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Abstract

In the localization of wireless agents, ambiguous measurements have significant implications regarding the
complexity and quality of the agents’ positioning. Ambiguous measurements occur, for example, in multiple source
localization (MSL), in which the goal is to localize the sources of signals, although the signals themselves cannot be
used to differentiate among their sources. The indifferentiability of the sources results in a combinatorial optimization
problem that must be solved before a localization result can be obtained. Similar effects arise, for example, in the
localization of highly resource-limited wireless agents that are subject to severe size and energy constraints, meaning
that neither unique identification sequences (CDMA) nor unique frequency or time resources (FDMA, TMDA) can be
used. This application scenario constitutes a more general and complex joint problem of localization and ambiguity
resolution that also encompasses MSL. In this work, we focus on this more general problem and its corresponding
application case while maintaining applicability to the MSL problem. More precisely, we prove the A/ P-hardness of
the joint localization and ambiguity resolution problem and derive a solution framework that facilitates a
comprehensive and concise formulation thereof. Thereby, we derive a minimum mean square error (MMSE)-optimal
algorithm based on mixed-integer nonlinear programming and propose a relaxation of the problem with the aim of
reducing the computational complexity. Additionally, simplifications are derived for the case in which bidirectional

measurements are available or enforced, e.g,, by the applied communication or ranging protocol.

Keywords: Wireless sensor networks, Localization, Transmit ambiguities
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1 Introduction

The unique identification of users and agents in wireless
networks is generally regarded as a design requirement.
Particularly in networks in which the localization of the
network participants is essential, non-unique identifica-
tion is known not only to complicate the localization
process but also to significantly impact its quality. How-
ever, in some application scenarios, unique identification
is inherently impossible or is prevented by highly restric-
tive size and energy constraints imposed on the wireless
autonomous agents. Two examples of such scenarios are
detailed in the following. These examples emphasize the
significance and importance of localization algorithms
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that are able to cope with non-unique measurements, for
joint localization and ambiguity resolution in particular.

Application Case 1 (Multiple source localization (MSL)
In MSL, the goal is to | on the signals they emit. These
signals do not include any identification information that
reveals information about their original sources. Hence,
stations that receive these signals cannot differentiate
among their sources, which prevents the use of classi-
cal localization algorithms. This scenario is illustrated in
Fig. 1 and described in more detail in Section 2.1.1.
Application scenarios of MSL include the following:

e The localization of, e.g., pedestrians using
privacy-preserving techniques such as ultrasound

e Dassive localization of flying objects

e Gunshot detection, e.g., in public areas
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Fig. 1 MSL scenario with two sources and four stations that forward the measured data to a fusion center that localizes the sources. The stations
cannot distinguish between the two sources, as visualized by black, i.e, non-colored signals

Application Case 2 Emerging application scenarios for
miniature wireless agents include the exploration of
secluded and difficult-to-access environments such as
subterranean cavities or pipelines. Examples include oil
reservoirs, which have recently been shown to be of sig-
nificant economical and academic interest [1, 2]. Related
industrial applications include oil extraction using the
cold heavy oil production with sand (CHOPS) technique,
in which sand-free channels of varying diameters, ranging
from one to several centimeters, and of several hundred
meters in length are created [1, 3]. Because of the high
salinity of the environment [4], the use of typical radio-
frequency transmitters is unattractive [5]. Hence, the use
of ultrasound is being considered for communication
among the agents as they traverse these channels.
Wireless agents equipped with environmental sen-
sors! are currently the most promising candidates
for gathering interesting data from such an environ-
ment to answer questions regarding, e.g., the system’s
temperature, pressure, or fluid composition distribution.

The corresponding exploration procedure is illustrated in
Fig. 2. However, in such application scenarios, particu-
larly severe constraints are imposed on the agents. Typical
examples of such constraints are listed below:

e Size constraint: An initial feasibility study reported in
[1] revealed that millimeter-sized agents are needed
to successfully pass through such an environment, as
larger agents are destroyed during injection or cannot
be recovered?.

® Energy budget: Due to the size constraint, the energy
available for, e.g., communication and sensing, is
inherently limited. Moreover, an operation time of up
to 48 h has been shown to be required [1], which
demands further energy savings.

e Swarm size constraint: Due to the spatial extent of
the environment and the limitations of each
individual agent with respect to its energy,
communication range, and sensing capabilities,
thousands of agents are required to compensate for
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Fig. 2 lllustration of the environmental exploration procedure: (1) Agents (visualized in red) are introduced into an unknown environment and
record environmental and distance measurements for mapping and localization, respectively. The agents are carried by the fluid in the environment,
e.g., water or oil. (2) The agents are extracted from the environment, and their data are sent to a fusion center to compute the agents' trajectories
(illustrated for two agents). Their environmental measurements are then used to compute, e.g., the temperature profile of the environment
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these limitations such that sufficient data on all areas
in the environment can be collected.

® Localizability: To properly utilize the measurements
made by the agents, localization of the agents is
required. Because secluded and difficult-to-access
environments generally do not permit positioning
using GPS, pairwise distance measurements—e.g., by
means of two-way ranging—are conducted. Because
of the swarm size constraint and the generally strict
energy limitations, significant limits must be imposed
on the energy that can be spent for, e.g.,
communication to ensure that ranging can be
performed with any arbitrary agent, which is required
because of the decentralized nature of the network.
Hence, all agents in the swarm must share the same
time/frequency resources.

For successful exploration, a trade-off must be estab-
lished between the agents’ capabilities and resource con-
sumption. Inspired by the general feasibility of using
measurements to localize wireless agents that are not
uniquely identifiable—cf. Application Case 1 (the MSL
case)—the use of shared communication resources is pro-
posed. Specifically, the use of Direct-Sequence Code Divi-
sion Multiple Access (DS-CDMA) for channel access is
proposed, in which non-unique DS-CDMA codes are
used to significantly reduce the energy consumption
of the agents. In this way, the following benefits are
achieved:

e The energy consumption per ranging pulse is
reduced. Instead of 2V bits, where N is the number of
agents in the swarm, only 2K (K < N) bits are used
in the DS-CDMA sequence, thereby reducing the
energy consumed for transmission and reception.

® Less memory is needed for storage, and less logic is
needed for correlating the received DS-CDMA
sequences.

e Reductions are achieved in both the signal pulse
length and multi-path effects. Multi-path effects are
induced by, among other factors, the narrowness and
reflectivity of the environment.

Note that the burden imposed by the main disadvantage
of this approach, i.e., the increased localization complex-
ity, is shifted to the fusion center, where offline position-
ing is performed after the agents have been extracted
from the environment and where sufficient computational
resources are available.

