control
gene regulatory networks via noisy measurements. IEEE Trans. Control
Syst. Technol. (2018). https://doi.org/10.1109/TCST.2017.2789191

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Page 10 of 10

M Imani, U Braga-Neto, in American Control Conference (ACC), 2016.
State-feedback control of partially-observed Boolean dynamical systems
using RNA-seq time series data (IEEE, 2016), pp. 227-232

M Imani, UM Braga-Neto, in Proceedings of the 2017 American Control
Conference (ACC 2017). Multiple model adaptive controller for
partially-observed Boolean dynamical systems (IEEE, Seattle, 2017),

pp. 1103-1108

M Imani, U Braga-Neto, in Decision and Control (CDC), 2016 IEEE 55th
Conference On. Point-based value iteration for partially-observed Boolean
dynamical systems with finite observation space (IEEE, 2016),

pp. 42084213

M Imani, UM Braga-Neto, in Proceedings of the 2018 American Control
Conference (ACC 2018). Optimal Control of Gene Regulatory Networks
with Unknown Cost Function (IEEE, 2018)

LD Mcclenny, M Imani, UM Braga-Neto, BoolFilter: an R package for
estimation and identification of partially-observed Boolean dynamical
systems. BMC Bioinformatics. 18(1), 519 (2017)

LD McClenny, M Imani, U Braga-Neto, Boolfilter package vignette. The
Comprehensive R Archive Network (CRAN) (2017)

N Ghaffari, MR Yousefi, CD Johnson, | lvanov, ER Dougherty, Modeling the
next generation sequencing sample processing pipeline for the purposes
of classification. BMC Bioinformatics. 14(1), 307 (2013)

S Boluki, M Shahrokh Esfahani, X Qian, ER Dougherty, Constructing
pathway-based priors within a Gaussian mixture model for Bayesian
regression and classification. IEEE/ACM Trans. Comput. Biol.
Bioinformatics (2017). https://doi.org/10.1109/TCBB.2017.2778715

S Xie, M Imani, E Dougherty, U Braga-Neto, in 2017 51th Asilomar
Conference on Signals, Systems and Computers. Nonstationary linear
discriminant analysis (IEEE, 2017)

S Boluki, M Shahrokh Esfahani, X Qian, ER Dougherty, Incorporating
biological prior knowledge for Bayesian learning via maximal
knowledge-driven information priors. BMC bioinformatics (2017)

A Karbalayghareh, U Braga-Neto, ER Dougherty, Classification of
single-cell gene expression trajectories from incomplete and noisy data.
IEEE/ACM Trans. Comput. Biol. Bioinformatics (2017). https://doi.org/10.
1109/TCBB.2017.2763946

RA Weinberg, The Biology of Cancer. (Garland Science, Princeton, 2006)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://doi.org/10.1109/TCNS.2017.2746341
https://doi.org/10.1109/TCST.2017.2789191
https://doi.org/10.1109/TCBB.2017.2778715
https://doi.org/10.1109/TCBB.2017.2763946
https://doi.org/10.1109/TCBB.2017.2763946

	Abstract
	Background
	Results
	Keywords

	Introduction
	POBDS with correlated measurements
	State model
	Observation model

	Proposed estimators
	BKF-CORR
	BKS-CORR

	Partially observed gene regulatory networks
	Gene regulatory network state model
	Gene-expression observation model

	Results and discussion
	Conclusions
	Abbreviations
	Funding
	Authors' contributions
	Ethic approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

