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Abstract

In this paper, a novel correlation feature-based detector is proposed to deal with the challenging problem of
detecting a range-distributed target embedded in nonstationary sea clutter. It is well known that sea clutter consists
of a speckle component modulated by texture. The nonstationary property of sea clutter is mainly reflected in texture,
but its correlation characteristic is mainly dominated by the speckle. Therefore, this detector using the correlation
feature of sea clutter can effectively eliminate the negative effect of the nonstationary property of sea clutter on the
detection performance. In addition, in order to get rid of the limitation of the knowledge shortage of target scatterers,
the modified entropy method is applied to adaptively estimate the number of target scatterers. The real range distributed
target data and high-resolution sea clutter are used to evaluate the detector, and the experimental results show that it

Target detection

attains a better detection performance in comparison with several existing detectors. Comparing with the
feature-based detector, the proposed detector can effectively reduce the computational complexity.

Keywords: Feature-based detector, Sea clutter, Correction characteristic, High range resolution radar,

1 Introduction

1.1 Motivation and related works

High-resolution radar can achieve a high range resolu-
tion by transmitting a wideband signal and using modern
pulse compression techniques [1]. In most cases, the range
extent of the target to be detected is much larger than the
range resolution of radar. As a consequence of this situa-
tion, the target “appears” in multiple different range cells
of radar echoes, so it is also called a range distributed
target [2]. The echoes of the range distributed targets
can capture abundant target structure information such
as target size and scattering distribution; hence, they have
widely been used for target recognition, classification, and
accurate tracking [3, 4]. With the extensive applications
of high-resolution radars, the problem of detecting range
distributed targets arises naturally and has received con-
siderable attention [5-7]. Nevertheless, it is known that
for high-resolution radars, sea clutter character becomes
very complex and sea clutter is often highly non-Gaussian,
even spiky [8]. In signal processing research area, it is
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always a challenging problem to design an effective detec-
tor for range distributed targets embedded within sea
clutter.

During the past decades, many works have been
directed so far towards the methods to improve the detec-
tion capability of range distributed targets in sea clutter.
Adaptive detection methods based on the compound-
Gaussian model of sea clutter are widely used in the
range distributed target detection in sea clutter [9-24].
The typical examples are the generalized likelihood ratio
test (GLRT) based detectors [9-11], the detectors with
Rao and Wald tests [12—14], the spatial scattering den-
sity GLRT (SDD-GLRT) detector [15], the two-step GLRT
which can be used in the partically homogeneous envi-
ronment [16] , the deterministic scatterer model GLRT
based on order statistics detector (OS-DSM-GLRT), the
adaptive beamformer orthogonal rejection test (ABORT)
[17], and adaptive normalized matched filter (ANMF)
[19, 20]. In [21] shows an adaptive scheme to detect
extended and multiple point-like targets embedded in
correlated Gaussian noise, the detectors designed in this
paper guarantee satisfactory performance, and some of
detectors have less time-consuming character. In [22],
some a priori knowledge about the operating environment
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is exploited and used in the detector design stage, and the
results show that the use of a priori information can lead
to a detection performance quite close to the optimum
receiver. In [23, 24], a unifying framework for adaptive
radar detection is established. This framework is used
to deal with the problem of adaptive multichannel sig-
nal detection in homogeneous Gaussian disturbance with
unknown covariance matrix and structured deterministic
interference. A modified version of generalized multi-
variate analysis of variance (I-GMANOVA) is studied in
[23, 24]. Those detectors consist of an adaptive whitening
filter to suppress clutter followed by a matched receiver.
Due to the complex dynamic nature of sea clutter, the
adaptive whitening filter can not be effectively imple-
mented; thus, the detection performance of these detec-
tors shows some deterioration. In addition, some of them
are very time-consuming.

The alternative methods are based on the binary inte-
gration detection strategy (sometimes called an M out of
L detector, M/L detector) [25—28]. Those detectors are
usually comprised of an initial binary detector followed
by a binary accumulator to extract targets with sufficient
range extent. The first-stage detection of those detec-
tors is essentially a simplification of the likelihood ratio
test (LRT). The different statistical models of clutter are
needed to formulate the LRT in different sea clutter back-
grounds. Their performance may become extremely bad
when the second threshold is improperly chosen. How-
ever, these detectors are easy to be realized in engineering.