Conclusion Consequently, in both application cases,
the following interrelated problems must be solved:

1. The transmit ambiguities (T As) in the distance
measurements must be resolved, i.e., it is necessary
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to find a mapping between the distance
measurements and the agents that recorded them.

2. The agents must be localized, i.e., the positions of the
agents must be estimated based on their distance
measurements.

To address both problems simultaneously, algorithms
are needed that can jointly resolve the ambiguities and
localize the agents. Such algorithms are key enablers for
the application cases described above. In the following,
this joint problem is called the joint localization and trans-
mit ambiguity resolution problem (JLTAP). This work
presents a thorough analysis of this problem and the
derivation of the governing constraints as well as the
formulation of both optimal and sub-optimal solutions.

1.1 Related work

The MSL problem has been under study for several
years, e.g., in [6—8]. However, neither a thorough graph-
theoretical analysis nor a formulation of a minimum
mean square error (MMSE)-optimal or maximum like-
lihood (ML)-optimal algorithm has yet been presented.
For example, the authors of [6] considered time-of-arrival
(TOA)-based measurements and proposed a heuristic
solution consisting of the following three steps:

e Coarse localization of the sound sources. In this step,
important governing equations are ignored.

e Sub-optimal TA resolution, i.e., estimation of the
mapping between the TOA measurements and the
sound sources. In this method, non-convex terms are
replaced with local linearizations.

e Refinement of the sound source localization result.

However, because the authors of [6] considered time
instead of distance measurements, their algorithms and
methods are not directly applicable to the scenarios con-
sidered in the present work.

The more general problem arising from non-unique
communication identifiers, e.g., for miniature agents, was
first studied by Duisterwinkel et al. in [9]. These authors
considered the case in which several agents are assigned
to the same OFDM sub-carrier, thus resulting in non-
unique identification. To address the localization chal-
lenges posed by this scenario, a heuristic based on dif-
ference thresholding was applied, in which two distance
measurements were considered to have been recorded
by agent i with respect to agent j and vice versa if
lmp; — mpi| < e

After proposing an extended version of a similar method
in [10], we presented a heuristic in [11] that enables the
efficient localization of mobile agents using, e.g., a mov-
ing horizon approach. Moreover, in [12], we proposed
an MMSE-optimal method under the assumption of the
availability of bidirectional measurements. However, this
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approach targets only the resolution of the TAs and does
not jointly address the localization problem.

More recently, Duisterwinkel et al. [13] presented a ran-
dom sample consensus (RANSAC)-based algorithm using
the difference thresholding technique introduced above.
Consequently, the algorithm reported in [13] requires
bidirectional measurements.

The classical ML-optimal agent localization problem,
i.e., in the absence of any TAs, is known to be non-
convex in general [14]. Moreover, the authors of [15]
have shown that the localization problem for sparse net-
works and in the absence of TAs and measurement noise
is NP-hard. The first algorithms to focus on improving
the computational feasibility of this problem via convex
relaxations were based mainly on semi-definite program-
ming (SDP), as in [16-20], and second-order cone pro-
gramming (SOCP) [21]. Further SDP-based relaxations,
e.g., the so-called edge-SDP relaxation, have also been
derived to reduce the computational burden [22]. Further-
more, a computationally efficient multi-dimensional scal-
ing (MDS) algorithm [23] and a matrix-completion-based
approach [24] have been proposed. A global-continuation
and least-squares formulation has been investigated, e.g.,
in [25]; such formulations are especially interesting for
the localization of many agents because these algo-
rithms are less resource-demanding than SDP and SOCP
formulations.

1.2 Our contributions

Our contributions in this work are fourfold. First, we
present a framework that facilitates the concise formula-
tion of the problems corresponding to both considered
application cases, and this framework is also used to illus-
trate that MSL is a special case of the more general JLTAP.
Second, we show that the JLTAP is NP-hard by means of
a Karp reduction. Third, an MMSE-optimal algorithm is
presented that is based on mixed-integer nonlinear pro-
gramming (MINLP) and does not require bidirectional
measurements. Finally, a sub-optimal algorithm is derived
from the MINLP formulation to mitigate the exponential
worst-case complexity of the optimal algorithm.

1.3 Organization

The remainder of this work is organized as follows:
Section 2 introduces the general system model as well as
the corresponding assumptions and the notation used. It
also highlights the similarities between the two considered
application cases. In Section 3, the governing equations
for TA resolution and agent or source localization are
derived and combined to formulate the optimal JLTAP
algorithm. The results are used in Section 4 to derive
and motivate a relaxed, sub-optimal algorithm. Numeri-
cal results and the simulation environment used to obtain
them are presented in Section 5. In Section 6, conclusions
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are drawn and future work is outlined. The A/P-hardness
of the JLTAP is proven in Appendix 1.

2 System model and problem formulation
Following the general methodology outlined in Section 1
and visualized in Fig. 2, the agents use their omnidirec-
tional antennas to perform ranging with all nearby agents
in their communication range, which is represented by a
radius R.

It is assumed that each agent has a unique serial number
(SN) and a transmission code (henceforth called a trans-
mit ID, or simply an ID). Moreover, it is assumed that
the SN is accessible only through physical access to the
agent, whereas the ID is used by the agent for communi-
cation, e.g., a DS-CDMA sequence. Hence, when an agent
transmits an ultrasonic pulse (ranging pulse), the receivers
are aware only of the transmitter’s ID. The mapping from
SNs to IDs is fixed and known only to the fusion center.
Based on the transmitted ranging pulses, distance mea-
surements can be performed, whose inaccuracy can be

modeled as additive Gaussian noise3:

di i =dij+nj, (1)

where n;; ~ N (0, al%) is an independently and identically

distributed (iid) Gaussian noise variable with variance 05,
d;j denotes the actual distance between agents i and j, and
dj_,; is the random variable (RV) that describes the dis-
tance measured by agent i based on a ranging pulse sent
by agent j.

In the following, we use m,_,; to denote actual measure-
ments, i.e., realizations of the corresponding RVs, where
e serves as a placeholder, and we use M; 7_,; to denote
the tuple of all measurements recorded by agent i with
respect to agents using ID /7. In the case that agents i
and j € S(I7) are out of communication range, the corre-
sponding non-existent measurement is represented by co
in the measurement tuple.

Because of the large number of agents, the continuous
introduction thereof into the environment, and the long
time required until the first agents reach the extraction
point?, it is believed that the computationally intensive
tracking of all agents can be replaced with a single local-
ization computation whenever the swarm is distributed
throughout the entire environment.

