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validity of the proposed algorithms.
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The continuous generalized wavelet transform (GWT) which is regarded as a kind of time-linear canonical domain
(LCD)-frequency representation has recently been proposed. Its constant-Q property can rectify the limitations of the
wavelet transform (WT) and the linear canonical transform (LCT). However, the GWT is highly redundant in signal
reconstruction. The discrete linear canonical wavelet transform (DLCWT) is proposed in this paper to solve this
problem. First, the continuous linear canonical wavelet transform (LCWT) is obtained with a modification of the GWT.
Then, in order to eliminate the redundancy, two aspects of the DLCWT are considered: the multi-resolution
approximation (MRA) associated with the LCT and the construction of orthogonal linear canonical wavelets. The
necessary and sufficient conditions pertaining to LCD are derived, under which the integer shifts of a chirp-modulated
function form a Riesz basis or an orthonormal basis for a multi-resolution subspace. A fast algorithm that computes
the discrete orthogonal LCWT (DOLCWT) is proposed by exploiting two-channel conjugate orthogonal mirror filter
banks associated with the LCT. Finally, three potential applications are discussed, including shift sampling in
multi-resolution subspaces, denoising of non-stationary signals, and multi-focus image fusion. Simulations verify the
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1 Introduction

The linear canonical transform (LCT), the generalization
of the Fourier transform (FT), the fractional Fourier trans-
form (FrFT), the Fresnel transform and the scaling opera-
tions, has been found useful in many applications such as
optics [1, 2] and signal processing [3—11]. Higher concen-
tration and lower sampling rate make the LCT more com-
petent to resolve non-stationary signals. However, due to
the global kernel it uses, the LCT can only reveal the over-
all linear canonical domain (LCD)-frequency contents.
Therefore, the LCT is not competent in those scenarios
which require the signal processing tools to display the
time and LCD-frequency information jointly.

Chirplet transform (CT) was first proposed in [12] to
solve this problem. Like the other time-frequency repre-
sentations (TFRs), the CT projects the input signal onto
a set of functions that are all obtained by modifying an
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original window function (i.e., mother chirplet) [13]. Due
to the chirping operation, the users are available to new
degrees of freedom in shaping the time-frequency cells
with respect to the other TFRs. However, as the non-
orthogonality between the chirplet with different chirp
rates, the CT is very redundant which makes the compu-
tational complexity too high.

The short-time fractional fourier transform (STFrFT)
introduced in [14] is regarded as a kind of time-fractional-
Fourier-domain-frequency representation. It plays a pow-
erful role in the 2D analysis of the chirp signals because
the short-time fractional Fourier domain support is com-
pact when the matched order STFrFT is taken. However,
the continuous STFrFT is highly redundant on its 2D
plane (¢, ) in signal reconstruction, and its computational
complexity is high.

A novel fractional wavelet transform (NFrWT) based on
the idea of the FrFT and the wavelet transform (WT) was
proposed in [15, 16]. It takes the fractional convolution
between the signal and the conventional wavelets which
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makes the NFrWT available with tunable time and frac-
tional Fourier domain frequency resolutions and constant
Q-factor. However, in the process of the multi-resolution
analysis of the discrete NFrWT, the coefficients of each
layer need to be chirp modulated and de-modulated with
different chirp rates in different layers (see Fig. 1). Such
kind of operation simply increases the complexity of the
NErWT which makes it hardly to use in practice. Similar
idea of taking the linear canonical convolution between
the signal and the conventional wavelets was introduced
in [17]. However, the GWT is lack of reasonable physi-
cal explanation. The continuous GWT is highly redundant
as well.

In this paper, we propose the discrete linear canonical
wavelet transform (DLCWT) to solve these problems. In
order to eliminate the redundancy, the multi-resolution
approximation (MRA) associated with the LCT is
proposed, and the construction of a Riesz basis or an
orthogonal basis is derived. Furthermore, to reduce the
computational complexity, a fast algorithm of DOLCWT
is proposed based on the relationship between the discrete
orthogonal LCWT (DOLCWT) and the two-channel
filter banks associated with the LCT. As a kind of time-
LCD-frequency representation, the proposed DLCWT
allows multi-scale analysis and the signal reconstruction
without redundancy. Finally, three applications are dis-
cussed to verify the effectiveness of our proposed method.

The rest of this paper is organized as follows. In
Section 2, the goals and methodologies of our paper are
presented. The LCT is introduced as well. In Section 3, the
theories of the continuous LCWT are proposed, includ-
ing the physical explanation and the reproducing kernel.
In Section 4, the theories of the DLCWT are proposed,
including the definition of multi-resolution approxima-
tion, the necessary and sufficient conditions to generate a
Riesz basis or an orthonormal basis, and the fast algorithm
that computes the DOLCWT. In Section 5, three appli-
cations are discussed, including shift sampling in multi-
resolution subspaces, denoising of non-stationary signals,
and multi-focus image fusion. Finally, the Conclusions is
presented in Section 6.
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Fig. 1 The flow chart of coefficient decomposition of one layer DFfWT
(15]
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2 Methods

The aim of this paper is to eliminate the redundancy of
the GWT. First, we modify the definition of the GWT
slightly without having any effect on the partition of time-
LCD-frequency plane. Then, we discrete the continuous
dilation parameter and shift parameter to construct a
set of orthonormal linear canonical wavelets. Finally, we
exploit two-channel conjugate orthogonal mirror filter
banks to compute this novel discrete orthonormal trans-
form with lower computational complexity. The following
is the definition of the GWT.

2.1 The generalized wavelet transform
The GWT of x(¢) with parameter M = (A,B,C,D) is
defined as [17]

WM(a,b) = /

—00

+00
x(t)h}k\/f,a’b(t)dt (1)

where hyp, 5 (t) = e~ (=07 Y45 (t) denotes generalized
wavelets and ¥, ,(£) = a~ /2y <% denotes the scaled

and shifted mother wavelet function v (¢). It should be
noticed that the dilation parameter and the shift parame-
ter a,b € R. As a result, (1) is highly redundant when it is
used in signal decomposition and reconstruction.

The signal analysis tool used in our paper is the LCT
which is introduced as follows:

2.2 The linear canonical transform
The LCT of signal x(¢) with parameter M = (A,B, C,D) is
defined as [18]

Xpr(n) = Lar(x(0)(u)
| 22K dt, B#0 o
a @ei%”zx(Du), B=0

where A, B, C,D € R with AD — BC = 1, and the kernel

i(Ag2_1 D 2
Ky(u, t) = #el(”’t BUt+ ot ) The inverse LCT is

NG
| S @) 0Ky hdu, b #0
x(t) - : \/Ze_iCTAﬂ;CM(x(t))(At), bh=0 . (3)

The convolution theorem of LCT is [19]

e i3t [(x(t)ei%t2> * (J/(t)ei%ﬂ)] ®
(4)

1
e -
[x®y] (2) —

and
Lt [x(0)Oy(0)] () = &5 Xpg () Yoy (), (5)

where ©® denotes the convolution for the LCT and *
denotes the conventional convolution for the FT.
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The WD of Xj; computed with arguments (i, v) is equal
to the WD of x computed with arguments (¢, »):
+00 ]

Xm (&)X Qu — e)e 2 de. (6)

—00

X(t, ) = 2%

The equation shows that the LCT performs a homoge-
neous linear mapping in the Wigner domain [20]:

]=[en] o) "

According to (7), the LCD-frequency u is rotated by an
angle 6 with tan(0) = B/A in the time-frequency plane
(see Fig. 2).

