
EURASIP Journal on Advances
in Signal Processing

Song et al. EURASIP Journal on Advances in Signal
Processing  (2018) 2018:32 
https://doi.org/10.1186/s13634-018-0551-y

RESEARCH Open Access

On the effect of model mismatch for
sequential Info-Greedy Sensing
Ruiyang Song1, Yao Xie2* and Sebastian Pokutta2

Abstract

We characterize the performance of sequential information-guided sensing (Info-Greedy Sensing) when the model
parameters (means and covariance matrices) are estimated and inaccurate. Our theoretical results focus on Gaussian
signals and establish performance bounds for signal estimators obtained by Info-Greedy Sensing, in terms of
conditional entropy (related to the estimation error) and additional power required due to inaccurate models. We also
show covariance sketching can be used as an efficient initialization for Info-Greedy Sensing. Numerical examples
demonstrate the good performance of Info-Greedy Sensing algorithms compared with randommeasurement
schemes in the presence of model mismatch.
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1 Introduction
Sequential compressed sensing is a promising new infor-
mation acquisition and recovery technique to process big
data that arises in various applications such as compres-
sive imaging [1–3], power network monitoring [4], and
large-scale sensor networks [5]. The sequential nature
of the problems is either because the measurements are
taken one after another or due to the fact that the data
is obtained in a streaming fashion so that it has to be
processed in one pass.
To harvest the benefits of adaptivity in sequential com-

pressed sensing, various algorithms have been developed
(see [6] for a review). We may classify these algorithms
as (1) being agnostic about the signal distribution and,
hence, randommeasurements are used [7–10], (2) exploit-
ing additional structure of the signal (such as graphical
structure [11], sparse [12–14], low rank [15], and tree-
sparse structure [16, 17]) to design measurements, and
(3) exploiting the distributional information of the sig-
nal in choosing measurements [18], possibly through
maximizing mutual information. The additional knowl-
edge about signal structure or distributions are various
forms of information about the unknown signal. Such
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work includes the seminal Bayesian compressive sens-
ing work [19], Gaussian mixture models (GMM) [20, 21],
the classic information gain maximization [22] based on
quadratic approximation to the information gain func-
tion, and our earlier work [6] which is referred to as
Info-Greedy Sensing. Info-Greedy Sensing is a framework
that aims at designing subsequent measurements to max-
imize the mutual information conditioned on previous
measurements. Conditional mutual information is a nat-
ural metric here, as it captures exclusively useful new
information between the signal and the resulted mea-
surements disregarding noise and what has already been
learned from previous measurements. Information may
play a distinguishing role: as the compressive imaging
example demonstrated in Fig. 1 (see Section 4 for more
details), with a bit of (albeit inaccurate) information esti-
mated via random samples of small patches of the image,
our Info-Greedy Sensing is able to recover details of a
high-resolution image, whereas random measurements
completely miss the image. As shown in [6], Info-Greedy
Sensing for a Gaussian signal becomes a simple itera-
tive algorithm: choosing the measurement as the leading
eigenvector of the conditional signal covariance matrix
in that iteration and then updating the covariance matrix
via a simple rank-one update or, equivalently, choosing
measurement vectors a1, a2, . . . as the orthonormal eigen-
vectors of the signal covariance matrix � in a decreasing
order of eigenvalues. Different from the earlier literature
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five 238 by 375  
low-resolution images  
captured by Info-Greedy

original

original 1904 by 3000  
high-resolu3on image 

recovered 1904 by 3000
high-resolution image

random

five 238 by 375  
low-resolution images  
captured by random  
measurements

recovered 1904 by 3000
high-resolution image

Info-Greedy, K = 5

Fig. 1 Value of information in sensing a high-resolution image of size 1904 × 3000. Here, compressive linear measurements correspond to
extracting the so-called features in compressive imaging [1–3]. In this example, the compressive imaging system captures five low-resolution images
of size 238 × 275 using masks designed by Info-Greedy Sensing or random sensing (this corresponds to compressing the data into 8.32% of its
original dimensionality). Info-Greedy Sensing performs much better than random features and preserves richer details in the recovered image.
Details are explained in Section 4.3.2

[22], Info-Greedy Sensing determines not only the direc-
tion but also the precise magnitude of the measurements.
In practice, we usually need to estimate the signal

covariance matrix, e.g., through a training session. For
Gaussian signals, there are two possible approaches: either
using training samples of the same dimension or through
the new “covariance sketching” technique [23–25], which
uses low-dimensional random sketches of the samples.
Due to the inaccuracy of the estimated covariance matri-
ces, measurement vectors usually deviate from the opti-
mal directions as they are calculated as eigenvectors of the
estimated covariance matrix. Hence, to understand the
performance of information-guided algorithms in prac-
tice, it is crucial to quantify the performance of algorithms
with model mismatch. This may also shed some light on
how to properly initialize the algorithm.
In this paper, we aim at quantifying the performance

of Info-Greedy Sensing when the parameters (in partic-
ular, the covariance matrices) are estimated. We focus
on analyzing deterministic model mismatch, which is
a reasonable assumption since we aim at providing

instance-specific performance guarantees with sample
estimated or sketched initial parameters. We establish a
set of theoretical results including (1) studying the bias
and variance of the signal estimator via posterior mean,
by relating the error in the covariance matrix ‖� − ̂�‖
to the entropy of the signal posterior distribution after
each sequential measurement, (2) establishing an upper
bound on the additional power needed to achieve the
signal precision ‖x − x̂‖ ≤ ε, where power is defined
as the square of the norm of the measurement vec-
tor, and (3) translating these into requirements on the
choice of the sample covariance matrix through direct
estimation or through covariance sketching. Note that the
power allocated for the measurements here is the min-
imum power required in order to achieve a prescribed
precision for signal recovery within a fixed number of
iterations. Furthermore, we also study Info-Greedy Sens-
ing in a special setting when the measurement vector
is desired to be one-sparse and establish analogously a
set of theoretical results. Such a requirement arises from
applications such as nondestructive testing (NDT) [26] or
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network tomography. We also present numerical exam-
ples to demonstrate the good performance of Info-Greedy
Sensing compared to a batch method (where measure-
ments are not adaptive) when there is mismatch. Themain
contribution of the paper is to study and understand the
performance of Info-Greedy algorithm [6] in the pres-
ence of perturbed parameters, rather than proposing new
algorithms.
Some other related works include [27], where adap-