2.1 Notation and problem formulation

The definitions of the notation used in this paper are
illustrated in Fig. 3, where mlfjﬂ p denotes the kth mea-
surement made by agent i with respect to agents using I 7,
i.e., S(I7). Note that because of the TAs, agents obtain
multiple measurements with respect to a particular ID;
the superscript k is introduced here for notational and
illustrative purposes only. Consequently, the origins of
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Fig. 3 lllustration of the notation used in this paper and the effects of TAs. Consider an agent j, which is assumed to use ID I (red) and two nearby
agents (which use ID /g (blue)), one of which is within the communication range (denoted by R) of i. The actual distances between the pairs of
agents and the RVs that describe the possible measurements of these distances are illustrated. For the two cases, the table on the right-hand side
clarifies both the notation and the fact that no distance measurement is made between i and k. Here, m~d is used to denote that the measurement

mis a single realization, i.e,, sample, of the distribution d

the ranging pulses corresponding to the various mea-
surements are not known. Therefore, resolving the TAs
means solving the mapping problem between the set
of measurements M, . and the set of RVs D, _,

{d;;iU eSUT),k e N}. More precisely, each measure-
ment needs to be mapped to an RV subject to certain
constraints, which will be derived in Section 3.

An example network in which TAs arise is depicted in
Fig. 4a, where two agents (“5” and “6”) both use ID I'r (red)
and a third node (“7”) uses Iz (blue). Node “7” receives two
ranging pulses from the other two nodes. Based on these
pulses, it measures the ranges (WZIIR_)7 and m%R_ﬁ).
Because of the TA, it cannot uniquely relate the measured
ranges to the physical agents S(Iz), and hence, local-
ization using classical methods such as those discussed
in Section 1.1 is not possible. Henceforth, the follow-

ing formal definition will be adopted for the problem at
hand.

Definition 1 (Joint localization and transmit ambigu-
ity resolution problem (JLTAP)) In the JLTAD, the objective
is to jointly estimate the Cartesian position of each agent
based on the obtained range measurements. Inherently, it
is necessary to resolve the TAs, ie., to find a mapping
between each measurement m’; e and the corresponding

agent | € S(I7) such that m’fjﬂ_ is a realization of the RV
dl—n“

A corresponding mathematical description, including
the formulation of an optimization problem, is derived in
Section 3.1.

2.1.1 Relationship with MSL

In MSL, the objective is to localize sources based only
on the signals they emit. An example scenario is illus-
trated in Fig. 1, where two sources emit sound signals that
are received by nearby stations. Because the stations can-
not differentiate between the two different sources of the

Fig. 4 a lllustration of a network in which two agents (“5” and “6") are using the same ID. The edges are annotated with the corresponding
measurements of the ranging pulses. This graph is also called the true graph. b Graph showing the effective ambiguities due to the TAs. Here,
additional edges are introduced to account for all potential origins. The edges are annotated with their weights. € Graph showing the labels or
names of the edges that match the variable notation xg introduced in Section 3.1.2. Note that the order of the superscript numbering is arbitrary.

Example, Wy (e§7) = mf\»m% The graphs in b and c are also called ambiguity graphs

A
Qe

1
€6,5
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signals they receive, the fusion center, which has access
to the measurements from all stations, must resolve the
ambiguities in the measurements and perform the local-
ization. Consequently, the MSL problem is closely related
to the problem considered in this work. However, the fol-
lowing assumptions are usually adopted in the case of
MSL (see, e.g., [6]):

i) The sensitivities of the stations and their positions
are such that every station can receive signals from
all sources. Consequently—unlike in the case of
wireless agent localization—the measurements
consist only of direct distance measurements
between the stations and the sources. This generally
reduces error propagation during localization and
simplifies the problem formulation, as out-of-range
agents do not need to be considered.

ii) The number of stations and their positions are such
that the conditions for good localization (see, e.g.,
[26, 27]) are fulfilled once the ambiguities have been
resolved.

iii) There are significantly fewer sound sources in the
case of MSL than there are wireless agents in the
application case considered in the present work.
Therefore, the complexity of the ambiguity resolution
problem is significantly lower in the MSL case.

iv) Only one kind of source is considered. This is
equivalent to the assumption that all sources use the
same transmit ID.

Items i) and iv) in particular render MSL algorithms
inapplicable for the more general problem considered in
this work (cf. Application Case 2).

A high-level comparison between the two problems cor-
responding to the two considered application cases is
presented in Table 1.

3 MMSE-optimal JLTAP formulation

This section is divided into two main parts. The first,
Section 3.1, covers the derivation of the mathematical
formulation of the TA resolution problem. The second,
Section 3.2, covers the incorporation of the localization

Table 1 Analogies between agent localization and MSL

JLTAP MSL
Transmitting agent Source
Receiving agent Station
Receiving anchor/beacon Station
Ranging pulse? Signal

@Note that whereas the ranging pulses in the JLTAP can include different transmit
IDs and ambiguities arise only with respect to agents using the same ID, all signals in
the MSL problem are assumed to be of the same kind; this assumption is analogous
to the use of a single ID in the JLTAP
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problem to obtain the joint optimization formulation of
the JLTAP.

3.1 Partl: derivation and properties of the TA resolution
formulation

Based on the assumptions stated in Section 1, the follow-

ing graph-theoretical representation is used:

1) Every agent is modeled as a vertex of a graph, i.e.,
agent i corresponds to vertex v; € Vr.

2) Every measurement is represented by a directed edge
from vj to v, e; = (vj,v;) € ET, where v; is the agent
that recorded the measurement 1;_, ; associated with
this edge.

3) Every edge in the graph has a corresponding weight
W(ej) = mj_,;, which is equal to the value of the
associated distance measurement.

Henceforth, this graph is called the true graph (TG),
Gr = Vr,&r,Wr), because its representation inher-
ently assumes that either no TAs have arisen or all TAs
have been resolved. An example is given in Fig. 4a.
For simplicity of description, a graph-theoretical view is
adopted, in the sense that the origin of a measurement
mj_,; (and edge e;;) is considered to be agent or vertex j,
whereas the term target is used to refer to agent or vertex
i, which actually measured the distance.

3.1.1 Problem analysis
To derive the solution to the TA resolution problem, the
following observations are considered:

4) For every measurement m’jj_) ;» every agent in
S(I7) is a potential origin candidate.

5) The solution to the TA resolution problem
should consist of exactly one unique mapping,
i.e., exactly one origin for each measurement.

6) Between each pair of vertices, there can be at
most one edge in each direction, i.e., at most
one edgee = (v;,v;) and at most one edge
e = (v,v).