3 The proposed continuous LCWT and its
reproducing kernel

3.1 Definition of the continuous LCWT

With some modifications of the generalized wavelets

defined in [17], we define the linear canonical wavelets as

Vatan(®) = Vap0e B2 B(E). ®

2
Due to the complex amplitude el%g (2) , the DOLCWT
can be obtained by a fast filter banks algorithm which we
will explain in Section 4. Besides, the LCT of ¥, 5(2) is
still band-pass in the LCD since ¥, 5 (¢) is band-pass in the
FD, ie,

Wat,ab (1) = L (Y,a,p(0)) (1)

A (b .
=L () g

~

Fig. 2 The time-LCD-frequency plane

Page 3 0f 18

where Wy, , 5 (1) is the LCT of the linear canonical wavelet
Yarab(®), W(u) is the FT of the conventional mother
wavelet ¥ (¢).

By the inner-product between the signal and the linear
canonical wavelets, the LCWT of x(t) with parameter
M = (A, B, C, D), therefore can be defined as

W (a,b) = (x(t), Yar,ap(®))

LA 2 +o0 A
= e_lﬁ(s) / x(t)w;b(t)e‘ﬁtzdt. (10)

—00

According to convolution theory of LCT, the definition
of LCWT can be rewritten as

WM (a,b) = ¢ 157 {x(t)(“) [a—éw* (_;) e—"z‘éf“
(11)

withy = % Substituting (11) into (3), we can obtain the
expression of LCWT in the LCD as

+o00
WM (a,b) = / Ly [WHM(a, b)] (WK} (u, b)du
400
=r/ X () W (%)I(X,I(u,b)du,

(12)

—42e?, Xpr(u) is the LCT of x(£), and W (x)
is the Fourier transform (FT) of the conventional mother
wavelet ¥ (¢).

What Wei et al. [17] did not point out is that the
chirp multiplication in the definition of linear canonical
wavelets causes rotations of all cells on the time-frequency
planes and shears them along the frequency axis

[13, 21, 22]. Therefore, due to the chirping operation, each

whereI' =

time-frequency cell is rotated by a degree of arctan (—%)
on the time-frequency plane and sheared along the fre-
quency axes (see Fig. 3a). The time-LCD-frequency plane
is therefore divided by the LCWT with the time-LCD-
frequency atoms as shown in Fig. 3b.

The constant-Q property, linearity, time shifting prop-
erty, scaling property, inner product property, and
Parseval’s relation can be easily derived according to [17].

We will not provide the details here.
2
IfCy = fjo? %dQ < 00, then x(¢) can be derived
from W;W (a,b), ie.,

2 +00  p+400 oM
x(t) = C—/ / a "W, (a,b)Yar,q,b(t)dadb.
v J—o0 —00
(13)

Cy < oo is called the admissibility condition of the
LCWT which coincides with the admissibility condition
defined in WT. It implies that not any ¥1,,,(f) € L*(R)
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Fig. 3 a The time-frequency plane divided by time-frequency cells.
b The time-LCD-frequency plane divided by time-LCD-frequency cells

could be the linear canonical wavelet unless the admissi-
bility condition of the LCWT is satisfied.

3.2 Reproducing kernel and corresponding equation
Like the conventional wavelet transform, the LCWT is a
redundant representation with a redundancy character-
ized by reproducing kernel equation.

Theorem 1 Suppose (ag, by) € (a,b), then 2D function
WM(a,b) is the LCWT of signal x(t) if and only if it
satisfies the following reproducing kernel equation, i.e.,

1
WM (ay, bo) = / = / WM (a, b)Ky,, (a0, bo; a, b)dadb
(14)

where Ky, (ao, bo; a, b) is the reproducing kernel with

2

Ky (a0, bo; a, b) = c,

(Vatap®) Vataope () (15)

Proof Inserting the reconstruction formula (13) into the
definition of the LCWT (10) yields

WM (ag, bo)

- / [Zﬂf iZ / W' (a, b)wM,a,b(t)dadb]
Cy ) a

X Wit a0.bo DL
1
= f — / WM(a, b)
a
2 .
X Q///‘WM’“’b(t)wM,ao,bo(t)dt dadb
1
= / 2 / WM (a, b)Ky,, (ao, bo; a, b)dadb. (16)

The theorem is proved. O

The reproducing kernel Ky, (a0, bo; a, b) measures the
correlation of the two linear canonical wavelets, V145

Page 4 of 18

and Yar40,5,- According to (14), the LCWT of x(¢) at
a=agand b = by (i.e., Wf/[(ao, bo)) can always be repre-
sented by other W (a, b) through the reproducing kernel
Ky, (ag, bo; a, b). This means all W;w(ﬂ, b)s on 2-D plane
(a,b) are related to each other, and there always exists
redundancy when the continuous LCWT is used for sig-
nal reconstruction. In order to reduce the redundancy,
we need the reproducing kernel to have the following
property: Ky,, (a0, bo;a,b) = 8(a — ao,b — bgy). How-
ever, it is difficult to find a set of orthonormal linear
canonical wavelets V1, 5 (£) to make Ky, (a0, bo; a,b) = 6
(a — ag, b — by) when a and b are both continuous. There-
fore, we need to discrete the dilation and shift parameters
of the linear canonical wavelet in (8) by making a = 2/,
b = Ykbgand by = 1, i.e.,

Yk (&) = 2779 (27t — k) e 3P i e 7,
(17)

where ¥ (£) € Wy C L*(R), and find a set of orthonormal
linear canonical wavelets 7;x(t) to make Ky,, (o, bo;
a,b) = §(a—ap, b—bp) hold and eliminate the redundancy
induced from the continuous LCWT.

4 The proposed DLCWT and its fast algorithm
The DLCWT of x(t) with parameter M = (A, B, C, D) can
be defined as

WM G, k) = (x(8), Y (1))
. +00 .
= efle;BkZ/ x(t)‘ﬁjfk(t)el%tzdt
—0o0
_ 2—//23—i2%k2

+o00 Ao
x / x@)y* (27t — k) e'mdt,  (18)

—00

wherej € Zand k € Z.

4.1 Multi-resolution approximation associated with LCT
The theory of multi-resolution approximation associated
with LCT is first proposed here since it sets the ground
for the DLCWT and the construction of orthogonal linear
canonical wavelets. According to the definition of multi-
resolution approximation in [16], we give the following
definition.

