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In this paper, statistical-model generalizations of independent low-rank matrix analysis (ILRMA) are proposed for
achieving high-quality blind source separation (BSS). BSS is a crucial problem in realizing many audio applications,
where the audio sources must be separated using only the observed mixture signal. Many algorithms for solving BSS
have been proposed, especially in the history of independent component analysis and nonnegative matrix factorization.
In particular, ILRMA can achieve the highest separation performance for music or speech mixtures, where ILRMA
assumes both independence between sources and the low-rankness of time-frequency structure in each source. In
this paper, we propose two extensions of the source distribution assumed in ILRMA. We introduce a heavy-tailed
property by replacing the conventional Gaussian source distribution with a generalized Gaussian or Student’s t
distribution. Convergence-guaranteed efficient algorithms are derived for the proposed methods, and the
relationship between the generalized Gaussian and Student’s t distributions in the source model estimation is
revealed. By experimental evaluation, the validity of the heavy-tailed generalizations of ILRMA is confirmed.

Keywords: Blind audio source separation, Independent low-rank matrix analysis, Nonnegative matrix factorization,

1 Introduction

Blind source separation (BSS) is a technique for sepa-
rating individual sources from an observed multichannel
mixture without knowing the mixing system, such as the
spatial locations of the sensors or sources, in advance. In
particular, BSS for multichannel audio signals have been
well studied so far. This problem can be divided into two
situations: underdetermined (number of microphones <
number of sources) and (over-)determined (number of
microphones > number of sources) cases. In the under-
determined case, the mixing system of the sources has
to be estimated using several assumptions. For example,
sparseness-assumption-based methods are popular and
reliable approaches [1-3]. In contrast, the determined BSS
methods often estimate the inverse system of a mixing
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process, and high-quality separation can be achieved
compared with the underdetermined BSS methods. In this
paper, we only focus on the determined BSS problem.
The most popular and successful algorithm for solv-
ing determined BSS problem is independent component
analysis (ICA) [4], which assumes statistical independence
between the sources and estimates a demixing matrix
(the inverse system of the mixing process). For a mix-
ture of audio signals, because the sources are mixed
by convolution owing to the room reverberation, ICA
is often applied to the time-frequency signals (spectro-
grams) of the observed signal, which are obtained by a
short-time Fourier transform (STFT). Frequency-domain
ICA (FDICA) [5-8] independently applies ICA to the
complex-valued time-series signals in each frequency bin
and estimates a frequency-wise demixing matrix. Then,
the estimated components in each frequency must be
aligned over all frequency bins so that the components
of the same source are grouped. This postprocessing of
FDICA is the so-called permutation problem [6, 9-11],
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and several criteria have been used to solve this ambiguity
of the signal permutation.

Independent vector analysis (IVA) [12-14] is a sophis-
ticated algorithm that can simultaneously estimate the
frequency-wise demixing matrix and solve the per-
mutation problem using only one objective function.
IVA assumes higher-order dependences (co-occurrence
among the frequency bins) of each source by employing a
spherical generative model of the source frequency vector,
thus avoiding the permutation problem. The original IVA
employs the spherical multivariate Laplace distribution as
the source model (hereafter referred to as Laplace IVA).
To improve the statistical model flexibility and source
separation performance, Laplace IVA has been extended
by replacing its source model with a spherical general-
ized Gaussian distribution [15] (GGD, also known as an
exponential power distribution) in many papers [16—20]
(hereafter referred to as GGD-IVA), or with a Gaussian
distribution having a time-varying variance [21] (hereafter
referred to as time-varying Gaussian IVA). Note that the
GGD includes the Laplace and Gaussian distributions as
special cases.

As another means of audio source modeling and sep-
aration, nonnegative matrix factorization (NMF) [22, 23]
has been a very common approach during the last decade.
NMEF is a nonnegative-parts-based low-rank decomposi-
tion of an observed nonnegative data matrix that is typi-
cally a power or amplitude spectrogram. The decomposed
nonnegative parts (bases and activations) can be used
for source separation by clustering the parts into each
source [24-28]. Also, NMF can be statistically interpreted
as a parameter estimation based on a generative model
of data, and the distribution of the model defines the
objective function (divergence) in NMF. For example, it
was revealed that NMF based on Itakura—Saito divergence
(IS-NMF) assumes an isotropic complex Gaussian dis-
tribution independently defined in each time-frequency
slot [29], where the variance of each Gaussian distribu-
tion can fluctuate depending on time and frequency. For
multichannel audio signals, spatial modeling of the mix-
ing system was introduced into the simple NMEF, which
is called multichannel NMF (MNMF) [30-32], to solve
the BSS problem. MNMEF estimates the spatial mixing
system, whereas ICA-based BSS techniques optimize the
demixing matrix, which yields a more stable and efficient
algorithm than MNME.

Motivated by this issue, a new BSS algorithm called
independent low-rank matrix analysis ILRMA) [33-35]
has been proposed!. In this method, IS-NMF-based low-
rank source modeling is introduced into the source model
of IVA, namely, a low-rank time-frequency structure (co-
occurrence among the time-frequency slots) is estimated
for each source by NMF, and the frequency-wise demix-
ing matrix is optimized taking the NMF source model into
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account without causing the permutation problem. Since
the vector source model in time-varying Gaussian IVA
can be interpreted as NMF with a single spectral basis,
ILRMA is a natural extension of IVA, where ILRMA uti-
lizes an arbitrary number of bases in the source model.
Also, ILRMA can be considered as a dual problem of
MNMF (mixing) because ILRMA estimates the demix-
ing matrix, i.e., the inverse of the mixing system (MNMF
model), using the low-rank source modeling with NMF.

In this paper, to increase the model flexibility and
improve the source separation accuracy, we generalize
the source model in ILRMA from the isotropic complex
Gaussian distribution of IS-NMF to more heavy-tailed
distributions. An important extension is to employ the
isotropic complex GGD because it has been reported that
GGD-IVA can achieve a better separation result in many
papers [17, 19, 20]. As another possible generalization,
the isotropic complex Student’s ¢ distribution can also be
employed in ILRMA. Student’s ¢ distribution includes the
Cauchy and Gaussian distributions as special cases and
has been used to model audio sources [36, 37]. For use
in NMF-based modeling, Cauchy NMF [38], Student’s ¢
NMF (¢-NMF) [39], and its multichannel extension (¢-
MNMEF) [40] have been proposed. The motivation of
employing Student’s ¢ distribution is that the Cauchy and
Gaussian distributions are a part of the «-stable dis-
tribution family [41], which has a stable property of a
random variable, namely, a linear combination of two
independent random variables generated from the same
distribution family also has the same distribution up to
location and scale parameters. This property is desirable
for NMF-based audio source modeling because it justifies
the nonnegative linear decomposition of complex-valued
signals [42]. For instance, multichannel BSS based on an
a-stable distribution was recently proposed [43] to benefit
from this advantage. However, analytical maximum likeli-
hood (ML) estimation with an «-stable distribution is still
an open problem because its probability density function
(p.d.f.) cannot be represented in a closed form except for
several cases. Therefore, instead of employing the «-stable
distribution family, we adopt Student’s ¢ distribution as
the source model in ILRMA, which partly corresponds
to the a-stable distribution and has the stable property.
The relationship among the conventional methods and
the proposed ILRMA is depicted in Fig. 1. As shown
in this figure, the proposed ILRMA based on the GGD
(GGD-ILRMA) and that based on Student’s ¢ distribu-
tion (¢.-ILRMA) can be interpreted as a new extension of
conventional IVA or ILRMA as well as a computationally
efficient solution to the dual problem of MNME.

Note that this work extends our preliminary work on
t-ILRMA in [44] by developing a new extension, GGD-
ILRMA, and providing additional discussion that explains
the theoretical relationship between GGD- and ¢-ILRMA.
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Fig. 1 Relationship among conventional methods based on Gaussian, Student’s t, and generalized Gaussian distributions. NMF-based low-rank
audio source modeling is extended to a multichannel signal, resulting in MNMF, which estimates the mixing system for solving the BSS problem.
ILRMA can be considered as a dual problem of MNMF because it estimates the demixing system using the NMF source model

Also, the experimental results have been updated with
new datasets and conditions for more difficult situations
in BSS.

The rest of this paper is organized as follows. Section 2
describes the conventional algorithms including IVA and
ILRMA, which are the basis for the proposed GGD-
and ¢-ILRMA described in Section 3. Section 4 reports
the validation of the proposed methods by conducting
BSS experiments with music and speech sources. Finally,
Section 5 concludes this paper.