An example of the TA-aware graph representation is
shown in Fig. 4b, and this representation is subsequently
referred to as the ambiguity graph (AG). Note that this
graph is generally a directed multi-graph. The AG is
denoted by G4 = (Va,E4, Wa) and is defined as follows:

7) The vertices correspond to agents in the network.
8) For each measurement mljj_)i, a directed edge with a

weight of m5___, is drawn between v; and each

vj (j € S(7)). Edges of this kind are henceforth
referred to as copies of both each other and the
corresponding measurement. Consequently, there
are |S(I7)| directed edges with a weight of m’fj_}i
pointing to vertex v;.
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3.1.2 Mathematical formulation

From the descriptions provided above, it can be under-
stood that the problem of resolving the TAs is a special
kind of decision or selection problem. Consequently, the
mathematical formulation will include binary decision
variables with the following constraints:

9) For each edge in the AG, a binary decision variable
denoted by xkl € {0, 1} is introduced. This variable
will be equal to one iff the corresponding edge, i.e.,
the measurement mfjﬁi, is selected to represent the
mapping of a measurement made by agent i to a
ranging pulse from agent j.

10) Once an edge m’;j _,; has been selected, all copies of
that edge, i.e., those that were created due to Item 8,
can no longer be selected. Consequently, the sum of
the corresponding decision variables is constrained
to be exactly one.

11) Because the static case is considered, at most one
measurement may be selected from among all
parallel® edges between two vertices. This is
necessary because copy edges, cf. Item 8, are drawn
between all possible vertices and full connectivity is
not necessarily guaranteed. Consequently, the sum of
all corresponding decision variables is constrained to
be at most one.

Thus, the following feasibility problem, which considers
only the resolution of the TAs, can be formulated. In the
following subsection, this problem will be extended to the
complete JLTAP by incorporating the joint consideration
of the localization problem.

find x (2a)

st. xf € (0,1} Ve € Ea, (2b)

xfj + xﬁs <1 V (eg, eﬁs) €4 x €&y (2¢)
s.t.elg € Ceg,

Zegec @) xy=1 Vel €&y, (2d)

xf; +xfj <1 Vv (eg, ef»j) € &4 x Ea, (2e)

Ze%e% & <1 V(,j) € Vax Va. (2f)

Here, C (ef;) denotes the set of all copies of eg (cf.
Item 8), P;; is the set of all parallel edges directed from
vertex i to vertex j, and xf; is the decision variable corre-
sponding to edge ef. Note that constraints (2c) and (2d)
arise directly from the description of the AG (cf. Items 8,
and 10). Item 11 is accounted for by constraints (2e) and
(2f), which both account for parallel edges.
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Remark Although constraints (2e) and (2f) are redun-
dant, they are explicitly mentioned in Eq. (2) because simu-
lations have shown that their explicit formulation enables
significant reductions in computational complexity.

For the example depicted in Fig. 4, the copy sets and
parallel sets are given in Table 2.

3.2 Partll: TA-free wireless agent localization and JLTAP
formulation

The objective of agent localization is to obtain the Carte-
sian positions p; = (Pxipyi)T Ot P; = (P Py,i» Pz,i)T
of all agents i € V from noisy distance measurements
(cf. Eq. (1)). The matrix of all agent positions is denoted
by P = (p,... ,p|v|). Because of the assumption of
iid additive Gaussian noise, the corresponding ML objec-
tive function for the localization problem can be easily
derived [28]:

arg min

p Z Gi/'_z (mj%i — llp; _P,'||2>2~ (3)

(ij)e€

Note that this problem is known to be non-convex in
general [14]. For simplicity, it is assumed that all noise
variances are equal, i.e, o;; = o Y(v;,v)) € €.

3.2.1 Integration into the JLTAP

To obtain a joint problem formulation that includes both
localization and TA resolution, which requires combin-
ing the objective function given in (3) with the feasibility
problem expressed in (2), the following issues must be
resolved:

12) Due to the TAs and the joint approach, the particular
measurements #1_,; to be used in (3) are not known
because the decision problem regarding their
mapping has not yet been solved.

13) Inthe AG that serves as the basis for solving the
JLTAP, edges exist for all possible candidates.
However, in (3), only those pairs of vertices (v;, vj) to
which a measurement is currently assigned should be
considered.

Table 2 Copy and parallel sets for the example in Fig. 4

Original weight Copies (incl. original) Parallel set Parallels
m/WR—ﬂ €17,7 Pse els
m/27{—>7 e§7, eg] Pes eé,s
m),;-»s e;,s Ps; e;,% e§7
m;gﬁﬁ e;,e Prs e;,s
m/WR»5 € Ps7 62,7' &7
m/WRﬁe &5 Prs €6
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To accommodate these constraints, the objective func-
tion given in (3) is modified as follows:

2 Pyl
k
' in/ ’
k=1
(4)

where Wy (eg) denotes the weight (measurement value) of

‘ Pz’j

\
3 Wi () = Ipi-pl>
(Vi,Vj)EVZ\ k=1

edge efj in the AG (cf. Fig. 4) and all xf; are the same binary
decision variables as in (2).

In this expression, the sum in the inner brackets will
select the measurements to be used and— in conjunc-
tion with further constraints— ensure that at most one
measurement per link is chosen (cf. Item 12. The sec-
ond sum, which is newly introduced here, ensures that the
case in which no measurement is selected is also handled
correctly (cf. Item 13.

3.3 Synthesis and NP-hardness
This section combines the results from the previous
Sections 3.1 and 3.2 to obtain the MMSE-optimal for-
mulation of the JLTAP. Moreover, an extension of the joint
formulation expressed in (5) is presented that facilitates
faster and more accurate solutions in the case that bidi-
rectional measurements are available or corresponding
solutions should be enforced.

Based on the results obtained in Sections 3.1 and 3.2,
the MMSE-optimal JLTAP formulation can be expressed
as follows:

arg min Z

k
{x,-/],P (v,-,v,-)evj

2
9y (Z x5 Wi (k) —||pi—p,-||z>
k

(5a)

st xf € (0,1} Ve €&, (5b)
qi = in; VY(vi,v)) € Va x Va, (5¢)

k
Wtal <1V (eg eﬁs) € Ea xEn (5d)
st.el € <Ce§;> ,
k
St Vet 59
Ul rs
k / v k1 & s 5
xj oy =1 €ij€j) € CA X Ea, (59)
t ..
Y 1 YO VAV 59

where the objective function represents the residual local-
ization error and the constraints arise from the TA reso-
lution conditions.

Note that this problem is a MINLP problem. In
Appendix 1, we prove that solving Problem (5) requires
solving a problem that is A'P-hard in general. For this
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reason, a relaxation of this problem is introduced in the
following section.

3.3.1 Applicability to MSL

As outlined in Section 2.1.1, MSL can be regarded as a
special case of the JLTAP, and thus, Problem (5) can also
be used to describe MSL problem instances. To this end,
it should be noted that in MSL, all sources have the same
ID. Consequently, copy edges are introduced among all
sources, and the set of parallel edges is easily deducible.
However, a formal simplification of Problem (5) for the
case of MSL is generally not possible.