tive methods for recovering structured sparse signals with
Gaussian and Gaussian joint posterior are discussed, and
[28], which analyzes the recovery of Gaussian mixture
models with estimated mean and covariance using max-
imum a posteriori estimation. In [29], the orthogonal
matching pursuit which aims at detecting the support
of sparse signals while suffering from faulty measure-
ments is studied. In this work, we focus on the case
where the estimated mean, covariance, as well as the
prior probability for each separate Gaussian component
are available. Another work [20] discusses an adaptive
sensing method for GMM, which is a two-step strat-
egy that first adaptively detects the classification of the
GMM, and then reconstructs the signal assuming it falls
in the category determined in the previous step. While
[20] assumes that there are sufficient samples for the first
step in the first place, our early work [6] and this paper
are different in that, sensing for GMM signal works on
signal recovery directly without trying to identify the sig-
nal class as a first step. Hence, in general, our method
is more tolerant to inaccuracy of the estimated param-
eters, and our algorithm can achieve good performance
even without a large number of samples as demonstrated
by numerical examples. The design of information-guided
sequential sensing is related to the design of sequential
experiments (see [15, 30, 31]) and large computer exper-
iment approximation (see [32]). However, compared to
the literature on design of experiments (e.g., [30]), our
work does not use a statistical criterion based on the
output of each iteration. In order words, we are design-
ing our measurements based on the knowledge of the
assumed model of the signal instead of the outputs of
measurement.
Our notations are standard. Denote [n]� {1, 2, . . . , n};

‖X‖, ‖X‖F , and ‖X‖∗ represent the spectral norm, the
Frobenius norm, and the nuclear norm of a matrix X,
respectively; let νi(�) denote the ith largest eigenvalue of
a positive semi-definite matrix �; ‖x‖0, ‖x‖1, and ‖x‖ rep-
resent the �0, �1 and �2 norm of a vector x, respectively; let
χ2
n be the quantile function of the chi-squared distribution

with n degrees of freedom; let E[x] and Var[x] denote the
mean and the variance of a random variable x; we write
X � 0 to indicate that the matrix is positive semi-definite;
φ(x|μ,�) denotes the probability density function of the
multivariate Gaussian with meanμ and covariance matrix

�; let ej denote the jth column of identity matrix I (i.e., ej
is a vector with only one non-zero entry at location j); and
(x)+ � max{x, 0} for x ∈ R.

2 Method: Info-Greedy Sensing
A typical sequential compressed sensing setup is as fol-
lows. Let x ∈ R

n be an unknown n-dimensional signal.We
make K measurements of x sequentially

yk = aᵀk x + wk , k = 1, . . . ,K ,

and the power of the measurement vector is ‖ak‖2 = βk .
The goal is to recover x using measurements {yk}Kk=1.
Consider a Gaussian signal x ∼ N (0,�) with known
zero mean and covariance matrix � (here without loss
of generality we have assumed the signal has zero mean).
Assume the rank of � is s and the signal is low rank,
i.e. s � n (however, the algorithm does not require the
covariance to be low rank):

rank(�) = s � n.

Our goal is to estimate the signal x using sequential and
adaptive measurements. Info-Greedy Sensing introduced
in [6] is one of such adaptive methods which chooses
each measurement to maximize the conditional mutual
information

ak ← argmax
a

{

I
[

x; aᵀx + w|yj, aj, j < k
]

/aᵀa
}

. (1)

The goal of this sensing scheme is to use a minimum num-
ber of measurements (or to use the minimum total power)
so that the estimated signal is recovered with precision ε;
i.e., ‖̂x − x‖ < ε with a high probability p. Define

χn,p,ε � ε2/χ2
n (p),

and we will show in the following that this is a fundamen-
tal quantity that determines the termination condition of
our algorithm to achieve the precision ε with the confi-
dence level p. Note that χn,p,ε is a precision ε adjusted by
the confidence level.

2.1 Gaussian signal
In [6], we have devised a solution to (1) when the sig-
nal is Gaussian. The measurement will be made in the
directions of the eigenvectors of � in a decreasing order
of eigenvalues, and the powers (or the number of mea-
surements) will be such that the eigenvalues after the
measurements are sufficiently small (i.e., less than ε). The
power allocation depends on the noise variance, signal
recovery precision ε, and confidence level p, as given in
Algorithm 1. Note that in Step 6, the update of covari-
ance matrix can also be implemented, equivalently, via
λσ 2uuᵀ/

(

βλ + σ 2)+�⊥u, as explained in (6). In the algo-
rithm, the initializations μ and � are estimated and may
not be very accurate.
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Algorithm 1 Info-Greedy Sensing for Gaussian signals
Require: assumed signal mean μ (initialize with x̂ = μ)

and covariance matrix �, noise variance σ 2, recovery
accuracy ε, confidence level p close to 1

1: repeat
2: (λ,u) ← largest eigenvalue and associated normal-

ized eigenvector of �
3: β ← σ 2(1/χn,p,ε − 1/λ)+
4: a = √

βu, y = aᵀx + w {measure}
5: x̂ ← x̂ + �a(y − aᵀx̂)/

(

βλ + σ 2) {mean}
6: � ← � − �aaᵀ�/

(

βλ + σ 2) {covariance}
7: until ‖�‖ ≤ χn,p,ε {all eigenvalues small}
8: return signal estimate x̂

2.2 One-sparse measurement
The problem of Info-Greedy Sensing with sparse mea-
surement constraint, i.e., each measurement has only k0
non-zero entries ‖a‖0 = k0, has been examined in [6] and
solved using outer approximation (cutting planes). Here,
we will focus on one-sparse measurements, ‖a‖0 = 1, as
it is an important instance arising in applications such as
nondestructive testing (NDT).