2 Conventional method

2.1 Formulation

Let $,(7), (), and ¥,(t) be the source, observed (mix-
ture), and estimated (separated) time-domain signals,
respectively, where n = 1,--- ,Nandm = 1,--- ,M are
the integral indexes of the sources and channels (micro-
phones), respectively. Also, 7 is the integral index of the
discrete time. The source signal s,(t) is unknown, and
only the observed signal x;,(7) can be obtained by using
the synchronized multiple microphones. The estimated
signal y,(t) is the output data of BSS algorithm. In this
paper, these time-domain signals are transformed into
the time-frequency domain to treat the convolutive mix-
ture with the room reverberation. The complex-valued
time-frequency components of 5,(t), X,,(7), and y,(7)
can be obtained via STFT and are respectively denoted as
follows:

T Nx1
sij = (Sij,l’ . ’slj,}’l! e rsij,N) € (C x N (1)
T Mx1
xij = (xij,l) e ;xij,mr te 1xij,M) eC x ) (2)
T Nx1
Vi =it Y YN € CVF, (3)
wherei=1,---,landj =1, - - ,] are the integral indexes

of the frequency bins and time frames, respectively, and
T denotes a transpose. We also denote the spectrograms
(time-frequency matrices) of the source, observed, and

estimated signalsas S, € Cc X, e C™ and Y, € CI¥,
whose elements are s;j,, Xjj,m, and y;,, respectively. In
EDICA, IVA, and ILRMA, the following mixing system is
assumed:

xj = Aisij, (4)

where A; = (a;1 --- a;y, -+ aiN) € CMxN is a frequency-

wise mixing matrix and a;,=@in1, B s
a; ) is the steering vector for the nth source, which
represents the acoustic transfer functions from the nth
source to each of the microphones (m = 1,---,M).
The assumed mixing system (4) is called a linear time-
invariant mixture or rank-1 spatial model [45] because
the spatial covariance of each source image (multichan-
nel observation of each source signal) is restricted to a
rank-1 matrix in this system [34]. If the mixing system
is determined, namely, M = N, and A; is a non-singular
matrix for all i, we can define the frequency-wise demix-
ing matrix W; = (w;1---w;,--- Wl‘,N)H = Ai_l that
recovers the source signal, and the estimated signal y;; is
obtained as

¥ = Wixyj, (5)

where w;, is the demixing filter for the nth source and
H denotes a Hermitian transpose. The goal of BSS based
on FDICA, IVA, or ILRMA is to estimate W; and obtain
y;; from only the observations x;; by assuming statistical
independence between s, and s;;,, where n" # n. In this
paper, we only focus on BSS with the determined situa-
tion M = N. For the overdetermined situation M > N,
principal component analysis is often applied to «; for
dimensionality reduction so that M = N [46].

22 IVA

IVA [12-14] is an elegant solution of the permutation
problem [6, 9-11], which considers not the frequency-
wise component x;,, but the vector of all frequency
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components, Xj, = (X1jm, - xlj,m)T € C'*1, as an inde-
pendent variable as shown in Fig. 2. Thus, in IVA, ICA
is applied to the time-series vectors &1, --- X5, while
assuming the spherical /-dimensional non-Gaussian dis-
tribution p(s) = p(¥). For example, the generative model
in GGD-IVA [16-18, 20] is represented as
. 5. 1
PG o< exp (13,15 (6)
where || - ||2 denotes the Ly norm and 8 > 0 is the shape
parameter of GGD. Laplace IVA [12-14] corresponds to
B = 1. Since the probability of (6) only depends on the
norm of y; , (spherical property), the components in the
vector y;,, have higher-order dependence. Therefore, fre-
quency components that have similar activations, such as
a fundamental frequency and its harmonic components,
will be merged as one source avoiding the permutation
problem.
By assuming the independence between the source vec-
tors, the objective function (negative log-likelihood func-
tion of the observed signal) in [VA can be obtained as

Liva =—2])_log|det Wil + Y G(3,,), (7)
i jon
where G(y;,,) = —logp(y;,,) is called a contrast function

and det W; denotes the determinant of a matrix W;. Note
that the separated signal y;;, in y;,, includes the variable
Wiasyjn= wﬁ:[nxij.

As another generative model of source signals, an
isotropic complex Gaussian distribution with time-
varying variance can be utilized in IVA [21], which is
represented as

p(yl,n' ] 5/],;/1) = l_[p(jlj,n)
J
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where 7;, is the time-varying variance shared over all
frequency bins. Similar to (6), (8) also has a spherical
property. Note that even though (8) consists of Gaussian
distributions, its marginal distribution over j becomes
a super-Gaussian distribution because the variance can
fluctuate depending onj [17].

Regarding the optimization of W, a fast and stable opti-
mization algorithm called iterative projection (IP), which
is based on a majorization-minimization (MM) algorithm
[47], has been derived for ICA [48], Laplace IVA [49],
GGD-IVA [17], and time-varying Gaussian IVA [21]. IP
can achieve better convergence than classical gradient-
based algorithms.

2.3 ILRMA based on Gaussian distribution

2.3.1 Generative model

ILRMA [33-35] is a method unifying IVA and IS-NME,
namely, we assume both statistical independence between
sources and the low-rankness of the time-frequency struc-
ture in each source. Similar to ICA or IVA, we must
assume a non-Gaussian distribution as the generative
model of source signals to solve the BSS problem. In
ILRMA, the following distribution is assumed for the
spectrogram of each source:

P = [ [pGin)
i

1—[ 1 [Yijn |2
= exp | —
T T Fijn

i Vijn

)

)

where i, > 0 and v, > 0 are the nonnegative basis

and activation elements (NMF variables) of T,, € RIZXOK

(basis matrix) and V,, € ]RI:S( /

Tjn = Y tiknViim (10)
k

(activation matrix), respec-

1 17:.,112 tively, k = 1,---,K is the integral index of the basis,
= l—[ exp <—1n2> , (8) and K is the number of NMF bases (spectral patterns).
jo T Tjm Also, rjj, > 0 is a sourcewise time-frequency-varying
Vector random variables _Empirical Non-Gaussian
N distribution of spherical source
2 A estimated signal distribution
. . . = | Tt T
Observed signal A  Estimated S|gnah Yij % p(8;1)
~ ~ 1o} 1
I ) eylmwwwﬂ 2 i
Frequency-wise STFT w !
~ demixing matrix| _ ~ Time
ERORTTIER L IR S v tMutualIy
’ Yig cc>>’ indepéndent
Update demixing matrix so that estimated signals 2 Mp(8;2)
are mutually independent and obey non-Gaussian g !
distribution we assumed as source model v = !
ime

distribution for vector variables

Fig. 2 Principle of source separation based on IVA. IVA assumes both statistical independence between sources and non-Gaussian spherical
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variance that corresponds to the low-rank source model.
Therefore, the nonnegative matrix T,V represents the
rank-K model spectrogram of the nth source as |Y,|? ~
T,V ,, where | - |1 for matrices denotes the element-wise
absolute and gth-power operations. Because of the fluc-
tuation of the variance r;,, of the time and frequency, the
marginal distribution of the generative model (9) over j
becomes a super-Gaussian distribution, which can be used
for independence-based BSS.

The local distribution p(y;;») is circularly symmetric in
the complex plane, and the probability only depends on
the power Iy,j,y,|2. For this reason, the variance r;;,, cor-
responds to the expectation value of the power spectrum
|y,-j,n|2, namely, r;, = E [|y,',;,,|2]. In addition, if we assume
that the source spectrogram y;;, consists of K compo-
nents ¢;; ,, namely, yji,, = D Cjjuk, the generative model
of c¢jj .k also becomes the complex Gaussian distribution
because of the stable property as follows:

1 ( |y k] )
P(Cij,nk) = exp il — .
T ik Vijn Lik,nVij,n
Note that the variances in p(y;;,,) and p(c.x) are ry, =
> i LiknVijn and L Vi q, respectively, and they corre-
spond to the expectation values of |yij,,,|2 and |Cij,nk|2 as
tijn = E [|y,-j,k|2] and tix nVijn = E [Icij,nklz], respectively.
Even if y;, = D ¢jjuk, the additivity of the power spec-
tra does not hold (|yi,;,,|2 # Yk |ci]-,,,k|2) because of the
phase cancelation. However, (9) and (11) mean that the
additivity of expectations tj , vk, = E [|c,7,,,k|2] is satis-
fied as rjj; = Y i tiknVijn because of the stable property
in Gaussian distribution. Therefore, the generative model
(9) theoretically justifies to linearly decompose the power
spectrogram |y,-j,n|2 into K nonnegative parts £ ,Vijn-
This advantage was extended to a more general domain
in [42] using an «-stable distribution, which is a distribu-
tion family ensuring the stable property. When o = 2,
a-stable distribution is equal to Gaussian distribution (9)
and the additivity of power spectra holds in the expecta-
tion sense. When o = 1, a-stable distribution converges
to Cauchy distribution, which ensures the additivity of
amplitude spectra in the expectation sense [38].

(11)

2.3.2 Objective function and update rules

The objective function of ILRMA is the negative log-
likelihood function of the observed signal x;; and can be
obtained from (9) by assuming independence between all
sources as

= —logp(X)
— 2]Zlog | det W;| — log p(Y)
i

(12)

—2] ) log|det W,
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yiinl?
+ Z (logz LiknVijn + 5 o )

ijm k LiknVijn (13)

+ IJNlogm

= —ZJZlog | det W]
+Zlogztlknvk/n+]zw u;,wiy (14)
l[,

+I]Nlogn,
Z xy 15
Zk lknvkjn i (15)
where X = {X1,---, Xy} and Y = {Y,---,Yn} are the

set of the observed and estimated signals and the inde-
pendence between sources, p(Y) = [ [, p(Y ), is assumed.
The first and third terms in (13) correspond to the objec-
tive function in time-varying Gaussian IVA [21], and the
second and third terms correspond to the objective func-
tion in IS-NMF [29]. The task of the ILRMA algorithm
is to minimize the objective function £ w.rt. T, V,
and W;.