3.3.2 Enhancements for bidirectional measurements

In the case that bidirectional measurements are guaran-
teed or corresponding solutions should be enforced, addi-
tional constraints can be introduced. These constraints
reduce the search space and have thus been shown to
significantly reduce the run-time and memory demands
placed on solvers.

The constraints are given as follows:

doak=Y "4 VGjeB, (6a)
k k
g =q;i Y(,)) € B, (6b)
D x=0 VGjeB, (6¢)
k
47 =0 ¥(,)j) €B, (6d)

where B is the set of those pairs of vertices (v;,v;) for
which [P;;| > 0and|P;;| > 0,ie., those pairs for which
solution candidates exist that can fulfill the bidirectional-
ity criterion. Similarly, B denotes the set of vertex pairs for
which this is not the case.

4 JLTAP relaxations
To mitigate the difficulties caused by the non-convexity,
N'P-hardness, and general computational complexity of
the optimal JLTAP algorithm presented in Section 3.3, this
section introduces a relaxation of the JLTAP problem. The
purpose is to make the original problem more numerically
tractable while requiring only minor modifications to the
objective function and the constraints.

The following approximations and simplifications are
adopted:

e The weights and distance estimates in the objective
function are replaced with their squared counterparts
to reduce the computational complexity. This is
mainly motivated by the resulting simplifications of
the gradients and Hessians (cf. also Appendix 3 for an
analysis of both objective functions with respect to
their extrema).
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e The binary constraint (5b) is replaced with a
continuous interval constraint, i.e., xf; €[0,1] is

substituted for xg € {0, 1}. In this way, all discrete
optimization variables are replaced with continuous
variables, which eliminates the need for discrete
solvers.

e The constraint corresponding to Item 13 is loosened,
i.e, the equality constraint g;; = > xf; is replaced
with the inequality constraint g; > >, x{; In
simulations not reported in this work, this relaxation
has been shown to yield improved convergence and
accuracy. Details regarding the non-convexity of the
relaxed JLTAP without this relaxation can be found
in Appendix 2.

Thus, the following optimization formulation of the
relaxed, sub-optimal JLTAP is obtained:

2
arg min Z qij (Z x{jWﬁ (ef;) —||P¢—Pj||%>
WhhlaghP (ij)ega k

(7a)

(7b)
(7¢)

s.t. xg €[0,1] Vef; € &4,
1>q5> ) & V(i) € Ea,
k

(5d), (5e), (50, (58).

Note that the objective function—and hence Problem
(7)—is still non-convex, although a dedicated integer pro-
gramming solver is no longer required. Consequently,
classical interior-point solvers can ensure only locally
optimal solutions. Due to the joint approach, the positions
of the agents are also directly estimated, meaning that a
reversal of the relaxation— i.e., a mapping from the contin-
uous xf; €[ 0, 1] to the binary variables xf; € {0,1}- is not
required.

5 Numerical results and discussion
In this section, numerical results obtained using the devel-
oped algorithms are presented and discussed.

5.1 Method
The Monte Carlo simulation results presented in the fol-
lowing subsections were obtained as follows:

e The data collected by the agents distributed in the
environment were simulated (cf. Section 5.2).

e The data processing performed by the fusion center
(cf. Fig. 2) was simulated to evaluate the proposed
algorithms using the simulated agent measurements.

e A performance comparison of the algorithms was
performed using the metric defined in Section 5.3.
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All simulations were performed using MATLAB and the
BARON solver [29].

5.2 Simulation environment
Simulations were performed by randomly placing N
agents in the two-dimensional unit box [ —0.5,0.5]? fol-
lowing a uniform distribution. To ensure that the IDs were
assigned to the agents as equally as possible, the following
procedure was used: First, |_¥J instances of each ID were
placed in the ID pool, where I is the number of IDs. Then,
one additional ID instance from among the first N — I L%J
IDs was placed in the pool. Finally, the IDs in the pool were
randomly assigned to the agents. All agents were given the
same communication range, i.e., the sensing radius R.
The applied solvers were initialized with normally dis-
tributed random solutions p;i; = p; + Hinit, Ainit ~
N(O, O'ﬁilz), where Vi,o0, = o0, = 0.5 was cho-
sen. Moreover, four anchor nodes were placed at posi-
tions of (—0.25,0.25), (—0.25,—0.25), (0.25,0.25), and
(0.25, —0.25). All figures show results averaged over 100
simulations. Because the numerical evaluation of the opti-
mal JLTAP algorithm is computationally demanding in
terms of both run time and memory, a run-time limit
of 5 days was imposed. When the run-time limit was
reached, the best known solution was chosen as the result.

5.3 Evaluation metric

For both the optimal and relaxed algorithms, the perfor-
mance was evaluated using the root mean square error
(RMSE) of the position estimates p; with respect to the
actual positions p;:

N
1 N
RMSE = | > lIp; = bill3 ®
i=1

5.4 Simulation results and discussion

The simulation results are split into two sets. The first
set consists of localization performance comparisons
between the optimal JLTAP formulation (Problem (5))
and the relaxed JLTAP formulation (Problem (7)). The
corresponding results are presented in Fig. 5 for vari-
ous configurations of agents and IDs and for agents with
varying communication ranges. The plots show that the
communication range is the most important complexity-
determining parameter, apart from the numbers of agents
and IDs (see also Table 3). The second set of comparisons
is presented in Fig. 8 and consists of run-time compar-
isons for the optimal and relaxed formulations.

5.4.1 Localization performance

Figure 5a shows the RMSE performances for N = 40
agents with 8 and 12 IDs. In addition to a marked per-
formance advantage of the relaxed formulation for 12 IDs
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Fig. 5 a RMSE-based performance comparison between the optimal and relaxed JLTAP formulations for N = 40 agents and different numbers of
unigue IDs. b RMSE-based performance comparison between the optimal and relaxed JLTAP formulations for N = 20 agents and different
numbers of unique IDs. Note that an upper limit of 5 days (approx. 4.3 x 10° s) was imposed on the run time (cf. Section 5.2)