Definition 1 A sequence of closet subspaces {V/M } ,j €

Z of L*(R) is a multi-resolution approximation associated
with LCT if the following six properties are satisfied:

1) V@, k) € 72,
x(t) € VjM & x(t — 2k) e~ B k=20 ¢ V]M;
; M M,
2) V] S Z, V} D) ‘/}'+1;

3) VjeZxt) e VM & x (L) e B e VY
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4) lim VM A ovM— {0};
j—00 j=—00 /

5) lim V.M Closure( u VM) = L*(R);
j—>—00 =—

6) There exists a basic function 6(¢) € Vo C L*(R)
such that {eM,O,k(t) —0(t — ke i3 (PK) | ¢ Z}

is a Riesz basis of subspace V).

Condition (1) means that VjM is invariant by any transla-

tion proportional to the scale 2 together with modulation.
Dilating operation and chirping operation in VM enlarge
the detail and condition (3) guarantees that it defines an
approximation at a coarser resolution 27771, The exis-
tence of a Riesz basis of VM provides a discretization
theorem. The theorem below gives the existence con-
dition of Riesz basis in VjM. The following is detailed
proof of condition (3). Let X},(u) denote the LCT of
x (%) emiwEt According to the definition of the LCT, one
can obtain

/ +oo t i34
Xy (u) = x( 5 ) e Kun(u, tyde

—00

x / x(Deffé(é)zeiéwéel‘z%@”)zdt (19)

—00

Replacing % with ¢ in (19) results in

: D 2
Xh () = ———e "283"

+oo A 2
X/ x(t’) elﬁt e—l Lout' 123(214) dt

— 2e~ 33 X1 (2u) (20)
where X;(#) denotes the LCT of x(¢). Since V}-M c L*(R)
and VA/_Il C L*(R) denote the subspace of all func-
tions bandlimited to the interval [—Z_jnB, +2_jnB] and
[-27V+ V7B, 427V 7 B] in the LCT domain separately,
therefore x (%) emist € Vf‘fl according to (20).

Theorem 2 {010« (t), k € Z} is a Riesz basis of the sub-
space Véw ifand only if (6 (t — k), k € Z} forms a Riesz basis
of the subspace Vo with 0(t) € Vy as the basis function.
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Proof if {eM,O,k(t) —0(t — ke () k¢ Z} is a
Riesz basis of the subspace V2, then for Vx(t) € Véw, we
have

x(t) = Z o (t — k)e_i%(tz_kz).

keZ

(21)

After taking the LCT on both sides of (21), we have

XM(M) = chﬁM I:Cke(t _ k)e—iz‘iB(ﬂ_kZ):I (1,{)

kel
—iz ukezﬁkzé (E)
B

~ AU
= Cuh (3). (22)
where C‘Mgu) denotes the DTLCT of ¢; with a period of
27 B, and 0 (%) denotes the FT of 0(¢) with its argument
scaled by é.

According to the Parseval’s relation associated with
LCT,

211> = 11 Xp ()|
_ /*“’ oo [9 (%) e
2B
= k .
/0 Z ‘«9( +2 n)’ u
(23)
Since x(t) € L>(R), it can be easily obtained that
2B
Plx(o)I? < f Caat| e
= Z lel? < Qllae) > (24)
k=—00
and
+o0 2 1
Q :Z ’ ( +2k7r>‘ =3 (25)

On the other hand, if (25) holds, then (24) can be
obtained. If x(¢) = 0, then according to (24), for

_iAr(s—k
Vk,cp = 0. {r(t — ke LBk(t 2>,k 1S Z} is therefore linear

independent with each other. {GM,O,k(t) = 6@t — k)
e*i%(tszz), ke Z} is a Riesz basis of the subspace V(Z)VI.
This is to say, {QM,O,k(t) =0(t— k)e*i%(tszz),k € Z}

will be a Riesz basis of the subspace V37, if and only if
there exist constants P > 0 and Q > 0 such that (25)
holds. Considering {0 (¢t — k), k € Z} as a Riesz basis of the
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subspace of V), we can deduce that (25) definitely holds
due to the inequation

(26)

é < i 'é(u/-l—an)‘z < %

k=—00
holds (see Theorem 3.4 [23] for details), where #' = u/B €
[—m,m].
The theorem is proved. O

In particular, the family {0310 (¢), k € Z} is an orthonor-
mal basis of the space V].M ifand only if P = Q = 1.
Theorem 2 implies that VjM are actually the chirp-
modulated shift-invariant subspaces of L%2(R), because
they are spaces in which the generators are modulated by
chirps and then translated by integers [24—26].

The following theorem provides the condition to con-
struct an orthogonal basis of each space VjM by dilating,
translating, and chirping the scaling function ¢ (¢) € Vj.

Theorem 3 Define [V/M } ,J € Z as a sequence of closet

subspaces, and (P x(t),j, k € Z} as a set of scaling func-
tions. If {¢;x(t),j, k € 7Z} is an orthonormal basis of the
subspace Vj, then for allj € Z, ¢ forms an orthonormal
basis of subspace V].M .

Proof First, it is easy to find that ¢k € V].M . From it,
we have

$00 = ) ckbrrok(®). (27)
3

Taking the LCT with M = (A, B, C, D) on both sides of
(27), we have

Ow/B) = Y ce' ¥ e 154G (u/B)
keZ

= E(u/B)d(u/B), (28)

where ¢, = ckejiinz, and E(¢’) is the DTFT of k.
Notice that ®(u#) and 0(u) are the FT of ¢ (¢) and 6(¢),
respectively.

If {duox(® = p(¢ — ke BT ke Z} forms an

orthonormal basis of Vé\’[, according to Theorem 2, we
have

> 1@w/B+2km))* = 1.

(29)
k=—o00
Applying (28) and (29), we can obtain
- 2 . 2
‘E(u/B)‘ 3 ‘9(u/B+2krr) —1 (30)
k=—00
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o0 R 2
As Y ‘9(u/B—|—2kn)‘ is limited, combining (28)
k=—o00

and (30) yields
6(u/B)

®(u/B) = (31)

- 12
[ 3 ’é(u/B + 2kn)‘2]
k=—00

If 272 (27t — k), k € Z} is an orthonormal basis of
the subspace Vj, then the FT of ¢ () definitely makes (31)

hold. Therefore, {¢M,0,k(t) =¢(t— k)e*"ﬁiB("‘z*kz),k € Z]

forms an orthonormal basis of the subspace VéVI .
Moreover, it is easy to prove that for Vj, k1, ko € Z,

(e, (0 Pt jr (D)) = 8(k1 — ko).
The theorem is proved. O

(32)

Thus, according to Theorems 2 and 3, one can use the
mother wavelet ¥ (¢) € W{ to construct mother linear
canonical wavelet {¥(¢) € Wé\’l such that the dilated,
translated, and chirp-modulated family

[Vasjuvy = 277y @7t — e 5@k e 7]
(33)

is an orthonormal basis of W].M .As WIM is the orthogonal

complement of VjM in Vj]\fl, ie.,

wM L vM (34)

and

v]/‘fl = V/'M ® W/'M’ (35)

the orthogonal projection of input signal x on V}Afl can be
decomposed as the sum of orthogonal projections on VjM
and W].M .