Recently, by analyzing the real high-resolution sea clut-
ter datasets, many unconventional methods exploiting the
features of clutter have been developed [29-34]. Several
researchers have demonstrated that the sea clutter time
series exhibit fractal and multiracial behaviors. Starting
from this result, the fractal-based detectors are devel-
oped, for example, multifractal analysis based on Hurst
exponent [29], multifractal analysis based on blind box-
counting [30], high-order fractal feature [31], and joint
fractal with the combination of Hurst exponent and inter-
cept [32]. It has been shown that these fractal-based
detectors can achieve very high detection accuracy within
a long observation time, but during the several-second
observation time, their detection performance suffers
from some degradation [32].

In fact, sea clutter data is highly nonstationary, but this
fact is not taken into consideration in designing all afore-
mentioned detectors. Thus, those detectors can not work
well in nonstationary sea clutter. In order to break the
limitation of sea clutter nonstationary property, another
popular feature-based detection method using the consis-
tency factor of speckle is proposed in [34]. That detector
can eliminate the influence of nonstationary part of sea
clutter and achieve better detection performance. How-
ever, that detector becomes very time-consuming when
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the ratio between the range extent of the target to be
detected and the range resolution cell of radar is large.

To this end, we propose a novel and functional feature-
based detector for the detection of the range distributed
target in sea clutter. As verified by the analyzed results of
the intelligent pixel-processing (IPIX) radar data sets in
[34, 35], the nonstationary property of the high-resolution
sea clutter is mainly reflected in the texture and that of
the speckle is not very severe. Generally, the speckle and
texture components can be regarded to be statistically
independent. Thus, the overall autocorrelation function of
sea clutter is the product of autocorrelation functions of
these two components. In practice, it is dominated by the
speckle component. The correlation time of the speckle
component is around milliseconds [36]. Conversely, the
target may exhibit strong correlation characteristic and
usually has long correlation time. Inspired by this and the
works presented in [34], we design a correlation feature-
based detector for detecting the range distributed targets
embedded within sea clutter.

1.2 Summary of the contributions and paper organization
The main contributions of our present study are summa-
rized as follows:

e We design a correlation feature-based detector for
detecting the range distributed targets embedded
within sea clutter. This detector is an extension of the
binary integration detector, while overcoming its
shortcomings of the statistical model dependency
and maintaining its high efficiency.

e We use the complex signals of clutter and target
returns to extract the correlation feature and set the
rule of the binary detector based on this feature at the
first-stage detection of the proposed detector. Thus,
the negative effect of the nonstationary texture on the
detector can be effectively eliminated.

e In order to improve the robustness of the detector,
the modified entropy is applied to adaptively estimate
the numbers of strong scatterers of target, and the
optimal selection of the second threshold M can then
be determined according to this estimation.

® e make comparision of our detector with the
fractal-based detector [29] and the feature-based
detector [34]; the proposed detector can attain better
detection performance but require lower
computational complexity.

The rest of this paper is organized as follows. Section 2
shows the the aim, design, and setting of the study;
Section 2.1 contains the formulation for the problem
and describes the signal model; and Section 2.2 analyzes
the correlation characteristic of the radar-received sig-
nals and defines the decreasing rate of the correlation
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time as a correlation feature. Then, the statistics results
of this correlation feature for the sea clutter and targets
are presented in Section 2.3, according to the disparity
of the correlation features of clutter and targets, a new
correlation feature-based detection scheme is proposed.
In Section 3, the proposed algorithm is verified by the
experimental results with measured radar data. Finally, we
conclude our paper in Section 4.

Notation: The symbols which are used in our paper are
as follows: N represents the number of pulses; z, repre-
sents the received signal vector of the rth range cell; s,
represents the target echo vector of the rth range cell; ¢,
represents the clutter vector of the rth range cell; t,(n) and
gr(n) represent the texture and the speckle component,
respectively; P, represents the number of target scatterers
in the rth range cell; a,, and f,, represent the complex
amplitude and the Doppler offset of the pth scatterer in
the rth range cell, respectively; and T represents the pulse
reptition interval of the radar. m represents the delay vari-
able; R;,(m) and R,,,(m) represent the normalized auto-
correlation function for the clutter texture and the speckle
components, respectively; SCR, represents the signal-
clutter-ratio (SCR) for the rth range cell; f, represents the
approximation of the Doppler offsets of rth range cell;
m, represents the correlation time for the rth range cell;
yr represents the decreasing rate of the correlation time;
R, (m,) represents the autocorrelation coefficient at m1,;
n1 represents the detection threshold of the binary detec-
tor; d” represents the detector output through the nth
detection threshold; and M represents the second detec-
tion threshold. /4, represents the number of range cells
occupied by the strong scatterers of the range distributed
target; e; and g; represent the normalized sub-sequences
of {)/(1),-'~ ,y(h)} and {J/(h+1)"" ,y(L)}, respectively; &
represents the hypotheses number; H (/) represents the
nomalized estimation for /1; Py, represents the overall false
alarm probability of the binary integration detector; P,
represents the false alarm probability of the binary detec-
tor; and C7" represents the number of combination of L
items taken m at a time.