For the optimization of the demixing matrix W;, similar
to IVA, IP can be used for minimizing £. The update rules
based on IP are expressed as follows:

U,< - Z xuxll, (16)
-1
Win <— (Wiui,n) €n, (17)
_1
Win <= Wipn (w?nui,nwi,n) z, (18)
Vi < Wiy (19)

where e,, denotes the N x 1 unit vector with the nth ele-
ment equal to unity. By iterating these algorithms, the
demixing matrix W; is updated so that the objective func-
tion (14) decreases. Note that IP does not include any
step-size parameter in its update rules. Regarding the
NMEF variables T, and V, the following convergence-
guaranteed update rules based on the MM algorithm have
been derived [50]:

o=

' Iyiinl® Vii 7
I (S tienvign)” "
tik,n <~ tik,n Z Lln i ) (20)
Jj Zk Lik,nVijn Vk}'n
Iyijnl? 3
Yijn 2
R Cla—,
S e )2 ik,n
Vign < Vign > - - , (21)
t Zk Lik,nVkjn ikin
Fijn <= Ztik,nvkj,w (22)

k
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Fig. 3 Principle of source separation based on ILRMA. ILRMA assumes both statistical independence between sources and the low-rankness of
time-frequency structures in each source

From the above, the objective function can be efficiently =~ where A, is an arbitrary sourcewise normalization coef-
optimized by iterating the update rules (16)—(22). How- ficient such as the sourcewise average power A, =
ever, a scale ambiguity exists between W; and r;; ,, because _ 3 L
both of them can%ietZrmine the scale of the sep]arated sig- [(U ) ZiJ Yiim |2] - These normalizations do not change
nal y;; .. Therefore, W; or r;j,, has a risk of diverging dur- the value of the objective function (13). The scale of
ing the optimization. To avoid this problem, the following the separated signal yj, can be restored by applying
normalization should be applied at each iteration: the following back-projection technique [51] after the

optimization:
Wip < Wi,nk;ly (23) R .
Vi < Vi (24) Yijn = Wi (e" °Y ‘7> ’ (27)
T < rij’”)h;‘z’ (25) where 5/17 w = Gy -+ &i/,nM)T is a separated source
Likn < Liknhy, > (26)  image whose scale is fitted to the observed signals at each

Fig. 4 Source models assumed in proposed methods: a isotropic complex GGD and b isotropic complex Student's ¢ distribution. The GGD includes
Gaussian and Laplace distributions as special cases, and the Student’s t distribution includes Gaussian and Cauchy distributions as special cases
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Table 1 Summary of parameterized properties in GGD- and

t-ILRMA
Shape parameter Domain parameter
(B,v) 2

GGD-ILRMA p—0 p—0
e Low-rankness injection e Low-rankness mitigation
via geometric mean
o Faster NMF update o Slower NMF update
Special cases
e 8 = 2: Gaussian dist.
e B = 1:Laplace dist.

t-ILRMA v— 1 p—0

e Low-rankness injection o Low-rankness mitigation

via harmonic mean o Slower NMF update

Special cases
e v — 00: Gaussian dist.

e v = 1:Cauchy dist.

microphone and o denotes the Hadamard product (entry-
wise multiplication). The detailed implementation can be
found in [52].

Figure 3 shows the separation principle of ILRMA.
When the original sources have a low-rank spectrogram
|S,|2, the spectrogram of their mixture, |X,,|?, should
be more complicated, where the rank of | X |2 should be
greater than that of |S,,|2. On the basis of this assumption,
in ILRMA, the low-rank constraint for each estimated
spectrogram |Y | is introduced by employing NMF. The
demixing matrix W; is estimated so that the spectrogram
of the estimated signal |Y,,|> becomes a low-rank matrix
modeled by T,V ,, whose rank is at most K. The estima-
tion of W;, T, and V, can consistently be carried out by
minimizing (13) in a fully blind manner. ILRMA is theo-
retically equivalent to conventional MNMF only when the
rank-1 spatial model (4) is assumed, which yields a stable
and computationally efficient algorithm for ILRMA. This
issue has been well discussed in [34, 35].
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Fig. 5 Scores of each part. The signal length is approximately 5 s
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Table 2 Musical instruments used in the music dataset

Part Instruments

Melody 1 Oboe, trumpet, and horn
Melody 2 Flute, violin, and clarinet
Midrange Piano and harpsichord

Bass Trombone, bassoon, and cello

3 Proposed generalization of ILRMA

3.1 Motivation and strategy

The conventional ILRMA described in Section 2.3 is
based on the isotropic complex Gaussian distribution
(9) with a time-frequency-varying variance rj,. For
independence-based BSS, non-Gaussianity of the source
signals is required for the separation, and the model (9)
relies on only the fluctuation of the variance r;,,. If the
variance ry, is a constant value for all i and j, the model
(9) becomes completely Gaussian and the independence-
based BSS collapses because the ICA algorithm can-
not distinguish multiple Gaussian sources. Therefore, it
is worth generalizing the distribution in ILRMA to a
more flexible non-Gaussian source model. In fact, several
approaches based on a non-Gaussian distribution with a
time-frequency-varying parameter, such as t-NMF, have
been proposed, and it has been reported that NMF audio
source modeling based on a non-Gaussian distribution
provides better separation performance [39]. From the
IVA side, the source distribution has also been generalized
by employing the GGD in many studies [16-20], which
gave more accurate BSS results.

For the reasons mentioned above, in this section, we
propose two generalizations of the source distribution
(generative model) in ILRMA using heavy-tailed distri-
butions: the isotropic complex GGD and the isotropic
complex Student’s ¢ distribution. The former is a natural
extension of the conventional generative model (9) and
has often been used for the generalization of Laplace IVA
or time-varying Gaussian IVA as GGD-IVA. The GGD

Table 3 Dry sources used in two-source case

Signal Data name Sources (1/2) Signal length [s]
Music 1 Melody 2/Midrange  Flute/piano 50
Music 2 Melody 1/Melody 2 Oboe/flute 5.0
Music 3 Melody 1/Bass Trumpet/bassoon 5.0
Music 4 Melody 2/Midrange  Violin/harpsichord 5.0
Music 5 Melody 1/Melody 2 Horn/blarinet 50
Music 6 Midrange/Bass Piano/cello 50
Speech 1 devi_female4 src_1/src_2 10.0
Speech 2 devi_female4 src_3/src_4 10.0
Speech3  devi_male4 src_1/src_2 10.0
Speech4  devi_male4 src_3/src_4 10.0
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(a Impulse response E2A
(reverberation time: 75, = 300 ms)

Source 1

.. Source 2

5.66cm

(b Impulse response E2A
(reverberatlon tlme 7'60 =300 ms)

. Source 2

Source 1~

.83cm

Fig. 6 Spatial arrangements of impulse responses used in two-source case:a E22 1 and b E2A_ 2. Since the microphone spacing and the angle
between the two sources in E2A_ 2 are smaller than those in E2A_1, BSS is more difficult for E2A_2

has a shape parameter that controls the super- or sub-
Gaussianity. In particular, the GGD includes Laplace and
Gaussian distributions as special cases. Since most audio
sources follow super-Gaussian distributions, in this paper,
we only focus on GGD-ILRMA with a super-Gaussian
region.

The latter generalization was inspired by a recently
developed framework [42] that ensures the stable property
of complex-valued random variables, i.e., audio modeling
based on an a-stable distribution. In this model, similar
to IS-NMF (11), the decomposition of a complex-valued
spectrogram into several nonnegative parts is theoreti-
cally justified by the stable property of this distribution
family. Student’s ¢ distribution has a degree-of-freedom
parameter that determines the shape of the distribution
and its super-Gaussianity. Similar to the GGD, Student’s
t distribution includes Cauchy and Gaussian distribu-
tions as special cases, which are also special cases of the
a-stable distribution. Therefore, NMF source modeling
(decomposition of complex-valued spectrogram Y,) in
t-ILRMA is partially justified when the Gaussian or
Cauchy distribution is assumed, which is theoretically
preferable for audio signal processing.

In addition, we introduce a new domain parameter for
NMF modeling in GGD- and ¢-ILRMA because the gener-
ative model of a spectrogram strongly depends on the data
domain, such as the selection of the amplitude- or power-

Table 4 Experimental conditions

Sampling frequency 16 kHz
Window function in STFT
Window length in STFT

Shift length in STFT

Hamming window
4096 points (256 ms)
2048 points (128 ms)

Number of NMF bases K Four for music case and two for
speech case
Number of iterations of update rules 200

Uniform random values in the
range (0,1)

Initial values of T, and V/,

Initial values of W; Identity matrix

domain spectrogram to be used. By controlling both the
generative model and the modeling domain of data, we
can find a suitable statistical assumption for the audio BSS
problem.

3.2 ILRMA based on GGD

3.2.1 Generative model and objective function in
GGD-ILRMA

In GGD-ILRMA, we assume the isotropic complex GGD

as the source generative model, which is independently

defined in each time-frequency slot as follows:

p(¥n) =[]0
ij

_ 1—[ B exp |:_ <|yijvn|>ﬂ:| (28)
ij 271'0‘1'}2»’"1—‘ (%) Oijn
0'5,;4 = Z Lik,nVijn» (29)
k

where o;; , is the time-frequency-varying scale parameter,
I'(-) is a gamma function, and p is the domain parameter
in the NMF modeling. The distribution (28) is depicted in
Fig. 4a. The p.d.f. becomes identical to (9) when g =
For 8 = 1, (28) corresponds to the complex Laplace distri-
bution. Similar to (9), the probability of (28) only depends
on |y;xl, and the phase of y;, is uniformly distributed.
From (28), the objective function in GGD-ILRMA can be
obtained as follows by assuming independence between
sources:

Lcep = —2] Y _log|det W]
i

n Z |yzj,n|

ijin (Zk Lik nd],

log (Z LiknVijn )
277 (3)
—

B
p

+ IJN log (30)




Kitamura et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:28 Page 9 of 25

- p=20
> p=10 |-

) \ b
AN

A

\

SDR improvement [dB]
(o]

RN

A\
N

4 -t

v

N

MNMF
IVA  GGD- t-MNMF

IVA GGD-ILRMA

0 “Laplace

v = 1 are shown, which are their best parameter settings

1 1 1 1 1 1 1 1 1 1 1 1 1
ILRMA 2.00 1.99 1.98 1.94 1.82 1.40 1.00 0.50 1000 300 100 30 10 3 2 1

14
tILRMA

Fig. 7 Average SDR improvements of Music 1 signal with E2A_ 1 using fixed parameters. The results for GGD-IVA and t-MNMF using g = 0.5 and

It is obvious that GGD-ILRMA (30) coincides with the
conventional ILRMA (13) when 8 = p = 2.