and somewhat superior performance of the relaxed for-
mulation for 8 IDs, a significant change in performance is
observed when the sensing radius R is 1.1 or greater. The
visible change in the performance trend for the optimal
JLTAP formulation can be explained by the higher com-
plexity of the TA resolution problem due to the increased
connectivity in conjunction with the run-time limit.
Another set of comparisons for N = 20 agents is pre-
sented in Fig. 5b, where scenarios with 6 and 8 IDs are
represented. Compared with the results shown in Fig. 5a,
increased variance is observed in the results, which leads
to less steady average localization performance. Neverthe-
less, it can be observed that the relaxed JLTAP algorithm
still outperforms the optimal JLTAP algorithm, mainly
because of the imposed run-time constraint of 5 days
and the numerical challenges associated with the opti-
mal JLTAP formulation. Exemplary localization results
for two of the four tested configurations are presented
in Fig. 6, where the actual agent positions are shown as
green circles, the average position estimates are shown
as red crosses, the anchor node positions are indicated
by black diamonds, and the 1-standard-deviation regions
are visualized as blue ellipses. The configurations shown

in Fig. 6a,b each contains 20 agents using 6 IDs. The
average localization accuracies in terms of the RMSE are
2.0312 x 1072 and 1.1022 x 1072, respectively. Mean-
while, the configurations shown in Fig. 6¢, d each contains
40 agents using 8 IDs. The average localization accuracies
in terms of the RMSE are 1.9561 x 1072 and 4.4269 x
1072, respectively. Results with somewhat high standard
deviations (blue ellipses) occur mainly at the border of the
environment, where the average connectivity is lower and
localization is consequently more difficult.

It should be noted that the results discussed above are
subject to two important effects with opposing complexity
trends:

e With increasing connectivity, the number of
measurements rises and the TAs consequently
increase, resulting in a more complex optimization
problem in the sense of greater numbers of
constraints and variables.

e With increasing connectivity, measurements exists
for more and more pairs of agents. Consequently, for
R — o0, the effect of erroneously summed squared
residual terms for pairs of agents without currently

Table 3 Exemplary values of the performance metric from Fig. 5 and their relative differences

Configuration RMSE
Agents (N) IDs Range (R) Relaxed JLTAP Optimal JLTAP Relative diff. [%]
40 8 09 62.8e—3 89.2e—3 —419
40 8 1.1 9.2e—3 6.7e—3 26.8
40 12 09 13.1e=3 47.6e—3 — 2631
40 12 1.1 59e—-3 12.7e-3 — 1145
20 6 09 13.2e—3 47.2e—3 — 2586
20 6 1.1 10.2e—3 18.7e—3 —84.1
20 8 09 6.5e—3 16.7e—3 — 1579
20 8 1.1 7.1e-3 59e-3 17.3
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Fig. 6 All plots visualize average localization results (red crosses) and their 1-standard-deviation ellipses (blue ellipses) calculated over 100
simulations, in which the positions were held fixed and only the measurement noise was varied among the different simulations. The actual
positions of the agents are shown by green circles, and the positions of the anchor nodes are indicated by black diamonds. a and b visualize the
statistics for two different random agent placements, each with N = 20 agents and 6 IDs. Likewise, € and d visualize the statistics for two different

hypothesized measurements is vanishing (cf. Item 13).

. s R—
This also limits the search space for g;; as g;; .

5.4.2 Influence of measurement noise

Additional simulations were performed to analyze the
robustness of the proposed relaxed JLTAP method with
respect to measurement noise, and the results are pre-
sented in Fig. 7 for different sensing radii R. The figure
shows that the localization error (RMSE) increases lin-
early with the standard deviation of the measurement
noise. Consequently, the relaxed JLTAP algorithm exhibits
reasonable robustness with respect to measurement
noise.

5.4.3 Run-time performance
Run-time comparisons for both algorithms with the pre-
viously described agent configurations are presented in

Fig. 8. In both panels of the figure, the optimal JLTAP algo-
rithm already reaches its maximal run-time constraint of
5 days for the moderate connectivity that results from a
sensing radius of R = 0.5. By contrast, the run time of
the relaxed JLTAP algorithm varies, particularly in Fig. 8a,
which presents results from simulations with N = 40
agents. The drastic increase in run time for both algo-
rithms is mainly due to the increased connectivity and the
corresponding increase in combinatorial complexity (see
also Section 5.4.1 first bullet).

6 Conclusions

In this work, the problem of ambiguous ranging mea-
surements and their impact on localization has been
discussed, and two exemplary application cases have
been highlighted: multiple source localization (MSL) and
the localization of highly resource-constrained wireless
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Fig. 7 Localization performance of the relaxed JLTAP algorithm with varying levels of measurement noise fora N = 40 agents with 12 IDs and
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sensing agents. These application cases are relevant to
novel and existing challenges arising, e.g., in the pas-
sive localization of traffic participants, flying objects, or
shooters and the surveying of resource-rich subterranean
cavities (cf. Section 1).

We have shown that the problem corresponding to the
former application case is a special case of that corre-
sponding to the latter. In the context of this problem, i.e.,
the problem of the joint localization of wireless agents
and resolution of ambiguities in ranging measurements
(the JLTAP), a detailed and thorough derivation and anal-
ysis of the underlying graph-theoretical problem has been
presented to serve as the basis for solving the problems
arising in both application cases. Utilizing this description
and the corresponding optimization problem formulation,
we have derived and presented an MMSE-optimal JLTAP
algorithm, and we have proven its A"P-hardness. More-
over, to mitigate the exponential worst-case complexity
of the optimal algorithm, we have derived a sub-optimal
JLTAP algorithm through relaxations and approximations.
In contrast to the existing literature on MSL in particu-
lar, both formulations are capable of reflecting the likely

scenario in which sources or agents are not always in
range of stations or beacons. Consequently, the presented
algorithms not only are suitable for a broader variety of
applications—such as those mentioned above—but also
yield efficient solutions for a less restrictive set of scenar-
ios corresponding to the existing application cases.

In the presented numerical evaluations, we have shown
that the proposed sub-optimal algorithm offers signifi-
cant gains in localization performance of up to 260% and
reductions in run time by a factor of up to 9902. Con-
sequently, efficient localization can be achieved, which
is particularly important when many agents need to be
localized.

6.1 Outlook

Because this work has focused on the more general prob-
lem corresponding to Application Case 2 (cf. Section 2),
in our future work, we intend to analyze the proposed
algorithms in direct comparison with existing MSL algo-
rithms. We will also adapt the system model for different
types of measurements, such as time-of-arrival (TOA)
measurements® and passive TOA measurements’.
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Nomenclature

SUz)
agent i

d]’*)l’

MIJ—H'

R

[z];
pilx, [pily

Endnotes

Set of all serial numbers (SNs) used
by the agents

Set of all serial numbers (SNs) used
by the anchor nodes

Set of all transmit IDs used by the
agents

Set of agents that use ID I 7

Agent with the unique SN i

;i Actual distance between agents i

and j

Random variable (RV) denoting the
distance measured by agent i based
on a signal from agent j

Tuple of measurements recorded
by agent i, e.g.,
Migi= mfj—n" :
k denotes the kth agent using ID I 7

. .), where

. Measurement (realization of the

corresponding RV) at agent i w.r.t.
the kth agent using Iz

Set of edges that are copies of edge

&

j
i Set of edges parallel to edge (i, j)

Shorthand version of such that for
sets;e.g, Vx e R" > ||| <1
defines the n-dimensional unit ball
around 0

Weight of edge e in the
corresponding ambiguity graph

i Standard deviation of the noise in

measurements between agents i
and j

Standard deviation of the noise in
the initial positions of the agents as
used in the solver initialization
Actual and estimated Cartesian
positions of agent i

Matrix of all agents” Cartesian
positions

Vectorized form of P

Sensing, i.e., communication radius
of the agents

ith component for vector z

X and Y coordinates of position
vector p;

1 Henceforth, the wireless sensor motes are also denoted

as agents.