2 Methods

2.1 Problem statement and signal model

It is assumed that data are collected from a coherent
train composed of N pulses. For the sake of simplicity,
we assume that the range distributed target is completely
contained within L consecutive range cells and the range
migration is neglected during a coherent processing inter-
val equal to a time duration of the N pulses. Herein,
the power spectrum of detected white noise is about
20 dB below that of sea clutter, and there is no jamming
presence; therefore, the clutter dominant environment is
considered, and the noise is ignored. For the rth range
cell, z, = [z,(1),... ,zr(N)]T denotes the received signal
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vector, s, = [s+(1),...,s(N)]T denotes the target echo
vector, and ¢, = [¢,(1),...,c,(N)]T is the clutter vector.
Generally, s, and c, are statistically independent of each
other. Accordingly, the problem of detecting the presence
of a range distributed target in the sea clutter can then
be formulated in terms of the following binary hypotheses
test:

Hy:z,=c¢c,r=1,...,L
{ 0 r r (1)

Hy:z,=s,+¢,r=1,...,L°

If Hy hypothesis is accepted, only the sea clutter exist;
otherwise, if H; hypothesis is accepted, this means the
presence of a range distributed target in the sea clutter.

In many realistic high-resolution radar applications, it
is generally accepted that the compound-Gaussian model,
which arises from the product of two independent ran-
dom variables, is used to describe the sea clutter. Accord-
ing to this model, the discrete-range-time expression of
the received complex sea clutter samples can be given by

cr(n) = Vu(mg(m),n=1,...,N, (2)

where g,(n), commonly named the speckle component,
is a zero-mean complex Gaussian random process that
accounts for the local sea backscatter and 7,(n), the so-
called texture, is a real positive random process that
represents the power variations of the local backscatter.

The target returns in each range cell can be modelled as
the sum of the contribution of scatterers. Generally, within
a coherent processing interval, each scatterer of the target
on the sea surface, such as a boat or ship, can be regarded
to have a constant radar cross section and a constant radial
velocity. Therefore, the sample s,(n) of the target returns
can be expressed as a simple form as follows [18]:

P,
sr(n) = Zar,pe_ﬂ”(”_l)ﬂ’f’T,n =1,...,N, (3)
p=1

where P, is the number of target scatterers in the rth range
cell. a, and f, , are the complex amplitude and Doppler
offset of the pth scatterer in the rth range cell, respectively.
T is the pulse repetition interval of the radar. The implied
vector form of s, are shown as follows:

T

P, P,

S, = Z Arps-- > Z a,,pe_jZ”(N_l)f"l’T . (4)
p=1 p=1
2.2 Temporal correlation characteristic of the received
signal

The temporal correlation of the received signal is referred
to the correlation of multiple successive pulse returns
within the same range cell and is usually described by
the normalized autocorrelation function. The normalized
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autocorrelation function of the received signal vector z, is
defined as
N-—m
>z (n+ mz(n)

Ry (m) = "=— : 5)

> Iz (m)]?

n=1

where superscript (e)* denotes the conjugate operation. m
is the delay variable.
The normalized autocorrelation function under H
hypothesis can be expressed as
N-—m
> o (n+ m)cy(n)
=1
Ry(m|Hp) = Ry = “

(6)

S 2
2 ler(m)
n=1

According to the sea clutter model given in Eq. (2), we
have

Re,(m) = Rr,r(m)Rg,r(m)» (7)

where R; ,(m) and Ry ,(m) are the normalized autocorre-
lation functions for the clutter texture and speckle com-
ponents, respectively. Equation (7) clearly shows that the
overall normalized autocorrelation function of sea clutter
is influenced by the correlation characteristics of the tex-
ture and speckle components. Due to their different phys-
ical origins, the clutter texture and speckle components
exhibit very different correlation characteristics [36, 37].
The speckle component is associated with the detailed
scatterers of the clutter in any range cell. It rapidly varies
and has short correlation time that is around milliseconds.
On the other hand, the texture component results from a
bunching of scatterers associated with the long sea waves
and swells. It has a longer correlation time that stretches
to seconds. As has already been pointed out by Farina in
[36] and by Greco in [37], for the sea clutter in a short
time, its temporal correlation characteristic is dominated
by the speckle component. Accordingly, the coherent sig-
nals z,,r = 1,...,L under Hp hypothesis have fairly short
temporal decorrelation time equal to that of the speckle
component of sea clutter.