3.2.2 Derivation of update rules for GGD-ILRMA

First, we derive the iterative update rules for obtaining W;
that optimizes (30). Since it is difficult to directly calcu-
late the partial derivative of (30) w.r.t. w;,, we use an MM
algorithm, i.e., we minimize the majorization function
(upper-bound function) instead of the original objective
function. This approach can indirectly minimize the orig-
inal function (30). Unlike the conventional ILRMA (13),
GGD-ILRMA (30) includes the term |yi,-,n|ﬂ = |w}:[nxi/{ﬁ .
If we bound this term by |y;;,|?, the MM-algorithm-based
efficient optimization, IP, can be used for GGD-ILRMA
because the objective function becomes identical to the

conventional ILRMA (13) w.r.t. w;,. To achieve this, we
use the following inequality:

B B
inl® < =g lyial® + (1= 5 ) v (31)
ij,n

to design a majorization function of (30), where y;;, > 0
is an auxiliary variable and the equality of (31) holds if and

only if
Yijm = Yijnl. (32)
Note that the inequality (31) holds only for 0 < 8 < 2,
and the other values of B are beyond the scope of this

16
—-—-p=20
14 —>=p=1.0
—+—p=05
——p=01 p—
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Fig. 8 Average SDR improvements of Music 4 with E2A_ 1 signal using fixed parameters. The results for GGD-IVA and t-MNMF using g = 0.5 and
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Fig. 9 Average SDR improvements of Speech 2 with E22 1 signal using fixed parameters. The results for GGD-IVA and t-MNMF using 8 = 1.0 and
v = 1 are shown, which are their best parameter settings

paper. By applying (31) to (30), the majorization function Gi, = B 1 xiij (34)
B

i ’ 2 2—
of (30) can be designed as J i Vin p (Z X tik,nvkj,n) p

Laoep < —2] Y log|det Wi
! where C; includes the constant terms that do not depend
13|yl.j,n|2 2-8) ylf " on w;,. Since (33) has the same form as the conventional

+ ILRMA (14) w.r.t. w;,, we can apply IP to the majoriza-
2 (Zk tik,nvkj,") tion function (33). The update rules for w;, are derived
onT (Z) as (34) with (32) and (17)—(19), where (34) coincides with

2
+= log (Z tik,nm,n> +INTog——"2 (16) when p = p =2.
p k p Next, we derive the update rules for T, and V,,. They

— _9 log | det W; HG w cl, can also be derived by designing a majorization func-
]Xi: og| det Wil +]%:w"” bW+ 1 tion and applying the MM algorithm. Since the term

ASTEsY
SRS

2—
i 2V, (s tiknvin)

33 (X tik,ndj,n)_; in (30) is always convex for all values of
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Fig. 10 Average SDR improvements of Speech 4 with E2A 1 signal using fixed parameters. The results for GGD-IVA and t-MNMF using 8 = 0.5 and
v = 1 are shown, which are their best parameter settings
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Fig. 11 Average SDR improvements of Music 2 signal with E22 2 using fixed parameters. The results for GGD-IVA and t-MNMF using 8 = 0.5 and

v = 1 are shown, which are their best parameter settings

B > 0and p > 0, we can bound this term using Jensen’s

inequality as

|
SRS

Z Lik,nVijn
k

>

(sij,nk
k

B
Lik,nVikin \ 7
D Sk (5’> ., (35)
k

IA

_B
Lik,n Vijn ) 4
8ij nk

ij,nk

where §;,x > 0 is an auxiliary variable that satisfies
>« Sijnk = 1. Also, the term log " ti Vi), in (30) can be
bounded by the tangent-line inequality as

1
log > tiknVign < € D tiknVign — 1
k TNk
+ log €, (36)

where €;;,, > 0 is an auxiliary variable. The equalities of
(35) and (36) hold if and only if

Lik,nVijn
Sijnk = S v (37)
Zk/ ik’ ,nVk j,n
€ijn = Z tik,erkj,nr (38)

k

respectively. By applying (35) and (36) to (30), the
majorization function of (30) can be designed as
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Fig. 12 Average SDR improvements of Music 3 with E2A_ 2 signal using fixed parameters. The results for GGD-IVA and t-MNMF using 8 = 0.5 and
v = 30 are shown, which are their best parameter settings
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Fig. 13 Average SDR improvements of Speech 1 with E2A_ 2 signal using fixed parameters. The results for GGD-IVA and t-MNMF using 8 = 1.0 and
v = 1 are shown, which are their best parameter settings

Laap < —2 ) log|det W,
i ﬂ 8L]nk |yl}"| 2
,,+ Z p( )ﬁ+ Vkjn + o Vkin =0.
- ij,n
ik ‘yzl,nl 2 ] tlk nd},
+ Z Z ll 7+ (thknl’k;, )-l—logeii,n
bjn| k (Zt,k nVkj, n) Peijn p
The solution of this equation is
27T (2)
B
+ IJNlog ———~
B
8 r_
8 ijal? o\
gk \Vijn Yiin
= Z Z 7”” ﬁ - Z tik, nd/, + CZ; }3 Z l}nkﬁ 11 ij,?l
ijn k (tik,nvkj,n) Peijn k1+
Likn = - (40)
(39) 2 Zj 6L.}ijj,n
where Cy includes the constant terms that do not depend
on ik, or vy; . By setting the partial derivative of (39) w.r.t. Then, we can obtain the following update rule for tj ;
Likn to zero, we have by substituting (37) and (38) into (40):
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Fig. 14 Average SDR improvements of Speech 3 with E2A_ 2 signal using fixed parameters. The results for GGD-IVA and t-MNMF using 8 = 0.5 and
v = 1 are shown, which are their best parameter settings




Kitamura et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:28

Page 13 of 25

Table 5 Overall average SDR improvements (dB) in two-source case for the best parameter settings

Source and impulse response  Laplace VA GGD-IVA MNMF  -MNMF ILRMA  GGD-ILRMA t-ILRMA
Musicand E2A 1 241 311(8=05) 242 330(v=1) 6.24 752(8=194,p=05) 761 (»v=1000,p=0.5)
Speechand E2A_ 1 394 489 (B=05) -204 094 (v=15 773 8.70(8=194,p=05) 873 (v=1000,p=1.0)
Music and E2A_2 1.97 219(8=05) -2.25 -003(v=1) 497 6.30(8=198,p=05) 639 (=1000,p=0.5)
Speech and E2A_2 3.76 463 (B=05) -341 079 (v=15) 576 636 (8=194,p=05) 6.17 (v=1000,p=1.0)
[yijnl? 7
Yijn . 4 — ..
B Z/ §+1 Vijn p(Yy) HPO’I/,n)
(Zk' Lk Vk’j,n) 2
ik < tikn 2y 1 (41) ) 2
Vi, y
J Zk/ tik’,nvk’j,n J:n _ 1—[ 1 1 + g |yl]Vl| ) (43)
To? v o2
ij ij,n ij,n

Similar to (41), we can obtain the update rules for v; , as

lyijnl? P
Yij,n +p
tik,n

B

P
(Zk’ tik’.nvk’j,n)

1
2 Zi Zk’ tik’,nvk’/,n tlk,n

(42)

Vijn <= Vijn

These algorithms can be interpreted as NMF based
on the GGD (hereafter called GGD-NMF). Since the
derivations of the update rules are based on the MM
algorithm, they ensure the monotonic decrease in the
objective function in each iteration.