2In addition, a shell that is sufficiently robust to with-

stand pressure levels of up to 6MPa is required [30].
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3 The general principles and methods introduced in this
work can also be easily extended to other measurement
models, such as those assuming multiplicative noise.

*The authors of [1] showed that it can take up to 48h for
an agent to pass through the environment.

®Here, we consider only strictly parallel edges; i.e., anti-
parallel edges are disregarded.

E.g., for the case in which the sources or agents are
actively sending their signals, whereas the stations or
beacons are passive (listening only).

7In this case, the stations or beacons are sending signals,
whereas the sources or agents are passive, in the sense
that they simply reflect these signals. The time of flight
between the transmission of a pulse and the reception of
a reflection is then measured.

Appendix 1: NP-hardness proof

The N'P-hardness proof presented here makes use of a
reduction from the perfect matching with conflict pair con-
straints (PMPC) problem, which is known to be strongly
NP-hard [31, 32]. The corresponding decision problem is
briefly described in the following.

Definition 2 (Perfect matching with conflict pair con-
straints (PMPC) problem [31, 32])

e The input: An undirected graph G = (V,&) and an
undirected graph G = (&,&), where each of the |€]|
vertices of G belongs uniquely to one edge e € £ in G.

e The existence of an edge & € £ implies that the two
adjacent vertices (edges of G) cannot both appear
simultaneously in the perfect matching (PM) of G.

e The question: Does a PM in G exist such that
adjacent vertices in G do not both belong to the PM?

To provide a concise proof, the following brief
graph-theoretical summary of the problem defined in
Definition 1 is used.

Definition 3 (Graph-theoretical decision problem for-
mulation of the JLTAP)

e The input: A(n) (un)directed graph G = (V,&) and
several edge sets that belong uniquely to the
following two categories (cf. Section 3.1):

1. Ea =Y 5;1 p
2. a1 =€,

which represent sets of edges of which exactly one
(Item 1) and of which at most one (Item 2) needs to
be selected. Moreover, each edge in these sets
corresponds uniquely to one edge in £ of G.
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e The question: Does a subset £* C & exist such that
exactly one edge from each non-empty set £
appears in £* and at most one edge from each £
appears in £*?

The N'P-hardness proof is based on a Karp reduc-
tion, the principle of which (proof by contradiction) is
depicted in Fig. 9. To complete the proof, we will define
a polynomial-time reduction algorithm and a polynomial-
time decider. Subsequently, the correctness proof for the
decider will be briefly outlined.

Definition 4 (Polynomial-time reduction (PTR) algo-
rithm) The PTR algorithm transforms an instance x of the
PMPC problem into an instance y of the JLTAP decision
problem by means of the following steps:

e The input: An instance x, i.e., two undirected graphs
Gr = Vp, &) and Gy = (&, &Ex).

e The output: An instance y, i.e., an undirected graph
G = (V, &) and several sets E;l,i =1,...,n and
&lji=1...,m

® The transformation:

1. Set&:=@andV = V,.

2. For each vertexv; € V,, create a new set 5;1 with
all edges incident on v;.

3. For all edges e;j = (e;, €) € E x &, create a set

.
&L = {ewe).

Definition 5 (Polynomial-time decider (PTD)) The PTD
takes the output of the imaginary polynomial-time solver
for the JLTAP decision problem and decides whether the
answer to the problem instance x is yes or no.

® The input: The solution £* and the problem instance
y corresponding to G = (V, ) and the sets {€.  };
and {5’;1},,

. Retum_yes iff exactly one edge from each set ., and

at most one edge from each set 5]<1 are in £*.

Proof Sketch 1 (Sketch of the Decider Correctness Proof)
To prove the correctness of the decision algorithm, the
equivalence of the following two statements must be
shown: A PM exists in the PMPC instance given by G and
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G. < The solution set £* is such that exactly one edge
from each set 5;1 and at most one edge from each set 521
appear in £*.

To see that this is the case, note that the existence of a
PM in the PMPC instance means that there exists a set
M C & such that every vertex in G is incident on exactly
one edge in the matching M [33] and that for each con-
flict pair in G, both edges do not appear simultaneously
in the matching M. Mathematically, we can write this
statement as

AM C € suchthat |Z(v)) " M| =1,Vv; €V
(%)
and |A(e) N M| = 0,Ve € M, 9)
(x)

where Z(v) denotes the set of edges incident on vertex v
and A(e) denotes the set of vertices in the conflict graph
that are adjacent to vertex e. Recall that by the definition
of the conlflict graph (cf. Definition 2), the vertices of the
conflict graph are edges of G.

The outline of the correctness proof given below shows
that the two constraints (x) and (xx) are inherently ful-
filled by the definition of the reduction algorithm (cf.
Definition 4).

(*) By definition, the set of edges incident on vertex v; is
given by 5;1, e, Z(v)) = 5;1. In addition, the
constraint |Z(v;) N M| = 1 means that exactly one of
these incident edges must be in M.

Note that A(e) denotes the set of edges that are in
conflict with edge e and that these conflicts—with
respect to e—are represented by | A(e)| sets of the
form 521 = {e, ex}, where e, € A(e). The set
comprising these | A(e)| sets is henceforth denoted by
E<1(e). Consequently, A(e) can be written as follows:

U ENe.

£ef<rle)

(3%)

A(e) = (10)

Likewise, for constraint (xx), we have the following:

g, ife ¢ M

e, otherwise

(k%) & MnN U 5’:{ Veeck.

£eE<(e)
(11)

yes

polynomial-time
> reduction
algorithm

A

polynomial-time *
algorithm for >
problem Y

e

polynomial-time
decider for
problem X

N

polynomial-time algorithm for problem X

no

Fig. 9 Principle of Karp reductions. Problem X is reduced to problem Y: X <, ¥
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Thus, its clear that (x*) is equivalent to the
requirement that at most one edge from each set £ ;
must be in £*.