Under H; hypothesis, the normalized autocorrelation
function of the received signal can be expressed as

N-—m
Y sE(n+ m)sy(n)
R.(m|Hy) = —"=* N
Y s P+ Y ler(m)l®
n=1 n=1
N-—m
> ci(n+ m)c(n)

n=1

N N
> lss P+ Y lep(m)]?
n=1 n=1

(8)

+
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The SCR for the rth range cell is denoted as SCR, =
N N
3 Isy(m))2/ Y |er(m)]?. Then, Eq. (7) can be re-expressed as
n=1

n=1
SCR; - Rs,r(m) Rc,r(m)
R,(m|Hy) = : )
(1+SCR,) ' (1+SCR,)
N-—m N
where Ry, (m) = ) si(n+m)s,(n)/ > Is,(n)|? is the

n=1 n=1
complex autocorrelation function of the target returns.

The targets used in the experiment have good rigid con-
struction (targets are ships), and we detect those targets
at considerable distances; therefore, it is an acceptable
assumption that all scatterers of the target keep com-
parable radial velocity at each time instant. Thus, their
Doppler offsets are approximately equal and denoted as f;..
According to Eq. (3), the autocorrelation function of the
target returns can then be approximated as

N—m [ P, * /P ,
Z Z arp arp e]2nmfrT
n=1 \p=1 p=1
P, /P
N| Y arp Y arp
p=1 p=1

(N — m)ejZJTWIﬁT
- N

R, (m) ~

(10)

Equations (9) and (10) clearly show that when the target
exists and SCR is not low, the temporal autocorrelation
function of the received signal no longer decreases more
rapidly. Thus, the coherent signals z,,r = 1,...,L under
Hj hypothesis have longer temporal decorrelation time.

We give an example to illustrate the disparity of the
temporal autocorrelation functions of the sea clutter and
target by analyzing the recorded datasets. The datasets
are collected by the Ka-band coherent radar at the staring
mode with the pulse repetition frequency of 1000 Hz; this
radar system transmits a train of chirp pulses. The signal
bandwidth is 100 MHz, and the grazing angle is 10° dur-
ing the time when the sea clutter data are collected. The
specification of the high-resolution sea clutter is shown in
Table 1.

Figure 1 shows the amplitude-range-pulse maps of the
recorded data samples for the clutter and two range dis-
tributed targets. The clutter dataset consists of 900 range
cells, and the number of time samples in each range cell

Table 1 The specification of the high-resolution sea clutter

Specification Value

Range resolution
Wind speed

Theoretically 1.5 m
Approximately 9-10 m/s

Sea state Approximately 4-5 (Beaufort scale)
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Fig. 1 Amplitude-range-pulse maps of the recorded data samples: a
Sea clutter. b target 1. c target 2

is 63500 (equal to a recorded duration of 63.5 s). For two
target datasets, the number of time samples in each range
cell is 512 (equal to a recorded duration of 0.512 s). The
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number of range cells is 160 for target 1 and 250 for tar-
get 2. Figure la clearly shows the periodic variation of
the clutter amplitude with range and time due to the sea
wave pattern. This heterogeneity of sea clutter may result
in a rapid decline of the detection performance for the
homogenous sea clutter hypothesis- based detector. In
Fig. 1b and c, the data are collected in the high SCR case.
The target 1 mainly locates in the 35th to 155th range cells,
and the target 2 mainly locates in the 61st to 210th range
cells. It is apparent that the amplitudes of the received
target returns are also spatially heterogeneous. The pow-
ers of both two range distributed targets are concentrated
in several range cells. Moreover, in those range cells, the
amplitudes of the target returns are expected to appear as
a long horizontal time-coherent line.