3.3 ILRMA based on Student’s t distribution

3.3.1 Generative model and objective function in t-ILRMA
In t-ILRMA, the isotropic complex Student’s ¢ distribu-
tion is independently assumed in each time-frequency slot
as the following source generative model:

where v > 0is the degree-of-freedom parameter that con-
trols the super-Gaussianity of Student’s ¢ distribution and
0jj,n is defined as (29). The distribution (43) is depicted in
Fig. 4b. Similar to (28), this p.d.f. also becomes identical
to (9) when v — o0, and the probability of (28) does not
depend on the phase of y;; ;. For v = 1, (43) corresponds to
the complex Cauchy distribution. The objective function
of t-ILRMA can be obtained from (43) as

L= —ZJZlogldetWﬁ
i

v 2 inl?
n Z (1 n 7) log |1+ = [Yij,nl i
> 2 v H
ijn (Zk tik,n"kj,n)”
2
+1; log (Z tik,,,vk,»,n) + IJN log . (44)
k

When v — 0o and p=2, (44) coincides with (13).
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Fig. 15 Tempering approach for a GGD- and b t-ILRMA. The first half of the optimization is based on GGD-ILRMA with B = 2 and p = 1, and the
second half is the proposed method with arbitrary parameters, where the NMF source model is retrained using the temporary estimated signal after
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3.3.2 Derivation of update rules for t-ILRMA )
Similarly in Section 3.2.2, we first derive the iterative log [ 1+ 2 Wijn]
update rules for W; that optimizes (44) using the MM v (Zk tiankjn) H
algorithm. In the case of t-ILRMA, the objective function o
. 2. .
(44) includes the term |J/ij,n|2 = |w{lnxij] inside of the 1 2 |yij,n|2
logarithm function. Therefore, we bound this term by a = Cin 1+ v 7~ Sijn
y,n . .
linear function of |y;;,,|* using the following tangent-line ! (X tikn VkJ,n)p
inequality: + log &ijn, (45)
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Fig. 17 Average SDR improvements of Music 4 with E2A 1 signal using parameter tempering
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where ¢, > 0 is an auxiliary variable and the equality of  £; < —2/ Z log | det W
(45) holds if and only if i
1 2 .12
+y (1+E) 1+*L2_§ij,n
2 |yij,n|2 ijn 2 fij,n v (Zk L‘iank’n);7
Sijn =14 ———. (46) "
v 2
tiknViin)? v 2
(X tiknviin) + (1 + 5) log gjn + _ log <Z tik,nd;,n) }
k
By applying (45) to (44), the majorization function of + /N log 7
(44) can be designed as (47)
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H (49)

xijxl )

where C3 includes the constant terms that do not
depend on w;,. Since (48) has the same form as the
conventional ILRMA (14) w.r.t. w;,, we can apply IP
to the majorization function (48). The update rules
for w;, are derived as (49) with (46) and (17)-(19),
where (49) coincides with (16) when v — o0 and
p=2
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Fig. 21 Average SDR improvements of Music 3 with E2A_ 2 signal using parameter tempering
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Next, we derive the update rules for T, and V, in
the same manner as for GGD-NMF. Since the term
(Zk LiknViin) P in (47) is always convex for any value
of p, we can bound this term in the same manner as
(35), i.e.,

2
p

2
LiknVign \ P
= Z Nij,nk (LVI]H) ’ (50)

X Nijnk

Z Lik,n Vijn
k

where ;x> 0 is an auxiliary variable that satisfies
>« Niink = 1. The equality of (50) holds if and only if

Lik,n Vijn

_. (51)
Zk’ Lik VK jm

Nijnk =

Also, the term log ) ; tix »Vij,» in (47) can be bounded
by (36). By applying (50) and (36) to (47), we can design a
further majorization function of (47) as follows:
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Fig. 23 Average SDR improvements of Speech 3 with E2A_ 2 signal using parameter tempering
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Table 6 Overall average SDR improvements (dB) in two-source case employing parameter tempering for the best parameter settings

Source and impulse response ILRMA GGD-ILRMA t-ILRMA

Musicand E2A 1 6.24 7.66 (B=199,p=0.5) 747 (v=1000, p=0.5)
Speech and E2A_ 1 7.73 9.09 (B=194,p=0.5) 861 (v=3,p=10)
Music and E2A_2 522 6.87 (8=1.94,p=0.5) 6.81 (v=1000,p=0.5)
Speech and E2A_2 6.09 6.45(8=1.98,p=05) 6.05 (v=30,p=2.0)
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where C; includes the constant terms that do not depend
on Zi , OF Vi ,. By setting the partial derivative of (52) w.r.t.
tikn to zero, we have
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The solution of this equation is obtained as
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Fig. 24 Average SDR improvements of shorter Music 1 signal (2.5 s) with E2A_ 1 using fixed parameters
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Then, we can obtain the following update rule for ¢ ,
by substituting (51) and (38) into (54):
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These update rules are similar to those in £-NMF [39],
but they include the new domain parameter p. Similar to
GGD-ILRMA, all the derivations of the update rules are
based on the MM algorithm, thus ensuring their theoreti-
cal convergence.

3.4 Relationship between GGD- and t-ILRMA

The update rules for ¢ , and vy;, (the GGD- and t-NMF
parts in GGD- and ¢-ILRMA, respectively) have an inter-
esting relationship. To clarify this issue, we here interpret
these two NMF models in relation to the IS-NMF used in
the original ILRMA. In GGD- and t-NMF, we introduced
a new parameter p that determines the signal domain
of the low-rank modeling, whereas IS-NMF is typically
applied to the observed power spectrogram (p = 2) [29].
To fill the gap in the formulation between IS-NMF and
GGD- or t-NMF, we use the following generalized version
of the update rules for IS-NMF:

Table 7 Overall average SDR improvements (dB) in two-source case with various signal lengths for the best parameter settings

Source and signal length ILRMA GGD-ILRMA t-ILRMA

Music (2.5 s, short) 3.38 343(8=199,p=20) 351 (v=2,p=10)
Music (5.0 s, original) 6.24 7.52(8=194,p=05) 7.61 (v=1000,p=0.5)
Music (10.0 s, long) 7.29 8.83(8=2.00,p=1.0) 8.92 (v=1000, p=0.5)
Speech (5.0 s, short) 7.26 769 (8=198,p=05) 833 (v=1000,p=1.0)
Speech (10.0 s, original) 773 8.70 (8=1.94,p=0.5) 8.73 (v=1000,p=1.0)
Speech (20.0's, long) 8.05 841(8=194,p=10) 829 (v=300,p=1.0)
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Table 8 Dry sources used in three-source case
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Signal Data name Sources (1/2/3) Signal lengths [s]
Music 1 Melody 2/Midrange/Bass Clarinet/Piano/Cello 50
Music 2 Melody 1/Melody 2/Bass Horn/Clarinet/Bassoon 50
Music 3 Melody 1/Midrange/Bass Trumpet/Piano/Bassoon 50
Music 4 Melody 2/Midrange/Bass Violin/Harpsichord/Bassoon 50
Speech 1 dev1_female4 src_1/src_2/src_3 10.0
Speech 2 dev1_female4 src_2/src_3/src_4 10.0
Speech 3 devl_male4 src_1/src_2/src_3 10.0
Speech 4 devi_male4 src_2/src_3/src_4 10.0
2 b ; p
Z' |Yijnl . ij,n Z/ Zij,n 5 ij,n B+p
J (Zk tik,nvkj,n) (Zk’ Ll o Vi )
Likyn <= tikn ’ (58) t: . e 60
’ ’ 3 I S Vijn ik < Likn 1 ’ (60)
J 2ok tiknVijn > S Vi
[Yijn |2 b where 1— B
Zi (S b )2 Lik,n r
Vi < Vign el , (59 Zin= lyzml Z b Vi
Z Zk Lankjn i M
,3 s 1-L
where b is a new exponent parameter. Note that (58) and Yijnl? o n (61)

(59) with b = 0.5 were originally derived on the basis of
the MM algorithm [50], then the update rules with b = 1
were derived using the majorization-equalization (ME)
algorithm [53]. Recently, we have proven that (58) and (59)
with any value of b in the range (0, 1] can be interpreted
as valid update rules of IS-NMF, which are obtained by
applying the parametric ME algorithm to the objective
function in IS-NMF, and can be used for IS-NMF or
ILRMA without losing the theoretical convergence [54].
This parameter b controls the optimization speed of the
NMEF variables £, and vy, and b = 1 provides the
fastest convergence in IS-NMF.
For GGD-NMTF, (41) can be reformulated as

Impulse response E2A

(reverberatlon time: 7'60 300 ms)
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Fig. 26 Spatial arrangement of impulse responses used in
three-source case

The update rule of GGD-NMF (60) corresponds to that
of IS-NMF (58) by assuming the observed signal as (61),
which is the “geometric mean” of the data |y;»| and the
low-rank model o3, with a ratio of /p to 1 — (8/p). In
contrast, for --NMTF, (55) can also be rewritten as
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As mentioned in [39], the update rule of t--NMF (62) cor-
responds to that of IS-NMF (58) by assuming the observed
signal to be (63), which is the “harmonic mean” of |y,-j,,1|2
and oiz.,n with a ratio of v to two. The same reformulation
can be found for the variable vy; ;.

These facts mean that both NMF algorithms approxi-
mate the virtual observation z;;,, by the low-rank model
oy in the ISNMF sense. Since z;, consists of the
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geometric or harmonic mean of the real observation |y;|
and the current low-rank model oy, low-rankness of
the estimated (updated) model o3, tends to be more
emphasized compared with the ISNMF decomposition
using only the observation |y;;,|. In other words, the geo-
metric or harmonic mean in Zijn prevents ojj, from an
overfitting to |y;;,| by ignoring sparse outliers in |y;,l,
which enhances the low-rank decomposition. In (61) or
(63), the shape parameter 8 or v controls the intensity
of such low-rank enhancement in NMF decomposition.
However, intriguingly, the domain parameter p also affects
the estimation of the low-rank model o ,. In GGD-NMF
(61), by setting p < B, the geometric mean corre-
sponds to the point externally dividing |y;;,| and oy,
which mitigates the intensity of the low-rank enhance-
ment mentioned above. Also, in ¢-NMF, p < 2 causes

the same behavior because the term 05 ;2 exists in (63),
where the inverse of Gli;p (2 — p > 0) mitigates the

low-rankness.