Algorithm 2 Info-Greedy Sensing with sparse measure-
ment ‖a‖0 = 1, for Gaussian signals
Require: assumed signal mean μ and covariance matrix

�, noise variance σ 2, recovery accuracy ε,
confidence level p

1: repeat
2: j∗ ← argmaxj �jj
3: a ← √

βej∗ , y = aᵀx + w {measure}
4: μ ← μ + �a(y − aᵀμ)/

(

β�j∗j∗ + σ 2) {mean}
5: � ← � − �aaᵀ�/

(

β�j∗j∗ + σ 2) {covariance}
6: until ‖�‖ ≤ χn,p,ε {all eigenvalues small}
7: return signal estimate x̂ = μ

Info-Greedy Sensing with one-sparse measurements
can be readily derived. Note that the mutual information
between x and the outcome using one-sparse measure-
ment y1 = eᵀj x + w1 is given by

I[ x; y1]= 1
2
ln
(

�jj/σ
2 + 1

)

,

where �jj denote the jth diagonal entry of matrix �.
Hence, the measurement that maximizes the mutual
information is given by ej∗ where j∗ � argmaxj �jj, i.e.,
measuring in the signal coordinate with the largest vari-
ance or largest uncertainty. Then Info-Greedy Sensing
measurements can be found iteratively, as presented in
Algorithm 2. Note that the correlation of signal coordi-
nates are reflected in the update of the covariance matrix:

if the ith and jth coordinates of the signal are highly corre-
lated, then the uncertainty in j will also be greatly reduced
if we measure in i. Similar to the previous two algorithms,
the initial parameters are not required to be accurate.

2.3 Updating covariance with sequential data
If our goal is to estimate a sequence of data x1, x2, . . . (ver-
sus just estimating a single instance), we may be able to
update the covariance matrix using the already estimated
signals simply via

̂�t = α̂�t−1 + (1 − α)x̂t x̂ᵀt , t = 1, 2, . . . , (2)

and the initial covariance matrix is specified by our prior
knowledge ̂�0 = ̂�. Using the updated covariance matrix
̂�t , we design the next measurement for signal xt+1. This
way, we may be able to correct the inaccuracy of ̂� by
including new samples. Here, α is a parameter for the
update step-size.We refer to thismethod as “Info-Greedy-
2” hereafter.

2.4 Gaussian mixture model signals
In this subsection we introduce the case of sensing
Gaussian mixture model (GMM) signals. The probability
density function of GMM is given by

p(x) =
C
∑

c=1
πcφ(x|μc,�c),

where C is the number of classes, and πc is the proba-
bility that the sample is drawn from class c. Unlike for
Gaussian signals, the mutual information of GMM has
no explicit form. However, for GMM signals, there are
two approaches that tend to work well: Info-Greedy Sens-
ing derived based on a gradient descent approach [6, 21]
uses the fact that the gradient of the conditional mutual
information with respect to a is a linear transform of the
minimummean square error (MMSE)matrix [33, 34], and
the so-called greedy heuristic [6], which approximately
maximizes themutual information, shown in Algorithm 3.
The greedy heuristic picks the Gaussian component with
the highest posterior πc at that moment and chooses the
next measurement a as its eigenvector associated with
the maximum eigenvalue. The greedy heuristic can be
implemented more efficiently compared to the gradient
descent approach and sometimes has competitive perfor-
mance [6]. Also, the initialization for means, covariances,
and weights can be off from the true values.

3 Performance bounds
In the following, we establish performance bounds, for
cases when we (1) sense Gaussian signals using estimated
covariance matrices and (2) sense Gaussian signals with
one-sparse measurements.
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Algorithm 3 Heuristic Info-Greedy Sensing for GMM
signals
Require: number of componentsC, assumedmeans {μc},

covariances {�c}, initial weights {πc},
noise variance σ 2,
confidence level p

1: repeat
2: c∗ ← argmaxc πc
3: (λ,u) ← largest eigenvalue and associated normal-

ized eigenvector of �c∗
4: β ← σ 2(1/χn,p,ε − 1/λ)+
5: a = √

βu, y = aᵀx + w {measurement}
6: for c = 1, . . . ,C do
7: μc ← μc + [(y − aᵀμc)/

(

aᵀ�ca + σ 2)]�ca
8: �c ← �c − �caaᵀ�c/

(

aᵀ�ca + σ 2)

9: πc ← Kπc exp
{− 1

2 (y − aᵀμc)2/
(

aᵀe�ca + σ 2)}

10: (K : normalizing constant)
11: end for
12: until ‖�c∗‖ ≤ χn,p,ε
13: return signal class c∗ = argmaxc πc, estimate x̂ = μc∗

3.1 Gaussian case with model mismatch
To analyze the performance of our algorithms when the
assumed covariance ̂� used in Algorithm 1 is different
from the true signal covariance matrix �, we introduce
the following notations. Let the eigenpairs of � with the
eigenvalues (which can be zero) ranked from the largest
to the smallest to be (λ1,u1), (λ2,u2), . . . , (λn,un), and
let the eigenpairs of ̂� with the eigenvalues (which can
be zero) ranked from the largest to the smallest to be
(λ̂1, û1), (λ̂2, û2), . . . , (λ̂n, ûn). Let the updated covariance
matrix in Algorithm 1 starting from ̂� after k measure-
ments be ̂�k and the true posterior covariance matrix of
the signal conditioned on these measurements be �k .
Note that since each time we measure in the direction

of the dominating eigenvector of the posterior covari-
ancematrix, (λ̂k , ûk) and (λk ,uk) correspond to the largest
eigenpair of ̂�k−1 and �k−1, respectively. Furthermore,
define the difference between the true and the assumed
conditional covariance matrices after k measurements as

Ek � ̂�k − �k , k = 1, . . . ,K ,

and their sizes

δk � ‖Ek‖, k = 1, . . . ,K .