4.2 Discrete orthogonal LCWT and its fast algorithm

In this section, we will give the relationship between
the DOLCWT and the conjugate mirror filter banks
associated with LCT, and the condition to construct
the orthonormal linear canonical wavelets. These two-
channel filter banks implement a fast computation of
DOLCWT which only has O(N) computational complex-
ity for signals of length N.

4.2.1 Relationship between DOLCWT and two-channel filter
banks associated with LCT
Since both Y37 1(¢) and ¢ag;14(f) form an orthonor-
mal basis for W]Afl and VjA_/Il, we can decompose @ar,/,0(£)
and ¥pg0(¢) as
o
ejo®) = D hano(darj-14(8) (36a)

k=—00
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and
Yamjo(t) = Z B (K)éarj—1,k(E) (36b)
k=—o00
with
haro(k) = ho(kye™/35%* (37a)
and
han (k) = hy (ke 354, (37b)

Equation (36) are the two-scale difference equations
belonging to LCWT which reveal the relationship
between linear canonical wavelets and linear canoni-
cal scale functions in multi-resolution approximation
analysis associated with LCT. Moreover, due to the
orthogonality between {¢x(¢)} and {¥a,x(£)}, we have

hato (k) = (@0 ()s darj—1,6()) (38a)

and

It (k) = (¥anjo (s darj—1,6 () -

As can be seen from (38), hp1,0(k) and hpp (k) are irrel-
evant to j, because of the complex amplitude we multiply
to the mother linear canonical wavelet (see (8)). Moreover,
it should be noticed that the sequence ho(k) and /; (k)
are the conjugate mirror filters in the FT domain. There-
fore, according to Zhao [7], har0(k) and ka1 (k) actually
represent the two-channel filter banks in the LCT domain.

Assume that j = 1. By taking the LCT of both sides of
(36), we obtain

(38b)

®(u/B) = iHo(u/zB)cp(u/zB)

7 (39a)

and

1
V(u/B) = —Hj1(u/2B)® (11/2B),
(u/B) 7 1(u/2B)P(u/2B)
where Hy(u) and Hj(u) are the discrete time Fourier
transform (DTFT) of /o (k) and /3 (k), respectively.
According to the orthogonality of {¢s1,0 (), k € Z}, we
have

(39b)

> |Ho(u/2B + km)|*|®(u/2B + km)> = 2. (40)

k=—o00

Since Hy(u) is 27 periodic, splitting k into odd and even
parts, i.e., substituting k = 2p and k = 2p + 1, p € Z into
(40) yields

- 2
\Ho(u/B)I> Y |®(u/B+2pm)| +
p=—00
o
Ho(u/B +m)[> > |®(u/B+2pn +m)|* =2.
p=—00

(41)

(2018) 2018:29
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o0
Notice that ) }CD(u/B+2p7r)|2 = 1 and
=—0Q0

o0
> |CI>(u/B + 2pm + 71)|2 = 1, it is easy to find that

p=—00

|Ho(u/B)|* + |Ho(u/B + m)|* = 2. (42a)
Similar with {¢as 04 (t), k € Z}, the relationship
|H1(u/B) 1> + |Hy (u/B + ) [* = 2 (42b)

holds.

Moreover, because Wéw and Véw are orthogonal with
each other, {wM,o,k(t);k € Z} and {¢M,O,k(t),k € Z} are
orthogonal, i.e.,

(a0 ©) Var,0, (D) =0 (43)
for Vki, ky € Z, and it is easy to verify that
o0
> ®(u/B+ 2km)V*(u/B + 2kn) = 0. (44)
k=—o00

Therefore, substituting (39a) and (39b) into (44), we have

> Ho(u/B + k)@ (u/B + k)
k=—00

x Hf (u/B + kn)®*(u/B + kmr) = 0. (45)

Similarly, since Ho(x) and H;(«) are both 2w periodic,
splitting k into odd and even parts, i.e., substituting k = 2p
and k = 2p + 1, p € Z into (45) gives

Ho(u/B)H; (4/B)+Ho(uu/B+7)H; (u/B+7) = 0. (46)

Equations (42a), (42b), and (46) together indicate that if
Vi (£) = Z_j/zw(2_/t—k)e_i%(t2_k2) is an orthonormal
basis for \/VjM , then

M-M' =21, (47)

where 1 denotes conjugate transpose, I is identity matrix,
and

M— [HO(M/B) Ho(u/B + ﬂ)] '

Hy(u/B) Hy(u/B+ m) (48)

Equation (47) indicates that when {y3;x(¢),k € Z}
forms an orthonormal basis for W/}M , haro(k) and By (k)
are actually the two-channel conjugate orthogonal mirror
filter banks associated with the LCT.

Overall, the construction of the orthonormal linear
canonical wavelets can be summarized in the following
theorem.

Theorem 4 Define {VIM } ,J € Z as a sequence of closet

subspaces. \/V].M is the orthogonal complement of VjM in
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V}[_VII. If {damji(t),j,k € Z} is a set of orthonormal basis of
VjM, then {1k (2), ), k € Z} is a set of orthonormal basis
of\/VjM if and only if M satisfy (47), i.e., {Yjx(t),), k € Z} is
a set of orthonormal basis of W

4.2.2 Fastalgorithm

Since {¢pp1jk(D),j,k € Z} and {Yp1k(8),j,k € 7} are
orthonormal bases of Vj;; and Wy, the projection in
these spaces can be characterized by

aj(k) = (x(t), parjx (1)) (49a)

and

dpj(k) = (x(t), Yarjk (D). (49b)

An actual implementation of the MAR of LCWT
requires computation of the inner products shown above,
which is computationally rather involved. Therefore, in
this section, we develop a fast filter bank algorithm asso-
ciated with the LCT that computes the orthogonal linear
canonical wavelet coefficients of a signal measured at a
finite resolution.