In summary, as shown in Table 1, smaller 8 and
v, which correspond to the sparse signal model, can
inject the low-rank nature in GGD- and ¢-ILRMA,
whereas a smaller p mitigates the property; the opti-
mal balance among them will be discussed later on
the basis of experimental evaluations. For ILRMA-based
BSS, we can expect that such low-rank enhancement
in NMF leads to the more accurate estimation of W;.
This is because the estimation of the low-rank model
0j,» becomes robust against outliers in the separated
signal |y;x|, and we can correctly capture the inher-
ent spectral parts in the time-frequency structure of
each source.

In addition, it is worth mentioning that the exponent
value of the NMF update rules, b, is also important
for ILRMA. It has been experimentally revealed that a
smaller value of b is preferable for achieving better sepa-
ration performance, although the optimized speed of r;;,
becomes slow. This may be to avoid trapping at a poor
local minimum in the early and middle stages of the itera-
tion in ILRMA because the optimization balance between
W; and rj, is significant for converging toward a bet-
ter solution. In GGD- or ¢-ILRMA, the exponent value
in (60) or (62) is defined as p/(8 + p) or p/(p + 2),
respectively. These values become small when p is small
and B is large, which may result in a better separation
result.
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4 Results and discussion

To evaluate our proposed algorithms, we conducted
some BSS experiments using music and speech mixtures.
We first compared various conventional methods using
observed signals in the case of two sources and two
microphones. Then, we compared the conventional and
proposed ILRMA in a more difficult situation with three
sources and three microphones.

4.1 Dataset

We artificially produced monaural dry music sources
of the four melody parts depicted in Fig. 5 using a
YAMAHA MU-1000 PCM-based MIDI tone synthe-
sizer, where several musical instruments were chosen
to play these melody parts as shown in Table 2 [55].
The sources were selected to construct typical com-
binations of instruments with different melody parts
(because the sources that simultaneously play the same
melody are rare), where only the six combinations,
Music 1-Music 6, were adopted for the sake of avoid-
ing combinatorial explosion. For the speech signals,
we used the monaural dry speech sources from the
source separation task in SiSEC2011 [56] whose data
names are devl femaled4 and devl male4 [57]. The
detailed conditions of these speech signals are described
in [56, 57].

4.2 BSS experiment with two sources

4.2.1 Conditions

In this experiment, we compared the seven methods
shown in Fig. 1, namely, Laplace IVA (optimized by IP)
[49], GGD-IVA (optimized by IP) [17], MNMF (based
on a multivariate complex Gaussian distribution) [32],
t-MNMEF [40], ILRMA (based on a complex Gaussian dis-
tribution with a time-frequency-varying variance) [34],
GGD-ILRMA, and ¢-ILRMA. The dry sources used in
this experiment are shown in Table 3. To simulate
a reverberant mixture, the mixture signals were pro-
duced by convoluting the impulse response E2A, which
was obtained from the RWCP database [58], with two
spatial arrangements, E2A_1 and E2A_2. The record-
ing conditions of the impulse responses in E2A 1
and E2A 2 are depicted in Fig. 6. The other condi-
tions are shown in Table 4. As the evaluation score,
we used the improvement of the signal-to-distortion
ratio (SDR) [59], which indicates the overall separation
quality.

Table 9 Overall average SDR improvements (dB) in three-source case for the best parameter settings

Source ILRMA GGD-ILRMA t-ILRMA

GGD-ILRMA w/ tempering t-ILRMA w/ tempering

Music 1.76
Speech 2.79

324 (B=194,p=05)
314 (B=194,p=10)

319 (v =300, p=0.5)
2.94 (v=1000,p=10)

336 (8=182,p=10)
332 (8=140,p=0.5)

329(v=1,p=10)
322(v=10,p=20)
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4.2.2 Results using fixed parameters

Figures 7, 8, 9, and 10 show examples of the average
SDR improvements for Music 1, Music 4, Speech 2, and
Speech 4, respectively, with the E2A 1 spatial arrange-
ment. Ten trials with different random seeds were per-
formed for all the methods. Note that conventional
ILRMA and GGD-ILRMA with 8 = p = 2 are the same
method. Also, for GGD-IVA and t-MNME, the results
are shown for the best parameter settings 8 and v, as
described in the caption of each figure. Similar to the
E2A 1 results, we show examples of results for Music 2,
Music 3, Speech 1, and Speech 3 with the E2A 2 spa-
tial arrangement in Figs. 11, 12, 13, and 14, respectively.
Table 5 indicates the overall average results for all music
and speech signals with E2A_1 and E2A_ 2, respectively,
with the best parameter settings. From these results, we
can confirm that the conventional and proposed ILRMA
mostly outperform the other methods and that there are
several settings of p and B or v that outperform the con-
ventional ILRMA based on the Gaussian distribution. In
particular, the proposed methods withp = 1.0 or p = 0.5
often outperform the same methods with other values of
p. However, regarding the parameters 8 and v, smaller val-
ues produce poor separation results except for -ILRMA
in Fig. 8 (Music 4). This is because the NMF source model
with the heavy-tailed distribution excessively enhances
the low-rankness in the early stage of the iterative opti-
mization, which can cause the serious problem of the
sourcewise NMF model incorrectly capturing the spec-
trogram of the mixture signal by ignoring the important
components for discriminating the sources, and the esti-
mated signals become a distorted mixture signal and an
artificial residue.

4.2.3 Results using parameter tempering

To solve the problem described in Section 4.2.2, we
applied a tempering approach to the parameters in GGD-
or t-ILRMA. The detailed tempering process is shown
in Fig. 15. In the first half of the optimization, we per-
form GGD-ILRMA with 8 = 2 and p = 1. Then, the
NMF source model T,V is retrained using a tempo-
rary estimated signal. After that, ILRMA with the desired
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distribution (desired parameters pr and Bt or vr) is per-
formed using the pretrained W, T, and V,,. The inter-
mediate NMF process is based on the same parameters
(pr and Br or vr) as the subsequent ILRMA in the sec-
ond half of the optimization. This can be considered as a
binary tempering approach that avoids overfitting of the
source model to the mixture signal. Note that we also
attempted a more precise tempering approach involving
continuously changing the parameters in every iteration,
but the binary tempering approach shown in Fig. 15
achieved the most accurate and stablest results. The rea-
son why we started from not p = 2 butp = 1is thata
small exponent value, p/(8 + p) in (41) and (42) or p/(p +
2) in (55) and (57), in the NMF update rules provides
better separation as revealed in [54], where the exponent
value monotonically decreases as a value of p decreases.
Indeed, the results in Section 4.2.2 showed outstanding
performance for p = 1 rather than p = 2.

Figures 16, 17, 18, 19, 20, 21, 22, and 23 show examples
of results with the proposed tempering approach, where
the signals correspond to Figs. 7, 8, 9, 10, 11, 12, 13, and
14 with parameter tempering, and Table 6 shows the over-
all average results for all the signals. The results show that
the parameter tempering improves the separation, partic-
ularly in ILRMA with heavy-tailed source models. Also,
it further improves the results obtained using fixed values
of the parameters. In total, the proposed generalization of
ILRMA can achieve approximately 1.2 dB improvement in
the SDR compared with the conventional ILRMA with the
Gaussian model, which is a significant gain in BSS tasks
with two sources.

4.2.4 Performance for various signal lengths

In BSS framework, the length of observed signal is impor-
tant to achieve the better separation performance. This
is because the accuracy of statistical estimation decreases
when the number of time frames J is insufficient [60, 61].
In the extreme case, the demixing matrix W; cannot be
updated by IP when J = 1 because the rank of U; ,, in (16),
Giy in (34), or H;, in (49) becomes unity. However, it is
not clarified whether the heavy-tailed source distribution
provides more robust statistical estimation for fewer time

Table 10 Relative computational times normalized by Laplace IVA based on IP, where the length of the observed signal is 10 s

Method

Two-source case Three-source case

Laplace IVA based on IP [49]
GGD-IVA based on IP [17]

MNMF based on MM algorithm [32]
t-MNMF based on MM algorithm [40]
ILRMA based on IP [34]

GGD-ILRMA based on IP

t-ILRMA based on IP

1.00 1.00
1.04 1.20
49.25 5142
57.87 60.31
1.10 1.19
1.32 1.38
1.20 1.27
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frames or not. Thus, in this subsection, we experimentally
compare the separation performance of ILRMA, GGD-
ILRMA, and ¢-ILRMA for the observed signals with fewer
and more time frames.

To simulate the short and long source signals, we
utilized the dry sources described in Table 3. As the
short dry sources, the music and speech signals were
trimmed only to the former half, and their signal lengths
were 2.5 s (music) and 5.0 s (speech), respectively. In
contrast, the long music and speech signals were pro-
duced by repeating the entire length of the dry sources
twice, namely, the signal lengths of the long music and
speech dry sources become 10.0 s (music) and 20.0 s
(speech), respectively. These dry sources were convo-
luted with E2A_1 to produce the observed mixture sig-
nal with two sources, where the combinations of dry
sources were the same as those described in Table 3. The
other experimental conditions were the same as those
in Section 4.2.2.

Figures 24-and 25 show the results of Music 1 for shorter
and longer signals, respectively. Also, Table 7 shows the
overall average results for all the signals. By comparing
these figures and Fig. 7 (the results of Music 1 with the
original length), we can confirm that the separation per-
formance of all the methods improves in proportion to the
number of time frames /. Similarly to ILRMA, GGD- and
t-ILRMA also suffer from the degradation of separation
performance depending on the decrease of J regardless of
the heavy tail property.