Let the eigenvalues of Ek be e1 ≥ e2 ≥ · · · ≥ en, then the
spectral norm of Ek is the maximum of the absolute values
of the eigenvalues. Hence, δk = max{|e1|, |en|}. Let

δ0 � ‖̂� − �‖
denote the size of the initial mismatch.

3.1.1 Deterministic mismatch
First, we assume the mismatch is deterministic and find
bounds for bias and variance of the estimated signal. It is
common in practice to use estimated covariance matrices,
which may have deterministic bias from the true covari-
ances. Assume the initial mean is μ̂ and the true signal
mean is μ, the updated mean using Algorithm 1 after k
measurements is μ̂k , and the true posterior mean is μk .

Theorem 1 (Unbiasedness) After k measurements, the
expected difference between the updated mean and the
true posterior mean is given by

E[ μ̂k − μk]= (μ̂ − μ) ·
k
∏

j=1

(

In − βjλ̂j

βjλ̂j + σ 2
ûjûᵀj

)

.

Moreover, if μ̂ = μ, i.e., the assumed mean is accu-
rate, the estimator is unbiased throughout all the iterations
E[ μ̂k − μk]= 0, for k = 1, . . . ,K.

Next, we show that the variance of the estimator, when
the initial mismatch ‖̂� −�‖ is sufficiently small, reduces
gracefully. This is captured through the reduction of
entropy, which is also a measure of the uncertainty in the
estimator. In particular, we consider the posterior entropy
of the signal conditioned on the previous measurement
outcomes. Since the entropy of a Gaussian signal x ∼
N (μ,�) is given by H[x]= ln

[

(2πe)n/2 det1/2(�)
]

, the
conditional mutual information is the log of the determi-
nant of the conditional covariance matrix, or equivalently
the log of the volume of the ellipsoid defined by the covari-
ance matrix. Here, to accommodate the scenario where
the covariancematrix is low rank (our earlier assumption),
we consider a modified definition for conditional entropy,
which is the logarithm of the volume of the ellipsoid on
the low-dimensional space that the signal lies on:

H[ x|yj, aj, j ≤ k]= ln[ (2πe)s/2Vol(�k)] ,

where Vol(�k) is the volume of the ellipse, which equals
to the product of the non-zero eigenvalues of �k :

Vol(�k) = λ1 · · · λsk ,
where rank(�k) = sk .

Theorem 2 (Entropy of estimator) If for some constant
δ ∈ (0, 1) the initial error satisfies

‖̂� − �‖ ≤ δ

4K+1χn,p,ε , (3)

then for k = 1, . . . ,K,

H[ x|yj, aj, j ≤ k]≤ s
2

⎧

⎨

⎩

ln[ 2πe tr(�)]−
k
∑

j=1
ln(1/fj)

⎫

⎬

⎭

, (4)

where
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fk � 1 − 1 − δ

s
βk λ̂k

βk λ̂k + σ 2
∈ (0, 1), k = 1, . . . ,K . (5)

Note that in (3), the allowable initial error decreases
with K. This is due to that larger K means the recovery
precision criterion gets stricter, and hence, the maxi-
mum tolerable initial bias gets smaller. In the proof of
Theorem 2, we track the trace of the underlying actual
covariance matrix tr(�k) as the cost function, which
serves as a surrogate for the product of eigenvalues that
determines the volume of the ellipsoid and hence the
entropy, since it is much easier to calculate the trace
of the observed covariance matrix tr(̂�k). The following
recursion is crucial for the derivation: for an assumed
covariance matrix �, after measuring in the direction of a
unit norm eigenvector u with eigenvalue λ using power β ,
the updated matrix takes the form of

� − �
√

βu
(
√

βu
ᵀ
�
√

βu + σ 2
)−1√

βu
ᵀ
�

= λσ 2

βλ + σ 2 uu
ᵀ + �⊥u, (6)

where �⊥u is the component of � in the orthogonal
complement of u. Thus, the only change in the eigen-
decomposition of � is the update of the eigenvalue of u
from λ to λσ 2/(βλ + σ 2). Based on (6), after one mea-
surement, the trace of the covariance matrix becomes

tr
(

̂�k
) = tr

(

̂�k−1
)− βk λ̂

2
k

βk λ̂k + σ 2
. (7)

Remark 1 The upper bound of the posterior signal
entropy in (4) shows that the amount of uncertainty reduc-
tion by the kth measurement is roughly (s/2) ln(1/fk).

Remark 2 Using the inequality ln(1 − x) ≤ −x for x ∈
(0, 1), we have that in (4)

H[ x|yj, aj, j ≤ k] ≤ s
2
ln[ 2πetr(�)]−1 − δ

2

k
∑

j=1

βjλ̂j

βjλ̂j + σ 2

= s
2
ln[ 2πetr(�)]−k(1 − δ)

2

+ (1 − δ)

2

k
∑

j=1

χn,p,ε

λ̂j
.

On the other hand, in the ideal case if the true covariance
matrix is used, the posterior entropy of the signal is given by

Hideal
[

x,
∣

∣yj, aj, j ≤ k
]= 1

2
ln

⎡

⎣(2πe)s
s
∏

j=1
λj

⎤

⎦− 1
2

k
∑

j=1

λj

χn,p,ε
,

(8)

where β̃j = (1/χn,p,ε − 1/λj)+σ 2. Hence, we have

H[ x|yj, aj, j ≤ k] ≤ Hideal
[

x,
∣

∣yj, aj, j ≤ k
]

+C − 1
2

k
∑

j=1

[

λj

χn,p,ε
+ (1 − δ)

(

1 − χn,p,ε

λ̂j

)]

. (9)

where C � (s/2) ln[ tr(�)/(
∏s

j=1 λj)1/s] is a constant inde-
pendent of measurements. This upper bound has a nice
interpretation: it characterizes the amount of uncertainty
reduction with each measurement. For example, when the
number of measurements required when using the assumed
covariance matrix versus using the true covariance matrix
are the same, we have λj ≥ χn,p,ε and λ̂j ≥ χn,p,ε . Hence,
the third term in (9) is upper bounded by −k/2, which
means that the amount of reduction in entropy is roughly
1/2 nat per measurement.