For each range cell, all pulse samples are divided into 496
nonoverlapping groups for the clutter and 4 nonoverlap-
ping groups for the range distributed targets; thus, each
group contains 128 successive pulse samples. Accord-
ing to Eq. (5), the temporal autocorrelation function of
each group is estimated. Figure 2 exhibits the examples
of the estimated correlation function. As expected, there
are very evident differences of the temporal autocorrela-
tion functions between the clutter and targets. In all range
cells, the temporal autocorrelation function of the clutter
rapidly decreases at first, and then, it slowly decays. Con-
versely, in the strong scattering range cells, the decline of
the temporal autocorrelation function of targets is slow.
Especially, in Fig. 2b, the decline of target 1 can be approx-
imated as a linear function of the lag number m, which
agrees well with Eq. (10).

The correlation time is usually defined as the inter-
val in which the correlation coefficient decays from the
maximum 1 to 1/e = 0.368. However, the correlation
coefficients for most range cells are impossible to just be
1/e = 0.368 due to the pulse sampling. Herein, the corre-
lation time is extended to refer as the smallest lag number
of which corresponding correlation coefficient is less than
1/e = 0.368. It is denoted as m,. Figure 3 shows the sta-
tistical results of the correlation times for the sea clutter
and targets. It can be seen from the results that the dif-
ferences of the correlation times between the sea clutter
and targets are distinguishable just by inspection. The cor-
relation time of the sea clutter is smaller than that of the
targets statistically. However, there are only a few discrete
samples of the correlation time for sea clutter. In this case,
it is very difficult to guarantee the constant false alarm
rate (CFAR) property of the detector. To overcome this
major obstacle, the decreasing rate of the correlation time
is used. It is defined as

my

= T-Rm) (1)

Vr
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Fig. 2 Autocorrelation function of the recorded data samples: a Sea
clutter. b target 1. c target 2
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Fig. 3 Statistical results of the correlation time for the sea clutter and
targets
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where R, (m,) is the autocorrelation coefficient at the cor-
relation time m, for the rth range cell. The relationship
between autocorrelation function and power spectrum of
the sea clutter is proved to hold as a Fourier transform
pair. The correlation time can also be defined by the 3-
dB bandwidth of power spectrum f34p related to the time
delay of the correlation function, and the correlation time
is anticorrelated with f34p [33]. Thus, the wider the f343 is,
the shorter the correlation time of sea clutter is, and the
less decreasing rate can be obtain.

Figure 4 shows the statistical results of the decreasing
rate of the correlation time for the sea clutter and tar-
gets. As analysed earlier, the targets have long correlation
time, but the correlation time of sea clutter is short. Con-
sequently, it can be clearly seen from these results that
the decreasing rate of the correlation time for sea clutter
tends to have a smaller range than those of the targets sta-
tistically. Furthermore, the more various samples of this
correlation feature can be obtained for sea clutter. We
can first obtain the R,(m) from Eq. (5) and then use the
Eq. (11) to obtain the correlation property; the calculation
cost of the rth range cell is only (m, + 1)(N — m,/2). For
the different range cells, the computational cost changes
with the correlation times. According to Fig. 3, we can say
that the computational cost of our detector is less than
the detector based on the consistency factor [34]. Thus, y;
is considered to be one of the most effective features for
target detection.

2.3 Correlation feature-based detector

Since the binary integration detector is easy to implement,
it is widely applied to detect the range distributed target
as a quasi-optimum integration CFAR detection scheme.
In terms of the differences of the correlation character-
istics between the sea clutter and the range distributed
target, a correlation feature-based detector is developed

0.25 7/ Targetl
B Targe2
[ Clutter
0.20
0.15
Gy
S
=9
0.10
0.05
0.00
0

Decreasing rate of the correlation time

Fig. 4 Statistical results of the decreasing rate of the correlation time
for the sea clutter and targets
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for the detection of range distributed target in sea clutter.
This detector can be regarded as a modified binary inte-
gration detector. Succinctly, it is comprised of an initial
binary detector on each individual range cell for a set of
consecutive pulses (within a coherent processing interval)
and a followed binary accumulator across range to extract
targets with sufficient range extent. Figure 5 illustrates the
overall operation of the proposed detection algorithm.
Following the experimental results in Fig. 4, we naturally
exploit the decreasing rate of the correlation time of the
received signal as the detection feature to implement the
binary detector. For each individual range cell under test,
we use Eq. (5) to estimate the autocorrelation function of
the received signal, and then use Eq. (11) to obtain the
decreasing rate of correlation time. The decreasing rate
of correlation time for the rth range cell is denoted as y;.
Thus, the detection rule of the binary detector for each
individual range cell can be usually set as
[y, 5 m] > dV,r=1,...,L (12)
where 71 is the detection threshold of the binary detec-
tor. The detector outputs dﬁl)s with the decreasing rate of
the correlation time Y, surpassing the detector threshold
n1 are set to 1 while all others are set to 0. After accom-
plishing the binary detection for all range cells under test,
these outputs of the binary detector, dil)s, are inputted
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into the binary accumulator. Then, the hypothesis that a
range distributed target is present is tested as follows

L
|:P _ Zdﬁn iM:| — d®,
r=1

where M is the second detection threshold. If P > M,
d® = 1, this indicates the presence of a range distributed
target in sea clutter; otherwise d'®) = 0, this indicates only
the presence of sea clutter.