Appendix 2: Non-convexity of the relaxed JLTAP
with g;; equality constraint

In this section, the general non-convexity of the relaxed
JLTAP objective function and, thus, of the relaxed JLTAP
optimization problem is shown. Without loss of general-
ity, the following summand of the objective function is
considered for simplicity:

2

X, P Pj) = x) | wix — llp; — p; 2|
£ )= (1Tx) | WTx— | 113 (12)
[

—_——
=:q=0 =h

L

where wT = ()/Vf1 (e1.> s Wfl (eff)) and g = g;;. The
Hessian of (12) is partitioned into decision variables x and

T
positions p = [pLT p]T] :

Vi f V2
e = 5 et | (13)
prf A
Let d Dbe the shorthand notation for
dpy = lp, — pil2 = (Ax)? + (A2, with

Ay = [pi]x - [p]]x ’ Ay = [pi]y - [pj]y« Then, the
partial derivatives can be written as follows:

V2. f = 2h (1T + wiT) + 2gwiT, (14a)
VanS = =2(Vpd®) (h17 + q#T), (14b)
vaf= (Vi)' (140)
Vaf =24 (V,d?) (Vid?) = 2qh (V2,d%).  (14d)

By considering the Schur complement [34], it can be
found that the Hessian of f(-) is positive semi-definite, i.e.,
H(f) > 0, if and only if the following three conditions are
met:

V2. f =0, (152)
® = (1 - (Vﬁpf> (vgpf)g) V2f =0, (15b)
S=V2f— (vﬁ ) (vfmf)g V2,f =0, (15¢)

where A% denotes the generalized inverse of A.
Therewith, we form the following theorem regarding
the non-convexity of (12):

Theorem 1 The relaxed JLTAP objective as described in
Section 4 but with binding q = q;; = ) xf«; as given in
(12) is non-convex for the relevant case of g > 0.

Page 15 of 17

Proof Using Propositions 1 and 2, it holds regarding
Egs. (15a) and (15b)

h<0&Vyf>=0 and (16)

h<0=®=0. (17)
However, using Proposition 4, it holds regarding (15c)

h<0=>8=<0, (18)
thus violating (15c¢) if (15a) is satisfied. O

Remark Moreover, the constrainth = wT x — d? < 0 is
non-convex.

froposition 1 Vf,pf2 is positive semi-definitive, i.e.,
Voof Z0iffh <0 d* > whx.

Proof From straightforward calculations, we find that
V,Z,pf has non-zero eigenvalues:

A (vﬁpf) — _8hgq
A2 (v,%pf) — 8q(2d% — h)

and, thus, Al(V%pf) > 0 & h < 0 which also yields
A2 (Vaaf) = 0. O

(19a)

(19b)

Proposition 2 It holds ® = 0 for h < 0.

Proof As the generalized inverse of Vlsz is given by

1 0-1 O
2 N\E 1 [ 0o 1 0-1
(fo‘f> T 8qh(d—-hm |2|-1 0 1 0
0-1 0 1
L =V
— (A = A= AA)T (A = Ax = AV A |
=0
(20)
if the eigenvalues (19) are non-negative, i.e., if # < 0, it
holds
@ (1 - ;\p) v? (21a)
=2 (1 — ;\1,> (Vod?) (hWT + qwT) (21b)
L 2 (V,d® = V,d?) (T + ") (21¢)
=0, (21d)
where we used T: (V% ) <V§pf>g = %\Il and I:
L (V,d2) = (V). 0
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Proposition 3 Schur matrix S is given by:

S=2h(w+ D)W+ DT + 2(q — hywwT — 24117

2
N T )T
PR (h1 + gw)(h1 + gqw)
(22)
Proof Using the facts
Vod®> =2 (AxAy — Ay — A)T (23)
(vgcﬂ) ¥ (V,d2) = 164> (24)
(Vid?) @ (v,a%) =0 (25)
it holds
14
s=V4f - (Vaf) (Vi) (Vi) (26)
=V2f— i(hl + qw) (h1 4 qw)T (27)
T q@ -k 1 1
and expanding V2 f yields
VI f=2hQWT +wlT) + 2T (28)

=2h(w+ D)W+ DT + 2(q — hywwT — 21117
(29)

which concludes the proof. O

Proposition 4 Schur matrix S is negative semi-definite
forh <O.

Proof Using the fact that a matrix M is negative semi-
definite iff zZTM z < O for all z € R”, z # 0, we obtain with
Proposition 3 for the corresponding term of the Schur
matrix:

278z = 2h||zT (W + D||* + 2(q — h)|zTw|?

—2h)|271)2 — —————||2T (h1 + gw)|®
12711 — gy = (L + g
= 2h[||zT D) > 2wl >~ [1z71]*] +24zTw]>
=232l W] =0
2
T ~N112
- hl
ol O Rl
=2 27| 2h[ W] +qlW]} — 2%'lz(h +qlwli)?
” ! ‘/—l’ ! q(d2_h) '
l <0 as h<0
>0 as h<0
(30)

After several algebraic steps, we find that the inner
bracket is non-positive whenever g > 0 and # < 0. Con-
sequently, we have for the relevant case g > 0: z2TSz < 0
ifh <0. O
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Appendix 3: Similarities between the gradients of
(5a) and (7a)

In this section, we analyze the similarities between the
gradients of (5a), which is rewritten as

h(x,p) = (w+6)Tx—d(p))°, (31)
and (7a), which is rewritten as
2
g = ((w+eo?) x—dp?) (32)

where (x)°2 denotes the Hadamard exponential, i.e.,
the element-wise exponential of the vector x;, w =
(WA (eb) oo s Wa (efj)); and e denotes the error due to
measurement noise.

The partial derivatives of (31) are given by

Vih(x, p) =2 (wéx - d) - We, (33)
Voh(x,p) = =2 (wix —d) - V,d, (34)
where we = w+ € and d = d(p).
Similarly, the following expressions hold for (32):
Vag(,0) =2 (w2) & - ) - w2, (35)
Vg p) = —4d ()T x— d?) - V,d. (36)

Consequently, the gradients of (-) and g(-) are simulta-
neously vanishing with respect to x (cf. Item 1) and p (cf.
Item 2) if and only if

Lwlx=d & W2)Tx=d> and
2. wlx=d vV,d=0
& W) Tx=d’> Vv Vyd=0 v d=0.

Because w > 0, we > 0,d > 0, and w # 0 and if
x € {0,1}" and 1}x = 1, the gradients of /(-) and g(-) are
simultaneously vanishing if and only if wlx = d.

Consequently, only the relaxation on the domain of x
(cf. (7b)) leads to different extrema of the two associated
optimization problems.
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