Remark 3 Consider the special case where the errors
only occur in the eigenvalues of the matrix but not in the
eigenspace U, i.e., ̂� − � = Udiag{e1, · · · , es}Uᵀ and
max1≤j≤s |ej| = δ0, then the upper bound in (8) can be fur-
ther simplified. Suppose only the first K (K ≤ s) largest
eigenvalues of ̂� are larger than the stopping criterion
χn,p,ε required by the precision, i.e., the algorithm takes K
iterations in total. Then,

H[ x|yj, aj, j ≤ k] ≤ Hideal
[

x,
∣

∣yj, aj, j ≤ k
]

+K ln(1 + δK/χn,p,ε)+
s
∑

j=K+1
ln(1 + (δ0 + δK )/λj).

The additional entropy relative to the ideal case Hideal is
typically small, because δK ≤ δ04K (according to Lemma 7
in the Appendix 2), δ0 is on the order of ε2, and hence the
second term is on the order of K2; the third term will be
small because δ0 and δK are small compare to λj.

Note that, however, if the power allocations βi are cal-
culated using the eigenvalues of the assumed covariance
matrix ̂�, after K = s iterations, we are not guaran-
teed to reach the desired precision ε with probability p.
However, this becomes possible if we increase the total
power slightly. The following theorem establishes an
upper bound on the amount of extra total power needed
to reach the same precision ε compared to the total power
Pideal if we use the correct covariance matrix.

Theorem 3 (Additional power required) Assume K ≤ s
eigenvalues of � are larger than χn,p,ε . If

‖̂� − �‖ ≤ 1
4s+1χn,p,ε ,

then to reach a precision ε at confidence level p, the total
power Pmismatch required by Algorithm 1 when using ̂� is
upper bounded by
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Pmismatch < Pideal +
[

20
51

s + 1
272

K
]

σ 2

χn,p,ε
.

Note that in Theorem 3, when K = s eigenvalues of �

are larger than χn,p,ε , under the conditions of Theorem 3,
we have a simpler expression for the upper bound

Pmismatch < Pideal + 323
816

σ 2

χn,p,ε
s.

Note that the additional power required is quite small and
is only linear in s.

3.2 One-sparse measurement
In the following, we provide performance bounds for the
case of one-sparse measurements in Algorithm 2. Assume
the signal covariance matrix is known precisely. Now that
‖ak‖0 = 1, we have ak = √

βkuk , where uk ∈ {e1, · · · , en}.
Suppose the largest diagonal entry of�(k−1) is determined by

jk−1 = argmax
t

�
(k−1)
tt .

From the update equation for the covariance matrix in
Algorithm 2, the largest diagonal entry of �(k) can be
determined from

jk = argmax
t

⎧

⎪

⎨

⎪

⎩

�
(k−1)
tt −

(

�
(k−1)
tjk−1

)2

�
(k−1)
jk−1jk−1

+ σ 2/βk

⎫

⎪

⎬

⎪

⎭

.

Let the correlation coefficient be denoted as

ρ
(k)
ij �

(

�
(k)
ij

)2

�
(k)
ii �

(k)
jj

,

where the covariance of the ith and jth coordinate of x
after k measurements is denoted as �

(k)
ij .

Lemma 1 (One sparse measurement. Recursion for
trace of covariance matrix) Assume the minimum corre-
lation for the kth iteration is ρ(k−1) ∈[ 0, 1) such that
ρ(k−1) ≤

∣

∣

∣ρ
(k−1)
ijk−1

∣

∣

∣ for any i ∈[ n]. Then, for a constant
γ > 0, if the power of the kth measurement βk satisfies
βk ≥ σ 2/

(

γ maxt �(k−1)
tt

)

, we have

tr(�k) ≤
[

1 − (n − 1)ρ(k−1) + 1
n(1 + γ )

]

tr(�k−1). (10)

Lemma 1 provides a good bound for a one-step ahead
prediction for the trace of the covariance matrix, as
demonstrated in Fig. 2. Using the above lemma, we can
obtain an upper bound on the number of measurements
needed for one-sparse measurements.

Fig. 2 One-step ahead prediction for the trace of the covariance
matrix: the offline bound corresponds to applying (10) iteratively k
times, and the online bound corresponds to predicting tr(�k) using
tr(�k−1). Here n = 100, p = 0.95, ε = 0.1, � = ddᵀ + 5In where
d =[ 1, · · · , 1]ᵀ

Theorem 4 (Gaussian, one-sparse measurement) For
constant γ > 0, when power is allocated satisfying βk ≥
σ 2/(γ maxt �(k−1)

tt ) for k = 1, 2, . . . ,K, we have ‖x̂− x‖ ≤
ε with probability p as long as

K ≥ ln[ tr(�)/χn,p,ε]
ln 1

1−1/[n(1+γ )]
. (11)

The above theorem requires the number of iterations
to be on the order of ln(1/ε) to reach a precision of
ε (recall that χn,p,ε = ε2/χ2

n (p)), as expected. It also
suggests a method of power allocation, which sets βk
to be proportional to σ 2/maxt �(k−1)

tt . This captures the
inter-dependence of the signal entries as the dependence
will affect the diagonal entries of the updated covariance
matrix.

4 Results: numerical examples
In the following, we have three sets of numerical examples
to demonstrate the performance of Info-Greedy Sens-
ing when there is mismatch in the signal covariance
matrix, when the signal is sampled from Gaussian, and
from GMM models, respectively. Below, in all figures, we
present sorted estimation errors from the smallest to the
largest over all trials.