To guarantee the CFAR property of the proposed detec-
tor and achieve a good detection performance, the strate-
gies of 1 and M selections need to be derived. In [38], the
sparse factor « is defined as %./A, where /. is the num-
ber of range cells occupied by the strong scatterers of the
range distributed target and A is the total number of scat-
tering centers. The overall false alarm probability of the
binary integration detector is set as 107°, the total detec-
tion probability is set as 90%, and the optimal number of
the range resolution cell (Nopt) equals to A. By calculating
the optimal selection of M (Mopt) under different values of
a, then using the linear fit to find the relationship between
Mopt, Nopt, and «, the authors of [38] finally obtain the
empirical equation as

Mop ~ ceil [0.550Nopt | = ceil [0.55k,] ,

(13)

(14)

where ceil [x] denotes the nearest integer which is greater
than or equal to x. Thus, the Myt is determined only by

z(1) z(N)

ZL(I) ZL(N)
'

False alarm rate

l

Computing the Estimation Computing
. h Second
decreasing rate of the strong M|  the false
. —» threshold [
of correlation scatterer selector alarm rate for
time number first detector
VP fay
e . Binary m Monte Carlo c.
detector tests

vy=n dr(l):1

Fig. 5 Flowchart of correlation feature-based detector

| 7m0
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the number of strong scatterers of the range distributed
target.

Generally, /. is unknown and varies with time for a
range distributed target. To solve this shortcoming, a
method based on modified entropy is used to adaptively
estimate the value of %, [39]. The estimations of the
decreasing rate of the correlation time, {y,|r =1,---,L},
are sorted by the decreasing value, and the sorted esti-
mations are denoted as {y(,) r=1,--- ,L}. It is assumed
that the number of range cells occupied by the tar-
get strong scatterers is 4. The sorted estimations can
then be divided into two sub-sequences {y(1), -, ¥}
and {y(h+1), e ,y(L)}, and these two sub-sequences are
respectively normalized as

e = Jyﬂylzlx thr
2:1|V(r)|
= (15)
gi: %,lzh“—l, ’L‘
70|
r=h+1

Thus, the modified entropy of the normalized estima-
tions for the hypotheses number / can be calculated by
the following formula

1 L—
L ng(L Zg; (g),h=1,
L—1 k& 1
‘m?ezlg(e;)+z,h:L_1,
l(h)Zellg(eJ)»h L,

h &
i & '8 (@) — Bothers.

]:
L—h L

where B > glg(g). Equation (16)

Lig(L —h) ;25

shows that for different values of %, the modified entropy
has different values. The number of range cells occupied
by the strong scatterers of the range distributed target can
be searched by

he =argmaxH(h),h=1,---,L. (17)
h

Then, the optimal selection of M can be determined by
Eq. (14).

The overall false alarm probability of the binary integra-
tion detector, Pgy, can be expressed as

L

Pu=Y C(P)" (1~ Prr)" ™",
m=M

(18)

where Py, is false alarm probability of the binary detector.
C}" is the number of combinations of L items taken m at
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a time. When Py, is given and M is obtained, P can be
calculated by Eq. (18). The analytical formula for the test
statistic in Eq. (12) can be not deduced.

In our proposed detector, Py, is set as a constant value.
Because the first order of detector has no analytic expres-
sion, we cannot obtain the accurate value of the first detec-
tion threshold 7; by calculation, but it can be obtained
by the widely used Monte-Carlo tests on the pure clut-
ter for the false alarm probability Pf,;. Also, due to the
pulse sampling, the correlation time of return fluctuate
extracted from sea clutter are discrete values. We define
the y, in order to increase the number of samples; how-
ever, the Monte-Carlo tests only provide the “discrete-
approximate” value. As a result, there can appear some
difference between the Py, obtained from the detector and
the Pr which we set at the very beginning. Therefore,
we provide the numerical simulation results of compar-
ison between actual Py, obtained from the detector and
given Py,.