From the orthogonormal functions ¢1;114 € Vj’fl,

DMk € VjM, and V]Afl C VjM, we get

0]

ik = Y Cubatjn(t).

n=—0o0

(50)

With the change of variable ' = 27/¢ — 2k, we obtain
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en = (barj+1,6@), Parjn (D))
+00
— -} E ) sk
=2772 N ¢ i1 k|e2s
t ,
X ¢* (2} - Vl) eiléiandt

+oo t cA 12
2— / ¢ () tﬁk
o 2
X ¢*(t — n+ 2k)e" 5" dt

JA (k2
= 28 Gk —4nb) (7,1,0®)s Pat0n—26 (®))

=

— (IO o 2k (51)
Equation (50) implies that
ad A
¢M,j+1,k(t) — Z eiﬁ(5k274nk)
n=—00
X hat0(n — 2K)Parjn(2). (52)

Taking the inner product by x(¢) on both sides of (52)
yields

a1 (k) = anj(k)Oharo(2K). (53a)

From the orthogonal functions ¥ 146 € Wl{\fl,
Omjk € V}M, and VVIA_fl C V]-M, we have
dprj41(K) = an(K)Oha,1 (2K), (53b)

where h(k) = h(—k).

a,(k)

a,, (k)

a(k)

b

Fig. 4 Filter-bank interpretation of the fast algorithm we proposed. a A fast linear canonical wavelet transform is computed with a cascade of filtering
with F?M,O(k) and BW (k) in the LCT domain followed by a factor 2 subsampling. Note that the linear canonical convolution is used here according to
(53a) and (53b). b A fast inverse linear canonical wavelet transform reconstructs progressively each ay; by inserting zeroes between samples of
amj+1 and duj41, filtering in the LCT domain and adding the outputs. Note that the linear canonical convolution is used here according to (57)

a,(k) a,(k)

= NG
g o (k) “f( :

d,, (k)

d,(k)

a,,(k)
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Fig. 5 Two-layer DLCWT of a signal x(n) computed using db3 wavelets. a Real part of original signal x(k). b Real part of coefficients djo (k). € Real
part of coefficients ay,1 (k). d Real part of coefficients dy; (k). @ Reconstructed signal X" (k)

: M M M M
Since Vi*' = VI, @ Wiy, dmjr1k(®) € Vi, Ymjrik

@) € Wj]\fl, and ¢y« (t) can be decomposed as

damjx(®)

o

= Y (mjk(®), byjr10®) Pagjs1,0(0)

n=—0o0

+ Z (a1, s Yt 10 (D) V10 (D).

n=—0o0

Combining (52), we obtain

(a1 (0 Batjr1,(D) = haro(k — 2m)
% eiz‘iB(Snz—llnk)

and

(k) Yarjr1,0(B)) = har (k — 2m)

« ¢l Gn*—dnk)
Substituting (55) into (54) yields

Ok (t)

00
A
= Z ¢M:j+1:n(t)hM,0(k _ 2,,1)61%(5”274”]()

n=—0o0

(54)

(55a)

(55b)

o0
A
+ 3 Vi Oh (k= 2m)ef 70 (56)

n=—00

Taking the inner product by x(¢) on both sides of (56)

yields

ap (k) = apgjr1(K)Oharo(2k) + dgj1(k)Ohag (2K).

(57)

Equations (53a) and (53b) prove that a1 and dagj11
can be obtained by taking every other sample of the linear
canonical convolution of a,;; with lsz,o (k) and l;MJ k),
respectively, as illustrated by Fig. 4a. The reconstruc-
tion (57) is an interpolation that inserts zeroes to expand
apmj+1 and dprjr1 and filters these signals in the LCT
domain, as shown in Fig. 4b. Compared to the structure
shown in Fig. 1, the coefficients of each layer can be chirp
modulated and de-modulated with the same chirp rate
in different layers, in the process of the multi-resolution
analysis of the DLCWT.

The following is an example showing decompositions
and reconstructions of 1D signal utilizing the DLCWT.
We observe a chirp signal given by

x(t) = (sin(2nfot) + sin(27tf1t)) e_i%t2 (58)

where k = 2, fy = 0.1, and fi = 4.5. Figure 5 shows
an example of two-layer DLCWT of this signal x(¢) com-
puted using db3 wavelets with M = (2,1, 1,1). Note that
the initial data aps,—1(k) = x(k) where x(k) denote sam-
ples of continuous signal x(¢) with sampling rate At = 0.1.
As shown in Fig. 5, the coefficients dj1 (k) are basically

[or% CTJ (2) D%
> u

] (n) ~ (a)) Ck

B (SRR

Fig. 6 Interpretation of the uniform sampling result in terms of digital
filtering associated with LCT
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sampling and discretization mapping T~

reconstruction

_____________________

Fig. 7 Block diagram representation of the shift sampling and reconstruction procedure in multi-resolution subspaces associated with the LCWT.
a The analog input signal f(t) is shift sampled and discretized (the box C/D stands for continuous-to-discrete transformation). b The operator 7~
maps samples f(t,) (or D™Y[f] (n)) to sequences ck. € f(t) can be reconstructed through (59), where ¢s(t) = "z LK1 8(t — k)

equal to zero, and two frequency components f; and f; of
x(¢) lie in subspaces V{VI and Wéw , separately. Signal x(k) is
perfectly reconstructed from coefficients das o (k), a1 (k)
and djy,1 (k), denoted as &' (k).

4.2.3 Computational complexity

Direct computation of (11) would involve O(N?) opera-
tions per scale with N as the length of the input sequence.
However, when using the fast algorithm shown in Fig. 4,
the DOLCWT’s computational complexity depends on
that of the linear canonical convolution. According to
(4), (53a), and (53b), each takes O(N) time at the first
level. Then, the downsampling operation splits the signal
into two branches of size N/2. But the filter bank only
recursively splits one branch convolved with /157 o(#). This
leads to a recurrence relation which conduces to an O(N)
time for the entire operation. Furthermore, because the
proposed fast filter bank algorithm can inherit the con-
ventional lifting scheme, the computational complexity
could be halved for long filters [27].

5 Simulations results and discussion
In this section, we provide simulation results of three

applications to illustrate the performance of the proposed
DLCWT.

5.1 Shift sampling in multi-resolution subspaces

First, we consider shift sampling [26, 28] in multi-
resolution subspace Véw. The shift sampling instants is
defined as t,, = n 4+ u with n € Z and fractional shift u €
[0,1). We work in Véw only since all the relevant proper-
ties are independent of the scale. Let ¢ (£) € L?(R) be the
linear canonical scaling function of a MRA {VIM }j 7, 4SS0~
ciated with the LCWT such that the sampling sequence
¢(n + u) of ¢(t) belongs to £>(Z) for some u [0, 1).
According to Theorem 2, since {¢sr0} is a Riesz basis
for V), then for any f(t) € V{1, there exists a unique
sequence {c;} € ¢*>(Z) such that

FO = et — ke 'm0, (59)

keZ

The idea of sampling in multi-resolution subspaces is
to find an invertible map 7 between c; and samples
{f(t,)} where t,, denotes the sampling times. To simplify
the problem, in the rest of the section, we normalize the
sampling interval as At = 1.