4.1 Sensing Gaussian with mismatched covariance matrix
In the two examples below, we generate true covariance
matrices using random positive semi-definite matrices.
When the assumed covariance matrix for the signal x is
equal to its true covariance matrix, Info-Greedy Sens-
ing is identical to the batch method [21] (the batch
method measures using the largest eigenvectors of the
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signal covariance matrix). However, when there is a mis-
match between the two, Info-Greedy Sensing outperforms
the batch method due to its adaptivity, as shown by the
example demonstrated in Fig. 3 (with K = 20). Further
performance improvement can be achieved by updating
the covariance matrix using estimated signal sequentially
such as described in (2). Info-Greedy Sensing also out-
performs the sensing algorithm where ai are chosen to be
random Gaussian vectors with the same power allocation,
as it uses prior knowledge (albeit being imprecise) about
the signal distribution.
Figure 4 demonstrates an effect that when there is a

mismatch in the assumed covariance matrix, better per-
formance can be achieved if we make many lower power
measurements than making one full power measurement
because we update the assumed covariance matrix in
between. Performance of these scenarios are compared
with the case without mismatch. And it is also shown
in the figure that many lower power measurements and
one full power measurement perform the same when the
assumed model is exact.

4.2 Measure Gaussian mixture model signals using
one-sparse measurements

In this example, we sense a GMM signal with a one-sparse
measurement. Assume there are C = 3 components and
we know the signal covariancematrix exactly.We consider
two cases of generating the covariance matrix for each
signal: when the low-rank covariance matrices for each
component are generated completely at random and when

0 200 400 600 800 1000
10

4

10
3

10
2

10
1

10
0

10
1

ordered trials

 

 

Random
Batch
Info Greedy

 = 0.1
Info-Greedy-2

Fig. 3 Sensing a Gaussian signal of dimension n = 100, when there is
mismatch between the assumed covariance matrix and the true
covariance matrix: ̂� ∝ � + RRᵀ , where R ∈ R

n×3 and each entry of
Rij ∼ N (0, 1). We repeat 1000 Monte Carlo trials, and for each trial,
we use K = 20 measurements. The Info-Greedy-2 method
corresponds to (2), where we update the assumed covariance matrix
sequentially each time we recover a signal and α = 0.5

Fig. 4 Comparison of sensing a Gaussian signal with dimension
n = 100 using unit power measurements along the eigenvector
direction, versus splitting each unit power measurement into five
smaller ones, each with amplitude

√
1/5, and we update the

covariance matrix in between. The mismatched covariance matrix is
̂� ∝ � + rrᵀ , where r ∈ R

n×5 and each entry of r is i.i.d.N (0, 1), and
̂� is normalized to have unit spectral norm. Performance of the
algorithm in the presence of mismatch is compared with that with
exact parameters

it has certain structure. In this example, we expect “Info-
Greedy” to have much better performance than “Random”
in the second case (b) because there is a structure in the
covariance matrix. Since Info-Greedy has an advantage in
exploiting structure in covariance, it should have larger
performance gain. In the first case (a), the covariance
matrix is generated randomly, and thus, the performance
gain is not significant.
Figure 5 shows the reconstruction error ‖x̂ − x‖, using

K = 40 one-sparse measurements for GMM signals. Note
that Info-Greedy Sensing (Algorithm 2) with unit power
βj = 1 can significantly outperform the random approach
with unit power (which corresponds to randomly select-
ing coordinates of the signal to measure). The experiment
results validate our expectation.

4.3 Real data
4.3.1 Sensing of a video stream using Gaussianmodel
In this example, we use a video from the Solar Data
Observatory. In this scenario, one aims to compress the
high-resolution video (before storage and transmission).
Each measurement corresponds to a linear compression
of a frame. The frame is of size 232×292 pixels.We use the
first 50 frames to form a sample covariance matrix ̂� and
use it to perform Info-Greedy Sensing on the rest of the
frames. We take K = 90 measurements. As demonstrated
in Fig. 6, Info-Greedy Sensing performs much better in
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Fig. 5 Sensing a low-rank GMM signal of dimension n = 100 using
K = 40 measurements with σ = 0.001, when the covariance matrices
are generated a completely randomly, �c ∝ RRᵀ , R ∈ R

n×3, Rij ∼ N
(0, 1) or b having certain structure, �c ∝ (11ᵀ + 20α2· diag
{n, n − 1, · · · , 1}) ,α ∼ N (0, 1). The covariance matrices �c are
normalized so that their spectral norms are 1

that it acquires more information such that the recovered
image has much richer details.

4.3.2 Sensing of a high-resolution image using GMM
The second example is motivated by computational pho-
tography [35], where one takes a sequence of mea-
surements and each measurement corresponds to the
integrated light intensity through a designed mask. We
consider a scheme for sensing a high-resolution image
that exploits the fact that the patches of the image can
be approximated using a Gaussian mixture model, as
demonstrated in Fig. 1. We break the image into 8 ×
8 patches, which resulted in 89250 patches. We ran-
domly select 500 patches (0.56% of the total pixels) to
estimate a GMM model with C = 10 components,

and then based on the estimated GMM, initialize Info-
Greedy Sensing with K = 5 measurements and sense
the rest of the patches. This means we can use a com-
pressive imaging system to capture five low-resolution
images of size 238×275 (this corresponds to compressing
the data into 8.32% of its original dimensionality). With
such a small number of measurements, the recovered
image from Info-Greedy Sensing measurements has supe-
rior quality compared with those with random sensing
measurements.

5 Covariance sketching
We may be able to initialize ̂� with desired preci-
sion via covariance sketching, i.e., using fewer samples
to reach a “rough” estimate of the covariance matrix.
In this section, we present the covariance sketching
scheme, by adapting the covariance sketching in earlier
works [24, 25]. The goal here is not to present com-
pletely new covariance sketching algorithms, but rather
to illustrate how to efficiently obtain initialization for
Info-Greedy.
Consider the following setup for covariance sketching.