Figure 6 shows that the actual Py, has some difference
with our given Py, but those small errors are acceptable;
therefore, it is assumptive that our proposed detection
approach has CFAR-ity.

3 Results and discussion

In this section, the effectiveness of the proposed detector
is evaluated by the experiment results with the measured
radar data.

We put the clutter returns with the same number of
range cells into the target returns. The amplitudes of
the target returns are adjusted according to the different
signal-to-clutter ratio (SCR). The SCR is defined as

SCR = 10logy, (Zle Sr/Zf:1 Cr) ,

where S, and C, are the average powers of the target and
clutter in the rth range cell, respectively. L is the number
of the range cells occupied by the target. According to the
above results, L is set to 130 for target 1 and 150 for tar-
get 2. In simulation, due to the short observation time, the
length of collected data only allow us to set the number of
Monte Carlos as 200; therefore, the Py, issetto be 0.01, but
it is enough for us to verify wether our detector is useful
or not.

(19)

3.1 Detection performance of proposed detector under
different values of M

As an extension of the binary integration detector, the
proposed detector will exhibit different detection perfor-
mances when the second detection threshold M has dif-
ferent values. The results of this experiment are shown in
Fig. 7. Here, the 128 successive pulses are used, which cor-
respond to a test with 0.128 observation time. We consider
two main cases for the value of M: the constant value case
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and the adaptive estimation case. For the constant value
case, the values of M are set to 3, 5, 22, and 44. It is worth
pointing out that in adaptive estimation case, the detec-
tion threshold of the binary detector, 71, is obtained by the
online Monte-Carlo tests due to the online estimation of
M. This results in an increase in the computational com-
plexity of the proposed detector. Nevertheless, according
to the simulation results, the detection performance of
the proposed detector with the adaptive estimation of M
is superior to those with the constant values of M for
both two targets. This demonstrates that even if there
is no any prior knowledge of target’s scatterers, the pro-
posed detector can effectively improve its performance
and robustness by using the radar observations to adap-
tively estimate the number of strong scatterers of targets.
In addition, in the constant value case of M, the proposed
detector is optimized when M = 5, and its detection
performance is even close to that in the adaptive estima-
tion case of M. Therefore, when the prior knowledge of
strong scatterers of target is known, we can use this prior
knowledge to obtain n; by the offline Monte-Carlo tests.
This not only maintains the suboptimum performance of
the proposed detector but also reduces its computational
complexity.

3.2 Comparison of detection performance between
proposed detector and prior arts

In the following experiment, the detection performance of

the proposed detector is compared with the fractal-based

detector [29] and the feature-based detector [34]. Herein,
both the fractal-based detector and the feature-based
detector firstly operate on each individual range cell
returns to obtain the binary outputs, and then the binary
accumulator operates on those binary-detected outputs
to determinate the presence of a target. The 128 suc-
cessive pulses are used. For the feature-based detector,
the time samples of each range cell are reshaped into
64 consecutive vectors and each vector has 2 elements.
The corresponding average time interval is [17,48]. For
three detectors, their first-stage detection thresholds are
designed by the Monte Carlo tests to the pure clutter, and
their second-stage decision thresholds are both set to a
same value (ie, M = 5 for both two targets). Figure 8
presents the detection probabilities of the three detectors.
It can be seen that the proposed detector significantly out-
performs the compared ones in detection performance
for both two targets. Due to the short observation time,
the correlation feature between sea clutter and the target
is not quite obvious; therefore, the fractal-based detector
in [29] suffer from a sharp degradation in the detec-
tion performance. The feature-based detector proposed
in [34] ignores the nonstationary properties of sea clut-
ter and uses only 128 successive pulses. Comparing with
both detectors in [29, 34], the significant improvement in
detection performance provided by the proposed detector
demonstrates that the proposed detector is more effec-
tive to eliminate the effect of the nonstationary texture
by using the correlation feature. Therefore, it can be
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concluded that the significant difference in correlation
features between the pure clutter and that with target is
helpful for the target detection.