4.3 BSS experiment with three sources

To emphasize the advantage of the proposed methods, we
investigated a more difficult situation with three sources.
In this experiment, for the sake of simplicity, we only
compared the conventional ILRMA and the proposed
GGD- and ¢t-ILRMA. The used dry sources are shown in
Table 8, which were convoluted with the impulse response
depicted in Fig. 26. The other conditions were the same as
those in Section 4.2.

Table 9 shows the overall average results of each
method. Similar to the previous results, the proposed
methods outperform the conventional ILRMA, and the
tempering approach slightly improves the quality of sep-
aration compared with GGD- or ¢-ILRMA with fixed
parameters.

4.4 Comparison of computational times

To demonstrate the optimization efficiency of ILRMA,
we compared the computational times of Laplace IVA,
GGD-IVA, MNME, t-MNME, ILRMA, GGD-ILRMA, and
t-ILRMA. The update calculation for the NMF param-
eters in each algorithm was almost the same, but the
estimation of the spatial parameter (W; for ILRMA-based
methods and the spatial covariance for MNMF-based
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methods) was different. Although ILRMA-based meth-
ods require one inverse of W;U;, for each i and
n, MNMF-based methods require J inverses and two
eigenvalue decompositions of the M x M matrix.
Table 10 shows relative computational times normal-
ized by that of Laplace IVA based on IP [49], where
the conditions are the same as in Table 4 and we
used MATLAB 9.2 (64-bit) with an AMD Ryzen 7
1800X (8 cores and 3.6 GHz) CPU. From this table, we
can confirm that the computational time of ILRMA-
based methods is not significantly larger than that
of IVA, whereas that of MNMF-based methods is
significantly larger.

5 Conclusions

In this paper, we proposed two generalizations of the
source distribution assumed in ILRMA that introduce a
heavy-tailed property by using the GGD and Student’s
¢t distribution. The GGD can be considered as a natu-
ral extension of the conventional Gaussian source model,
and Student’s ¢ distribution partially satisfies the stable
property of complex-valued random variables, which is
desirable for NMF-based low-rank decomposition. We
derived efficient optimization algorithms for GGD- and
t-ILRMA, which ensure a monotonic decrease in the
objective function and provide faster computation than
existing MNMF-based BSS methods. Also, we revealed
an interesting relationship between GGD- and ¢-NMF:
GGD-NMEF is equivalent to IS-NMF upon assuming the
geometric mean of the data and the low-rank model
as an observation, whereas t-NMF corresponds to the
same algorithm with the harmonic mean of the data
and the low-rank model as previously mentioned. These
properties lead to more accurate parameter estima-
tion in an ILRMA-based BSS framework, resulting in
higher separation accuracy than the conventional ILRMA
with the Gaussian source distribution. From the exper-
iments, it is confirmed that the proposed generalized
ILRMA improves the separation accuracy, especially
for the music mixture signals. However, the improve-
ment for speech mixture signals is still limited. This is
because typical speech sources do not have an appar-
ent low-rank time-frequency structure, and NMF-based
source model in ILRMA cannot capture the precise
spectral structures in speech sources even if the source
model is generalized by the heavy-tailed distributions.
The better modeling for speech sources remains as
a future work.

Endnote
! Note that ILRMA was originally called rank-1 MNMF
in [33, 34]. After the original publications, we renamed

the method to clarify that ILRMA is a natural extension
of IVA.
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Independent low-rank matrix analysis based on Student's t distribution;
t-MNMF: Multichannel nonnegative matrix factorization based on Student’s ¢
distribution; t--NMF: Nonnegative matrix factorization based on Student’s t
distribution; Time-varying Gaussian IVA: Independent vector analysis based on
Gaussian distribution having a time-varying variance

Acknowledgements
The authors would like to thank the anonymous reviewers for their valuable
comments and suggestions that helped improve the quality of this manuscript.

Funding

This work was partly supported by the ImPACT Program of Council for Science,
SECOM Science and Technology Foundation, and JSPS KAKENHI Grant
Numbers JP16H01735, JP17H06101, and JP17H06572.

Availability of data and materials
Not available online. Please contact author for data requests.

Authors’ contributions
All authors have contributed equally. All authors have read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

TNational Institute of Technology, Kagawa College, 355 Chokushi, Takamatsu,
Kagawa 761-8058, Japan. 2The University of Tokyo, 7-3-1 Hongo, Bunkyo,
113-8656 Tokyo, Japan. 3Tokyo Metropolitan University, 6-6 Asahigaoka, Hino,
191-0065 Tokyo, Japan. 4Yamaha Corporation, 203 Matsunokijima, Iwata,
438-0192 Shizuoka, Japan.

Received: 6 November 2017 Accepted: 19 April 2018
Published online: 02 May 2018

References

1. P Bofill, M Zibulevsky, Underdetermined blind source separation using
sparse representations. Signal Process. 81(11), 2353-2362 (2001)

2. S Araki, H Sawada, R Mukai, S Makino, Underdetermined blind sparse
source separation for arbitrarily arranged multiple sensors. Signal Process.
87(8), 1833-1847 (2007)

3. LZhen,DPeng, ZYi,Y Xiang, P Chen, Underdetermined blind source
separation using sparse coding. IEEE Trans. Neural Netw. Learn. Syst.
28(12),3102-3108 (2017)

4. P Comon, Independent component analysis, a new concept? Signal
Process. 36(3), 287-314 (1994)

5. P Smaragdis, Blind separation of convolved mixtures in the frequency
domain. Neurocomputing. 22(1), 21-34 (1998)

6.  SKurita, H Saruwatari, S Kajita, K Takeda, F Itakura, in Proc. IEEE Int. Conf.
Acoust, Speech, Signal Process. Evaluation of blind signal separation
method using directivity pattern under reverberant conditions, (2000),
pp. 3140-3143

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Page 24 of 25

H Sawada, R Mukai, S Araki, S Makino, in Proc. IEEE Int. Conf. Acoust, Speech,
Signal Process. Convolutive blind source separation for more than two
sources in the frequency domain, (2004), pp. 885-888

H Saruwatari, T Kawamura, T Nishikawa, A Lee, K Shikano, Blind source
separation based on a fast-convergence algorithm combining ICA and
beamforming. IEEE Trans. Audio Speech Lang. Process. 14(2), 666-678
(2006)

N Murata, S lkeda, A Ziehe, An approach to blind source separation based
on temporal structure of speech signals. Neurocomputing. 41(1-4), 1-24
(2001)

H Sawada, R Mukai, S Araki, S Makino, A robust and precise method for
solving the permutation problem of frequency-domain blind source
separation. [EEE Trans. Speech Audio Process. 12(5), 530-538 (2004)

H Sawada, S Araki, S Makino, in Proc. IEEE Int. Symp. Circuits Syst. Measuring
Dependence of Bin-wise Separated Signals for Permutation Alignment in
Frequency-Domain BSS, (2007), pp. 3247-3250

A Hiroe, in Proc. Int. Conf. Independent Compon. Anal. Blind Source
Separation. Solution of permutation problem in frequency domain ICA
using multivariate probability density functions, (2006), pp. 601-608

T Kim, T Eltoft, T-W Lee, in Proc. Int. Conf. Independent Compon. Anal. Blind
Source Separation. Independent vector analysis: an extension of ICA to
multivariate components, (2006), pp. 165-172

T Kim, HT Attias, S-Y Lee, T-W Lee, Blind source separation exploiting
higher-order frequency dependencies. IEEE Trans. Audio Speech Lang.
Process. 15(1), 70-79 (2007)

G Box, G Tiao, Bayesian Inference in Statistical Analysis. (Addison Wesley,
Reading, Mass, 1973)

T Itahashi, K Matsuoka, Stability of independent vector analysis. Signal
Process. 92(8), 1809-1820 (2012)

N Ono, in Proc. Asia-Pacific Signal and Info. Process. Assoc. Annual Summit
and Conf. Auxiliary-function-based independent vector analysis with
power of vector-norm type weighting functions, (2012)

M Anderson, GS Fu, R Phlypo, T Adali, in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. Independent vector analysis, the Kotz distribution, and
performance bounds, (2013), pp. 3243-3247

Y Liang, J Harris, SM Naqvi, G Chen, JA Chambers, Independent vector
analysis with a generalized multivariate Gaussian source prior for
frequency domain blind source separation. Signal Process. 105, 175-184
(2014)

Z Boukouvalas, GS Fu, T Adali, in Proc. Annual Conf. Info. Sci. and Syst.

An efficient multivariate generalized Gaussian distribution estimator:
application to IVA, (2015)

T Ono, N Ono, S Sagayama, in Proc. IEEE Int. Conf. Acoust,, Speech, Signal
Process. User-guided independent vector analysis with source activity
tuning, (2012), pp. 2417-2420

DD Lee, HS Seung, Learning the parts of objects by non-negative matrix
factorization. Nature. 401(6755), 788-791 (1999)

DD Lee, HS Seung, in Proc. Neural Info. Process. Syst. Algorithms for
non-negative matrix factorization, (2000), pp. 556-562

T Virtanen, Monaural sound source separation by nonnegative matrix
factorization with temporal continuity and sparseness criteria. I[EEE Trans.
Audio, Speech, Lang. Process. 15(3), 1066-1074 (2007)

P Smaragdis, B Raj, M Shashanka, in Proc. Int. Conf. Independent Compon.
Anal. Signal Separation. Supervised and semi-supervised separation of
sounds from single-channel mixtures, (2007), pp. 414-421

A Ozerov, C Févotte, M Charbit, in Proc. IEEE Workshop Applicat. Signal
Process. Audio Acoust. Factorial scaled hidden Markov model for
polyphonic audio representation and source separation, (2009),

pp. 121-124

D Kitamura, H Saruwatari, K Yagi, K Shikano, Y Takahashi, K Kondo, Music
signal separation based on supervised nonnegative matrix factorization
with orthogonality and maximum-divergence penalties. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. E97-A(5), 1113-1118 (2014)

D Kitamura, H Saruwatari, H Kameoka, Y Takahashi, K Kondo, S Nakamura,
Multichannel signal separation combining directional clustering and
nonnegative matrix factorization with spectrogram restoration. [EEE/ACM
Trans. Audio, Speech, Lang. Process. 23(4), 654-669 (2015)

C Févotte, N Bertin, J-L Durrieu, Nonnegative matrix factorization with the
Itakura—Saito divergence. With application to music analysis. Neural
Comput. 21(3), 793-830 (2009)



Kitamura et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:28

30.