Suppose we are able to form a measurement in the form
of y = aᵀx + w like we have in the Info-Greedy Sensing
algorithm.
Suppose there are N copies of Gaussian signal, we

would like to sketch x̃1, . . . , x̃N that are i.i.d. sampled
from N (0,�), and we sketch using M random vectors:
b1, . . . , bM. Then, for each fixed sketching vector bi and
fixed copy of the signal x̃j, we acquire L noisy realizations
of the projection result yijl via

yijl = bᵀi x̃j + wijl, l = 1, . . . , L.

We choose the random sampling vectors bi as i.i.d.
Gaussian with zero mean and covariance matrix equal to
an identity matrix. Then, we average yijl over all realiza-
tions l=1, . . . , L to form the ith sketch yij for a single copy x̃j:

yij = bᵀi x̃j +
1
L

L
∑

l=1
wijl

︸ ︷︷ ︸

wij

.

The average is introduced to suppress measurement
noise, which can be viewed as a generalization of sketch-
ing using just one sample. Denote wij � 1

L
∑L

l=1 wijl,
which is distributed as N (0, σ 2/L). Then, we will use the
average energy of the sketches as our data γi, i = 1, . . . ,M,
for covariance recovery γi � 1

N
∑N

j=1 y2ij. Note that γi can
be further expanded as

γi = tr
(

̂�Nbibᵀi
)+ 2

N

N
∑

j=1
wijbᵀi x̃j +

1
N

N
∑

j=1
w2
ij, (12)
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Fig. 6 Recovery of solar flare images of size 224 by 288 with K = 90 measurements and no sensing noise. We used the first 50 frames to estimate
the mean and covariance matrix of a single Gaussian. a original image for 300th frame. b Ordered relative recovery error of the 200th to the 300th
frames. c Recovered the 300th frame using randommeasurement. d Recovered the 300th frame using Info-Greedy Sensing

where ̂�N � 1
N
∑N

j=1 x̃jx̃
ᵀ
j is the maximum likelihood

estimate of � (and is also unbiased). We can write (12) in
vector matrix notation as follows. Let γ =[ γ1, · · · γM]ᵀ.
Define a linear operator B : R

n×n �→ R
M such that

[B(X)]i = tr
(

Xbibᵀi
)

. Thus, we can write (12) as a lin-
ear measurement of the true covariance matrix � γ =
B(�) + η, where η ∈ R

M contains all the error terms
and corresponds to the noise in our covariance sketching
measurements, with the ith entry given by

ηi = bᵀi (̂�N − �)bi + 2
N

N
∑

j=1
wijbᵀi x̃j +

1
N

N
∑

j=1
w2
ij.

Note that we can further bound the �1 norm of the error
term as

‖η‖1 =
M
∑

i=1
|ηi| ≤ ‖̂�N − �‖b + 2

M
∑

i=1
|zi| + w,

where b �
∑M

i=1 ‖bi‖2, E[b]= Mn, Var[ b]= 2Mn, w �
1
N
∑M

i=1
∑N

j=1 w2
ij, E[w]= Mσ 2/L, and Var[w]= 2Mσ 4

NL2 ,
and

zi �
1
N

N
∑

j=1
wijbᵀi x̃j, E[ zi]= 0 and Var[ zi]= σ 2tr(�)

NL
.

We may recover the true covariance matrix from the
sketches γ using the convex optimization problem (13).
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We need L to be sufficiently large to reach the desired
precision. The following Lemma 2 arises from a simple tail
probability bound of the Wishart distribution (since the
sample covariance matrix follows a Wishart distribution).

Lemma 2 (Initialize with sample covariance matrix) For
any constant δ > 0, we have ‖̂� −�‖ ≤ δ with probability
exceeding 1 − 2n exp(−√

n), as long as

L ≥ 4n1/2tr(�)
(‖�‖/δ2 + 4/δ

)

.

Lemma 2 shows that the number of measurements
needed to reach a precision δ for a sample covariance
matrix isO(1/δ2) as expected.
We may also use a covariance sketching scheme simi-

lar to that described in [23–25] to estimate ̂�. Covariance
sketching is based on random projections of each training
sample, and hence, it is memory efficient when we are not
able to store or operate on the full vectors directly. The
covariance sketching scheme is described below. Assume
training samples x̃i, i = 1, . . . ,N are drawn from the sig-
nal distribution. Each sample, x̃i is sketchedM times using
random sketching vectors bij, j = 1, . . . ,M, through a

noisy linear measurement
(

bᵀij xi + wijl
)2
, and we repeat

this for L times (l = 1, . . . , L) and compute the average
energy to suppress noise1. This sketching process can be
shown to be a linear operator B applied on the original
covariance matrix �. We may recover the original covari-
ance matrix from the vector of sketching outcomes γ ∈
R
M by solving the following convex optimization problem
̂� = argminX tr(X)

subject to X � 0, ‖γ − B(X)‖1 ≤ τ , (13)

where τ is a user parameter that depends on the noise
level. In the following theorem, we further establish condi-
tions on the covariance sketching parametersN,M, L, and
τ so that the recovered covariancematrix ̂� may reach the
required precision in Theorem 2, by adapting the results
in [25].

Lemma 3 (Initialize with covariance sketching) For any
δ > 0 the solution to (13) satisfies ‖̂� − �‖ ≤ δ, with
probability exceeding 1 − 2/n − 2/

√
n − 2n exp(−√

n) −
exp(−c1M), as long as the parametersM, N, L and τ satisfy
the following conditions

M > c0ns, N ≥ 4n1/2tr(�)

(

36M2n2‖�‖
τ 2

+ 24Mn
τ

)

,

L≥max
{

M
4n2‖�‖σ 2,

1
√

2[ tr(�)/‖�‖]Mn2
σ 2,

6M
τ

σ 2
}

,

(14)
τ = Mδ/c2, (15)

where c0, c1, and c2 are absolute constants.