3.3 Detection performance of proposed detector under
different numbers of integrated pulses

In the experiment below, the evaluation of the detection
performance of the proposed detector with different num-
bers of integrated pulses is demonstrated. Figure 9 shows
the detection performance of two targets for N = 32, 64,
128, 256, and 512. It is shown in Fig. 9 that the detec-
tion performance of the proposed detector tends to have
an improvement as N increases. However, as shown in
Fig. 1a and b, for the targets in realistic sea environment,
the amplitudes of their returns fluctuate with time so that
their correlation times are limited. On the other hand,
during a long coherent processing interval, the range
migration of target returns can not be ignored and the
echo energy from the same target scatterers may be dis-
persed within different range cells. Therefore, for target
1, the detection performance of the proposed detector for
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Fig. 8 Performance comparison of three detectors for target 1 and
target 2. a target 1; b target 2

N = 128 is very close to that for N = 256 and is supe-
rior to that for N = 512. For target 2, the performance
improvement gain is not notable by doubling integrated
pulses when N > 256. The results for the case N = 512
are also different between Fig. 9a and b. Precisely, Fig. 9
shows that N = 512 has the best P; when SNR is low,
while Fig. 9a highlights that N = 512 is less than N = 128
and 256. On the one hand, we assume that the return fluc-
tuate which comes from the same scattering unit of the
target locates in the same range cell of the coherent pro-
cessing interval. While verifying our proposed method by
simulation, we choose the actual data of return fluctuate
from two different targets, the two targets have different
moving speed (both targets is moving slowly during the
experiment). For the second target, the return fluctuate
which comes from the same scattering unit of the target
locates in the same range cell through the whole coher-
ent processing interval ; therefore, with the increasing
coherent processing time, the correlation feature becomes
stronger, the performance about the detector becomes
better. But for the first target, when N > 256, the return
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Fig. 9 Detection performance of proposed detector for

N = 32,64,128,256,and 512. a target 1. b target 2

fluctuate is dispersed in different rang cells (shown in
Fig. 1b); in this situation, with the increasing coherent pro-
cessing time, the correlation feature will decrease and that
can lead to the decrease of detection performance.

3.4 Comparison of computational cost between
proposed detector and prior arts

In applications, the computational cost of a detector must
be considered. It is measured by the number of mul-
tiplications/divisions of the detector. Here, we mainly
discuss the computational costs for the proposed detec-
tor, the fractal-based detector [29], and the feature-based
detector [34]. When these three detectors are applied in
the above experiments, the only difference among them
is the implementation method of the binary detector.
Therefore, the main concern is the computational cost to
calculate the feature in each detector. As stated in [34],
for each range cell, the cost of the fractal-based detec-
tor is (N + 4) (logzN — 4) due to the calculation of the
Hurst exponent, and that of the feature-based detector is
approximate to 0.5N? due to the calculation of the con-
sistency factor. We assume that 7, is the correlation time
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of the received signals in the rth range cell. In the prac-
tical applications of the proposed detector, in view of the
definition of the decreasing rate of the correlation time,
the correlation coefficients are computed by Eq. (5) only
for m = 0,...,m, and the correlation feature can then
be calculated by Eq. (11). Consequently, in the proposed
detector, the computational cost for the rth range cell is
(m; + 1) (N — m,/2). For different range cells, the costs
vary with the changing correlation time. The shorter the
correlation time is, the lower are the computational cost.
According to the statistical results of the correlation time
shown in Fig. 3, it is possible to conclude that the pro-
posed detector has the lower computational cost than the
feature-based detector does.

Summarizing all above considerations, it is implied that
the correlation-based detector here remains a good choice
for detecting the range distributed targets in sea clutter.

4 Conclusions

In this paper, we deal with the problem of detecting the
range-distributed target embedded in sea clutter. To this
end, the correlation characteristic of the received signals
is considered and the decreasing rate of the correlation
time is defined as a correlation feature to describe them.
By analyzing the real radar data, the disparity of these
correlation features of the target and sea clutter is illus-
trated clearly. Therefore, it is natural to design a novel
detector based on these correlation features for the detec-
tion of the range-distributed target in sea clutter. This
detector can be regarded as an extension of the binary
integration detector. It is worth mentioning that by using
the correlation feature, the proposed detector can effec-
tively eliminate the negative effect of the nonstationary
texture on the detection performance. Furthermore, in the
detector, the number of target’s scatterers is adaptively
estimated by using the modified entropy of the correla-
tion feature, so the proposed detector is able to work well
without any prior knowledge of the target’s scattering den-
sity. In comparison with the existing detectors including
the fractal-based detector and the feature-based detector,
the proposed detector exhibits the superiority in detection
performance, which is verified by the record radar data.
Moreover, the proposed detector has lower computational
complexity than the feature-based detector does.

As a final remark, we highlight that possible future
research tracks might include the possibility to account
for oversampled data at the receiver side to improve
detection performance for partially homogeneous envi-
ronments [40, 41].
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