If the sampling times are t, = n+u,n € Z,0 < u < 1,
then the samples f(£,) can be written as follows

DT[f] ) =Y ek — k+we B, (60)

keZ

where D™* [f] (n) = f(n + u)ei%(Z””+”2). Substitute

. B
o = | ——e i f Car(w)e B9 5% 4oy (61)
2B 7B

in (60), we have

1 7B
D00 = e Y / )k k)
kez” T
x ¢p(n—k+ u)e‘iZAB (7 =k)

1 7B
=5z > / Crm (@)K (n, )
kez ) 7B

x ¢p(n—k+ u)e_i%“’(”_k)dw. (62)

N

— Synthesizing function Su(t) used in the proposed algorithm|
1.5¢ - - Synthesizing function Sinc(t-u) used in [4]
S
ER . ]
E- 0.5
< g0
o i \ P
] ER——— e - ~ 8 ~ >
05 . . . . . . .
=8 -6 -4 -2 0 2 4 6 8
Time

Fig. 8 Comparison of synthesizing functions: S, (t) is the synthesizing
function used in the proposed algorithm, while Sinc(t — u) is the
synthesizing function used in [4]
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—— Original signal
4F - - -Reconstructed signal using the proposed method
- - Reconstructed signal using Stern’s method [4]
- -Reconstructed signal using Janssen’s method [28]
3 o —o Sampling points
= -
g, Mf\ MARA R oo A AN

V%‘” ALY

. -108 -107 106 -105 L L
—10 -5 0 5 10
Time

Fig. 9 The original, sampling points and the reconstructed signals

Then, interchanging the order of integration and sum-
mation, and replacing n — k with k’ in (62) yields

B
1 ~ -
=5 | @G, (3) do

—nB

(63)

where
5z W\ ’ —i%k/(u
B (3) = Yopey 9K +ure (64)

denotes the DTFT (with its argument scaled by %) of
¢ (k' + u). Notice that

4 (w) = ZD [da1,0,0] Kpi(k, )

keZ
_ iDow? z 8
— 5P, (B). (65)
Therefore, we can obtain
—u B —iL 2> U *

[f] (n) = e 'Y Cp(w) Dy () Ky (1, w)dw

—nB
(66)

by substituting (65) into (63).

According to (66) and (60), D™ [f] (n) is equal to the
convolution of D™ [¢M,0,0] (k) and ¢g. The interpretation
of the uniform sampling result in terms of digital filter-
ing associated with LCT is shown in Fig. 6. Therefore,
the operator 7 and its inverse T~! can be represented
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_Second, Let us now construct synthesis functions.
Gy(w) = Z D* [gMOO] (K)Kp(k, w) are the synthesis

filters in the Flg 6,1.e.,
2 (5)- Sk (2)
keZ

The perfect reconstruction property of the filter bank
associated with LCT implies that

(67)

o = BN fle)e g, (68)
neZ
Then, for any f (¢) € V/.M , we have
F@&) = 3 fe)d B> g d (e — ke 57
nez keZ
= 3 ) Sun(D)e B, (69)
nez
If we define S, (¢) = Y g, “¢ (¢t — k), then
keZ
Sun® =) gl elt—n—(k—mn)]
keZ
= Su(t —n) (70)

Therefore, all the synthesizing functions are obtained as
shifts of the L basic functions S,(¢). The corresponding
sampling and reconstruction procedure is shown in Fig. 7.

Finally, we give simulations to verify the proposed
algorithm. We choose scaling function ¢ () = Ni(2),
which is the B-spline of order 1 [29]. It is easy to verify
that {¢M,0,k(t) 2Nt — k)e_i;;B(tZ_kz) }keZ forms a Riesz

basis for Véw (¢) C L*>(R). We observe a signal given by

£(&) = posinrforye 5"

where k = 1, pop = 2, and fp = 0.03. It is band-limited
in the LCT domain with M = (1,1,0.5,1.5). According
to the uniform sampling theory of the LCT domain [4],
the uniform sampling period can be chosenas T = 1. We
choose u = 0.5. Hence, the synthesizing function can be
derived as

(71)

by o, ( ) and 1/, ( ) respectively, under the condition 1, 0<t<l,
that @, (B) #0. Sul® = { 0, others. (72)
Table 1 Reconstruction performances comparison
Metrics Definition Reconstructed Proposed Stern’s method [4] Janssen’s method [28]
signal method
\VSE H?(”‘““Hfz Real part —27.1518dB — 247675 dB 24739dB
lfoll% Imaginary part —27.0527 dB — 260184 dB 3.0201 dB
Normalized L error Hf([)_f([)HLDO Real part — 264773 dB —59511dB 5.1289dB
MFOT 0 Imaginary part — 269728 dB —82247dB 6.0701 dB




Wang et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:29

It is plotted in Fig. 8. As can be seen from Fig. 8,
the derived synthesizing function S(¢) is compactly sup-
ported. It decay (drop to zero) much faster than the
synthesizing function Sinc(t — u) used in [4].

Now, we try to reconstruct f(¢), ¢t € [—12,10.5] accord-
ing to (69) under the condition that the number of sam-
pling points is constrained to 24. The real parts of the
original, sampling points and the reconstructed signals are
shown in Fig. 9. We use two different quantitative metrics:
the normalized mean-square error (NMSE) and the nor-
malized L™ error [30] to show the comparisons between
our proposed method and other classic methods. Com-
parison results are presented in Table 1 where f(¢) and jAr )
denote the original signal and the reconstructed signal,
respectively.

The simulations illustrate that the proposed sampling
and reconstruction algorithm outperforms the conven-
tional algorithm in [4] when we are given only finite
numbers of samples. This is because the synthesis func-
tion S, (¢) is compactly supported while the Sinc function
used in [4] is slowly decayed. The Haar scaling function
used here is rather simple (a rectangle in time domain)
which causes some distortions to the signal in LCD.
Therefore, some other scaling functions or wavelets with
proper frequency shapes can be considered. The synthe-
sis filters (1/®, (%)) may be found by using their Laurent
series [31].
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Fig. 11 Comparing the LCTs of x(t) under different parameters. a The
LCT of x(t) with parameter M = (— 67,1,0,— 1/6mr) at SNR = 5 dB.
b The LCT of x(t) with parameter M = (—6.4m, 1,0, — 1/6.47) at
SNR=5dB

Besides, when using the algorithm in [28], the real
part’s and the imaginary part's NMSE’s are 2.4739 and
3.0201 dB, respectively. This is due to the fact that chirp
signals are non-bandlimited in the FT domain but ban-
dlimited in LCT domain. When applying the common

G T T T . . . . .
—>— NMSE of LOWT-denoising sampling theorem to signals non-bandlimited in the FT
—4—NMSE of WT-denoising [32 . .
-5r | domain may lead to wrong (or at least suboptimal) conclu-
8 10— h sions [5]. Therefore, our proposed algorithm can be found
i . - ; .
2 4l | more applicable for non-stationary signal processing, such
= as radar chirp signals.
-20f 1
-25; P 3 . : 5 ; 8 5.2 Denoising of non-stationary signals
J The LCWT enjoys both high concentrations and tunable
a resolutions when dealing with chirp signals. The DOL-
0 ‘ ‘ ‘ ‘ ‘ CWT and its fast algorithm we propose eliminate the
—e—NMSE of LCWT-denoising at SNR=20dB
_sl —4—NMSE of LCWT—denoising at SNR=5dB ||