32.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

A Ozerov, C Févotte, Multichannel nonnegative matrix factorization in
convolutive mixtures for audio source separation. IEEE Trans. Audio,
Speech, Lang. Process. 18(3), 550-563 (2010)

H Kameoka, T Yoshioka, M Hamamura, JL Roux, K Kashino, in Proc. Int.
Contf. Latent Variable Anal. Signal Separation. Statistical model of speech
signals based on composite autoregressive system with application to
blind source separation, (2010), pp. 245-253

H Sawada, H Kameoka, S Araki, N Ueda, Multichannel extensions of
non-negative matrix factorization with complex-valued data. IEEE Trans.
Audio, Speech, Lang. Process. 21(5), 971-982 (2013)

D Kitamura, N Ono, H Sawada, H Kameoka, H Saruwatari, in Proc. IEEE Int.
Conf. Acoust, Speech, Signal Process. Efficient multichannel nonnegative
matrix factorization exploiting rank-1 spatial model, (2015), pp. 276-280
D Kitamura, N Ono, H Sawada, H Kameoka, H Saruwatari, Determined
blind source separation unifying independent vector analysis and
nonnegative matrix factorization. [EEE/ACM Trans. Audio, Speech, Lang.
Process. 24(9), 1626-1641 (2016)

D Kitamura, N Ono, H Sawada, H Kameoka, H Saruwatari, in Audio Source
Separation, ed. by S Makino. Determined blind source separation with
independent low-rank matrix analysis (Springer, Cham, 2018),

pp. 125-155. https://link.springer.com/chapter/10.1007%2F978-3-319-
73031-8_6#citeas

C Févotte, SJ Godsill, A Bayesian approach for blind separation of sparse
sources. IEEE Trans. Audio, Speech, Lang. Process. 14(6), 2174-2188 (2006)
S Leglaive, R Badeau, G Richard, in Proc. Eur. Signal Process. Conf.
Semi-blind Student’s ¢ source separation for multichannel audio
convolutive mixtures, (2017)

A Liutkus, D FitzGerald, R Badeau, in Proc. IEEE Workshop Appl. Signal
Process. Audio Acoust. Cauchy nonnegative matrix factorization, (2015)

K Yoshii, K Itoyama, M Goto, in Proc. [EEE Int. Conf. Acoust, Speech, Signal
Process. Student’s £ nonnegative matrix factorization and positive
semidefinite tensor factorization for single-channel audio source
separation, (2016), pp. 51-55

K Kitamura, Y Bando, K Itoyama, K Yoshii, in Proc. Int. Workshop Acoust.
Signal Enh. Student’s ¢ multichannel nonnegative matrix factorization for
blind source separation, (2016)

G Samorodnitsky, MS Taqqu, Stable Non-Gaussian Random Processes:
Stochastic Models with Infinite Variance. (Chapman & Hall/CRC Press,
Florida, 1994)

A Liutkus, R Badeau, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
Generalized Wiener filtering with fractional power spectrograms, (2015),
pp. 266-270

S Leglaive, U Simsekli, A Liutkus, R Badeau, G Richard, in Proc. IEEE Int. Conf.
Acoust.,, Speech, Signal Process. Alpha-stable multichannel audio source
separation, (2017), pp. 576-580

S Mogami, D Kitamura, Y Mitsui, N Takamune, H Saruwatari, N Ono, in
Proc. IEEE Int. Workshop Mach. Learn. Signal Process. Independent low-rank
matrix analysis based on complex Student's ¢-distribution for blind audio
source separation, (2017)

NQK Duong, E Vincent, R Gribonval, Under-determined reverberant audio
source separation using a full-rank spatial covariance model. [EEE Trans.
Audio Speech Lang. Process. 18(7), 1830-1840 (2010)

D Kitamura, N Ono, H Sawada, H Kameoka, H Saruwatari, in Proc. Eur.
Signal Process. Conf. Relaxation of rank-1 spatial constraint in
overdetermined blind source separation, (2015), pp. 1271-1275

DR Hunter, K Lange, Quantile regression via an MM algorithm. J. Comput.
Graph. Stat. 9(1), 60-77 (2000)

N Ono, S Miyabe, in Proc. Int. Conf. Latent Variable Anal. Signal Separation.
Auxiliary-function-based independent component analysis for
super-Gaussian sources, (2010), pp. 165-172

N Ono, in Proc. IEEE Workshop Appl. Signal Process. Audio Acoust. Stable and
fast update rules for independent vector analysis based on auxiliary
function technique, (2011), pp. 189-192

M Nakano, H Kameoka, JL Roux, Y Kitano, N Ono, S Sagayama, in Proc. IEEE
Int. Workshop Mach. Learn. Signal Process. Convergence-guaranteed
multiplicative algorithms for nonnegative matrix factorization with
beta-divergence, (2010), pp. 283-288

N Murata, S Ikeda, A Ziehe, An approach to blind source separation based
on temporal structure of speech signals. Neurocomputing. 41(1-4), 1-24
(2001)

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Page 25 of 25

D Kitamura, Algorithms for Independent Low-rank Matrix Analysis.
http://d-kitamura.net/pdf/misc/AlgorithmsForindependentLowRankMat
MatrixAnalysis.pdf. Accessed 27 Apr 2018

C Févotte, J Idier, Algorithms for nonnegative matrix factorization with
the B-divergence. Neural Comput. 23(9), 2421-2456 (2011)

Y Mitsui, D Kitamura, N Takamune, H Saruwatari, Y Takahashi, K Kondo, in
Proc. IEEE Int. Workshop Comput. Adv. Multi-Sensor Adaptive Process.
Independent low-rank matrix analysis based on parametric
majorization-equalization algorithm, (2017), pp. 98-102

D Kitamura, Open Dataset: songKitamura. http://d-kitamura.net/en/
dataset_en.htm. Accessed 27 Apr 2018

S Araki, F Nesta, E Vincent, Koldovsky, G Nolte, A Ziehe, A Benichoux, in
Proc. Int. Conf. Latent Variable Anal. Signal Separation. The 2011 signal
separation evaluation campaign (SiSEC2011):-audio source separation,
(2012), pp. 414-422

Third Community-based Signal Separation Evaluation Campaign (SiSEC
2011). http//sisec2011.wiki.irisa.fr. Accessed 27 Apr 2018

S Nakamura, K Hiyane, F Asano, T Nishiura, T Yamada, in Proc. Int. Conf.
Lang. Res. Eval. Acoustical sound database in real environments for sound
scene understanding and hands-free speech recognition, (2000),

pp. 965-968

E Vincent, R Gribonval, C Févotte, Performance measurement in blind
audio source separation. IEEE Trans. Audio, Speech, Lang. Process. 14(4),
1462-1469 (2006)

S Araki, R Mukai, S Makino, T Nishikawa, H Saruwatari, The fundamental
limitation of frequency domain blind source separation for convolutive
mixtures of speech. IEEE Trans. Speech and Audio Process. 11(2), 109-116
(2003)

D Kitamura, N Ono, H Saruwatari, in Proc. Eur. Signal Process. Conf.
Experimental analysis of optimal window length for independent
low-rank matrix analysis, (2017), pp. 1210-1214

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://link.springer.com/chapter/10.1007%2F978-3-319-73031-8_6#citeas
https://link.springer.com/chapter/10.1007%2F978-3-319-73031-8_6#citeas
http://d-kitamura.net/pdf/misc/AlgorithmsForIndependentLowRankMatrixAnalysis.pdf
http://d-kitamura.net/pdf/misc/AlgorithmsForIndependentLowRankMatrixAnalysis.pdf
http://d-kitamura.net/en/dataset_en.htm
http://d-kitamura.net/en/dataset_en.htm
http://sisec2011.wiki.irisa.fr

	Abstract
	Keywords

	Introduction
	Conventional method
	Formulation
	IVA
	ILRMA based on Gaussian distribution
	Generative model
	Objective function and update rules


	Proposed generalization of ILRMA
	Motivation and strategy
	ILRMA based on GGD
	Generative model and objective function in GGD-ILRMA
	Derivation of update rules for GGD-ILRMA

	ILRMA based on Student's t distribution
	Generative model and objective function in t-ILRMA
	Derivation of update rules for t-ILRMA

	Relationship between GGD- and t-ILRMA

	Results and discussion
	Dataset
	BSS experiment with two sources
	Conditions
	Results using fixed parameters
	Results using parameter tempering
	Performance for various signal lengths

	BSS experiment with three sources
	Comparison of computational times

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