-28 -26 -24 -22 -2

25738 36 834 32 -3
A/B/21

b

Fig. 10 Choosing the level and matched-parameter of the LCWT.
a Performance of LCWT-based denoising and WT-based denoising
[32] in different decomposition level J with SNR = 20 dB and

M = (—6m,1,0,— 1/67). b NMSE of LCWT-based denoising at

SNR = 20 dB and SNR = 5 dB with level J = 5

—e—NMSE of LCWT-denoising
—4—NMSE of WT-denoising [32]
- —e— NMSE of LCDfiltering [19] ||

NMSE/dB

15

- L L L L
%5 0 5 10 15 20

SNR/dB

Fig. 12 Performance of the LCWT-based denoising, WT-based
denoising [32], and LCD-filtering [19]. WT-based denoising’s
decomposition level is 2. The LCD filter is a 128 order low-pass FIR

filter with 8 Hz pass frequency and 10 Hz stop frequency
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Fig. 13 Comparing different reconstructed signals in the time domain. a The received chirp signal s(t). b The contaminated signal x(t) at
SNR = 5dB. ¢ The reconstructed signal of LCWT-based denoising. d The reconstructed signal of WT-based denoising. e The retrieved signal of
LCDfiltering

redundancy and imply that it is a potent signal process-

ing tool. The LCWT-based denoising of chirp signals is

investigated here to validate the theory proposed above.
Consider the following model

x(t) = s(t) + w1 () + w2 (0), (73)

where w1 (¢) is the white Gaussian noise and w, () is
the interference. An LCWT-based denoising algorithm is
proposed with the steps summarized below.

Step 1: Choose a linear canonical wavelet, a level N and
the threshold rule.
Step 2: Decide the matched-parameter M of LCWT.

Step 3: Compute the LCWT decomposition of the
signal at N level and apply threshold rule to the
detail coefficients.

Step 4: Compute the inverse LCWT to reconstruct the
signal.

An example is given here to demonstrate the perfor-
mance of the LCWT-based denoising. The source chirp
signal is given by

(t — to)?

s(t) = exp (—2—2> exp (jnkot2 + 2w wot) . (74)
o

The interference is a cubic polynomial phase function

Wya(t) = a * exp (/'rrvt3 + jrut? +j271a)1t). (75)

Fig. 14 Thumbnails of all five multi-focus image pairs used for evaluation purposes
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Fig. 15 Example of 2D DLCWT decomposition using db3 linear canonical wavelet with A/B8 = 200 in rows and A/B = — 100 in columns. a Original
512 x 512 'Barbara.’ b Magnitude of two layers 2D DLCWT decomposition of ‘Barbara.’ € Real part of two layers 2D DLCWT decomposition of
‘Barbara.’ d Imaginary part of two layers 2D DLCWT decomposition of 'Barbara.’ e Reconstructed 'Barbara’

After digitalization, the length of the sequence is
N = 1024 and the sampling frequency is F; = 100Hz. The
phase parameters of the signal are ko = 3 and wp = 1.
The envelope parameters are typ = 5 and 0 = +/0.5. The
interference’s phase parameters are v = —0.3,u = 6, and
w1 = 10. The amplitude is a = 0.1.

Firstly, we select the db4 wavelet as the mother linear
canonical wavelet and use the heursure threshold selec-
tion rule with soft thresholding. As for the selection of
decomposition level /, Fig. 10a shows the different NMSE
of the reconstructed signal in different decomposition
level J with SNR = 20 dBand M = (—6x,1,0, — 1/67). As
shown in Fig. 10b, the LCWT-based denoising achieves
its best performance at levels 4 or 5. Therefore, we choose
five levels of LCWT decomposition while the WT-based
denoising performs best at levels 1 or 2.

Secondly, the major task of the LCWT-based denois-
ing is to decide the matched-parameter of LCWT. Sup-
pose that chirp rate is known or has been estimated.
During the selection of decomposition level, we choose
M = (—6m, 1,0, — 1/67) because the chirp signal is highly
concentrated in this parameter. However, as the existence
of the interference signal and initial frequency, this param-
eter might not be the best choice for LCWT. Figure 10b
shows that the LCW T-based denoising achieves its best
performance with M = (—6.47,1,0, — 1/6.47) at a lower
signal-to-noise ratio (SNR). This is because the interfer-
ence signal can be hardly eliminated using the heursure
threshold selection rule since it is almost concentrated in
the LCT domain with parameter M = (—67,1,0, — 1/67)
(which lies around 15 Hz in the frequency axis, see
Fig. 11a). As a result, detail coefficients which contain
most of the energy of the interference are left with some
energy of the interference after applying the heursure
threshold selection rule. While the interference signal is
less concentrated at M = (—6.47,1,0,—1/6.47) (see
Fig. 11b). It is nearly submerged in the white Gaussian
noise, and it is well-known that the heursure thresh-
old selection rule performs better when denoising signals
corrupted by white Gaussian noise. Therefore, during the

denoising step, the energy of the interference in detail
coefficients can be eliminated by the heursure threshold
selection rule. Furthermore, because the initial frequency
wp = 1Hz, the chirp signal is nearly centralized at the base
LCD-frequency which makes the LCWT-based denoising
perform better at higher decomposition level. Therefore,
we choose

SNR=-5~17dB
SNR = 18 dB
SNR = 19 ~ 20 dB.

(76)

(— 6.47,1,0,— 1/6.41),
(—6.6m,1,0,— 1/6.671),
(—6mr,1,0,—1/6m),

M=

Then, execute steps 3 and 4. At last, the LCWT-based
denoising is compared with the WT-based denoising [32]
and LCD-filtering [19] in the aspect of NMSE of the
reconstructed signal. A two-hundred-time Monte Carlo
experiment is taken at a range of SNR from — 5 to 20 dB
(see Fig. 12).

The reconstruction signals in time domain de-noised
by three different methods are shown in Fig. 13 as well.
The simulations illustrate that the LCWT-based denois-
ing outperforms the WT-based denoising [32] and LCD-
filtering [19] at a wide range of SNRs. As can be seen from
Figs. 12 and 13, the chirp signal cannot concentrate in the
FD which makes the performances of WT-based denois-
ing method poorly. Though the chirp signal is highly
concentrated in the matched-parameter LCD, the LCD-
filtering method still fails to eliminate both the white
Gaussian noise and the interference which lie in the pass

Table 2 Transform setting for the LP, the DWT, the CVT, and the
CT (according to [37])

Transform Filter Levels
LP LeGall 5/3 4

DWT bior6.8 4

avT 4

cT CDF9/7 CDF 9/7 [48816]
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Table 3 Fusion results for multi-focus image pairs: LP, DWT, CVT
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Transform Mi(mean/std) Q*B/F(mean/std) Qp(mean/std) Quw/(mean/std) Qr(mean/std)
LP 0.4908/0.0931 0.7084/0.0625 0.8071/0.0977 0.9287/0.0186 0.7317/0.0699
DWT 0.4865/0.1001 0.6986/0.0685 0.7876/0.1052 0.9265/0.0193 0.7327/0.0719
CvT 0.4937/0.0874 0.7097/0.0619 0.7968/0.1053 0.9288/0.0193 0.7314/0.0828
cT 0.4797/0.0933 0.6838/0.0716 0.7804/0.1054 0.9271/0.0189 0.7284/0.0726

band of the filter. This makes the performance of LCD-
filtering method unsatisfactory as well. The LCW T-based
denoising enjoys both the abilities of multi-resolution
analysis and high signal concentration which makes the
LCWT-based denoising method performs better than the
other two. However, it should be noticed that there is
still a part of the interference (which lies around 9 s in
the time axis) left un-eliminated. The combination of the
LCWT-based denoising method and the LCD-filtering
method can be utilized to solve this problem. A better per-
formance is, therefore, promising. Potential applications
of the LCWT-based denoising algorithm include speech
recovery [33], estimations of the time-of-arrival and pulse
width of chirp signals [14].

5.3 Multi-focus image fusion

In this section the performance of multi-focus image
fusion using the proposed 2-D LCW T will be investigated.
The corresponding thumbnails of all used image-pairs are
shown in Fig. 14.

The performance of the 2D LCW T-based fusion scheme
is compared to the results obtained by applying the
Laplacian pyramid (LP) [34], the discrete wavelet trans-
form (DWT) [23], the Curvelet (CVT) [35], and the Con-
tourlet (CT) [36] which are frequently used to perform
image fusion task.

First, we give the definition of 2D LCWT. According to
the definition of 1D linear canonical wavelet in (8), we
introduce the 2D linear canonical wavelet to be the 2D
wavelet elementary function

Then the one-dimensional LCWT can be extended to
2-D LCWT, ie, the 2-D LCWT of f(x,y) € L?(R?)
with parameters M = (A1, By, C1,D1) and My = (Aa, By,
Cy,D») is defined as

Wﬂ”@ahﬁw=/7ﬂmﬁ

X 1//1\41,[\42;!,l,b1,172 (x; )’)dxdy (78)

In particular, the filter-bank structure illustrated in
Fig. 4 can be used to implement the orthogonal 2D LCWT.
Note that both the linear canonical wavelet and the filter
shown in (8) and (37) are complex. Hence, the coefficients
of 2D LCWT are complex which makes the 2D LCWT
two-times expansive.

Figure 15 shows the magnitudes, real parts and imagi-
nary parts of a example of two layers 2D-LCWT decom-
position of 512 x 512 ’Barbara’ Note that parameters
M = (A,B,C,D) in rows and columns are different with
each other.

The fusion rule we applied here is the maximum selec-
tion fusion rule. By this rule, the fused approximation
coeffients Xf? are obtained by a averaging operation

%, [n] + x [n]
2 ’
whereas for each decomposition level j, orientation band

x.[n] = (79)

p and location n, the fused detail coefficients y are
defined as

o[l e

B [n, p] , otherwise

Yt Masabr by 5 ¥) = Yty aby (O Yatyab, ()- (77) (80)
Table 4 Fusion results for multi-focus image pairs: the proposed LCWT
Filters A/B Mi(mean/std) Q"8/F(mean/std) Qo(mean/std) Quw/(mean/std) Qp(mean/std)
bior6.8 42 0.4984/0.0996 0.7026/0.0671 0.7930/0.1044 0.9184/0.0276 0.7277/0.0739
bior6.8 48 0.4971/0.0997 0.7041/0.0665 0.7935/0.1032 0.9244/0.0205 0.7320/0.0728
db1 1 0.4863/0.0888 0.6878/0.0646 0.8673/0.0685 0.9340/0.0139 0.7021/0.0765
db1 9 0.4859/0.0886 0.6876/0.0647 0.8661/0.0693 0.9340/0.0139 0.7044/0.0755
db13 49 0.4892/0.1012 0.6991/0.0695 0.7788/0.1059 0.9286/0.0185 0.7382/0.0788
db13 50 0.4903/0.1027 0.6995/0.0694 0.7809/0.1079 0.9286/0.0187 0.7380/0.0789
rbio1.3 53 0.4941/0.0980 0.7007/0.0666 0.8132/0.0950 0.9304/0.0175 0.7265/0.0713
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(3
Fig. 16 Fusion results for a multi-focus image pair. a The LP. b The DWT. ¢ The CVT. d The CT. e The LCWT

As for the filter choices, number of decomposition levels
and directions, we refer to the best results of each multi-
resolution transform published in [37]. Table 2 lists the
used settings for each transform. Particularly, for the CT,
the symbols '"CDF 9/7’ and ’'CDF 9/7’ denote the pyramid
and orientation filter, respectively. The ’levels’ represents
decomposition levels and the corresponding number of
orientation for each level.

We choose five metrics recommended in [37] to quan-
titatively evaluate the fusion performance. They are
mutual information (MI) [38], Q48/F [39], Qo, Qw, and
Qe [40, 41]. The scores of all five evaluation metrics
closer to 1 indicate a higher quality of the composite
image.

Tables 3 and 4 list the average results as well as the
corresponding standard deviations for multi-focus image
pairs of each type of transform. From these two tables, it
can be observed that overall the CVT shows better per-
formance than the LP, the DWT, and the CT, because
the CVT is good at capturing edge and line features.
However, the complexity and memory requirement of
the CVT is much larger than the others. The proposed
LCWT can achieve better results with different filter than
the conventional fusion method. Especially, when choos-
ing filter to be rbiol.3 and A/B = 53, the proposed
LCWT vyields better results than the CVT for the MI,
Qo, and Qw fusion metrics. Besides, the complexity and
memory requirement of the 2D LCWT is much smaller

than the CVT because of the fast algorithm we proposed
here.

The fusion results for a multi-focus image pair can be
seen from Fig. 16.

6 Conclusions

In this paper, the theories of DLCWT and multi-
resolution approximation associated with LCT are
proposed to eliminate the redundancy of the continuous
LCWT. In order to reduce the computational complexity
of DOLCWT, a fast filter banks algorithm associated
with LCT is derived. Three potential applications are
discussed as well, including shift sampling in multi-
resolution subspaces, denoising of non-stationary signals,
and multi-focus image fusion.

Further improvements of our proposed methods
include the lifting scheme [42] to accelerate the fast fil-
ter banks algorithm, the periodic non-uniform sampling
of signals in multi-resolution subspaces associated with
the DLCWTT, etc. Potential applications include single-
image super-resolution reconstruction [43], blind recon-
struction of multi-band signal in LCT domain [44, 45],
multi-channel SAR imaging [11, 46], speech recovery [33],
estimations of the time-of-arrival, and pulse width of chirp
signals [14], etc.
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