Finally, we present one numerical example to validate
covariance sketching as initialization for Info-Greedy, as
shown in Fig. 7. We compare it with the case (“direct” in
the figure) when sample covariance matrix is directly esti-
mated using original samples. The parameters are signal
dimension n = 10; there are 30 samples and m = 40
sketches for each sample (thus the dimensionality reduc-
tion ratio is 40/102 = 0.4); precision level ε = 0.1; the
confidence level p = 0.95; and noise standard deviation
σ0 = 0.01. The covariance matrix ̂� is obtained by solving
the optimization problem (13) using standard optimiza-
tion solver CVX, a package for specifying and solving con-
vex programs [36, 37]. Note that the covariance sketching
has a higher error level (to achieve dimensionality reduc-
tion); however, the errors are still below the precision level
(ε = 0.1) thus the performance of covariance sketching is
acceptable.

6 Conclusions and discussions
In this paper, we have studied the robustness of sequen-
tial compressed sensing algorithm based on conditional
mutual information maximization, the so-called Info-
Greedy Sensing [6], when the parameters are learned
from data. We quantified the algorithm performances
in the presence of estimation errors. We further pre-
sented covariance sketching based scheme for initializing
covariance matrices. Numerical examples demonstrated
the robust performance of Info-Greedy.
Our results for Gaussian and GMM signals are quite

general in the following sense. In high-dimensional prob-

0 100 200 300 400 500
ordered trial

10-5

10-4

10-3

10-2

10-1

sketching
direct

Fig. 7 Covariance sketching as initialization for Info-Greedy Sensing.
Sorted estimation error in 500 trials. In this example, signal dimension
n = 10, there arem = 40 sketches; thus, the dimensional reduction
ratio is 40/102 = 0.4. The errors of covariance sketching are higher
than using the direct covariance estimation as initialization (to
achieve the goal of dimensionality reduction); however, note that the
errors of covariance sketching are still much below the pre-specified
error tolerance ε = 0.1 and thus are acceptable
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lems, a commonly used low-dimensional signal model for
x is to assume the signal lies in a subspace plus Gaussian
noise, which corresponds to the case where the signal is
Gaussian with a low-rank covariance matrix; GMM is also
commonly used (e.g., in image analysis and video pro-
cessing) as it models signals lying in a union of multiple
subspaces plus Gaussian noise. In fact, parameterizing via
low-rank GMMs is a popular way to approximate complex
densities for high-dimensional data.

Endnote
1Our sketching scheme is slightly different from that

used in [25] because we would like to use the square of
the noisy linear measurements y2i (where as the measure-
ment scheme in [25] has a slightly different noise model).
In practice, this means that wemay use the samemeasure-
ment scheme in the first stage as training to initialize the
sample covariance matrix.

Appendix 1
Backgrounds
Lemma 4 (Eigenvalue of perturbed matrix [38]) Let �,
̂� ∈ R

n×n be symmetric,with eigenvalues λ1 ≥ · · · ≥ λn
and λ̂1 ≥ · · · ≥ λ̂n, respectively. Let E � ̂� − � have
eigenvalues e1 ≥ · · · ≥ en. Then for each i ∈ {1, · · · , n}, the
perturbed eigenvalues satisfy λ̂i ∈[ λi + en, λi + e1] .

Lemma 5 (Stability conditions for covariance sketching
[25]) Denote A : Rn×n �→ R

m a linear operator and for
X ∈ R

n×n,A(X) = {aTi Xai}mi=1. Suppose the measurement
is contaminated by noise η ∈ Rm, i.e., Y = A(�) + η and
assume ‖η‖1 ≤ ε1. Then with probability exceeding 1 −
exp(−c1m) the solution ̂� to the trace minimization (13)
satisfies

‖̂� − �‖F ≤ c0
‖� − �r‖∗√

r
+ c2

ε1
m
,

for all � ∈ Rn×n, provided that m > c0nr. Here c0, c1, and
c2 are absolute constants and �r represents the best rank-r
approximation of �. When �r is exactly rank-r

‖̂� − �‖F ≤ c0
ε1
m
.

Lemma 6 (Concentration of measure for Wishart distri-
bution [39]) If X ∈Rn×n ∼ Wn(N ,�), then for t > 0,

P
{

∥

∥

∥

∥

1
N
X−�

∥

∥

∥

∥

≥
(
√

2t(θ + 1)
N

+ 2tθ
N

)

‖�‖
}

≤ 2n exp(−t),

where θ = tr(�)/‖�‖.

Appendix 2
Proofs
Gaussian signal withmismatch
Proof of Theorem 1 Let ξk � μ̂k − μk . From the
update equation for the mean μ̂k = μ̂k−1 +
̂�k−1ak

(

yk − aᵀk μ̂k−1
)

/
(

âᵀk̂�k−1ak + σ 2) , since ak is
eigenvector of �̂k−1, we have the following recursion:

ξk =
(

In − λ̂kaka
ᵀ
k

βk λ̂k + σ 2

)

ξk−1

+
⎡

⎣−λ̂k
aᵀk Ek−1ak

(

βk λ̂k + σ 2 − aᵀk Ek−1ak
)

(βk λ̂k + σ 2)
ak

+ Ek−1ak
βk λ̂k + σ 2 − aᵀk Ek−1ak

]

(

aᵀk (x − μk−1) + wk
)

.

(16)

From the recursion of ξk in (16), for some vector Ck
defined properly, we have that

E[ ξk]=
(

I − λ̂kβk

βk λ̂k + σ 2
uku

ᵀ
k

)

E[ ξk−1]

+ Ck E
[

aᵀk (x − μk−1) + wk
]

︸ ︷︷ ︸

0

, (17)

where the expectation is taken over random variables x
and w’s. Note that the second term is equal to zero using
an argument based on iterated expectation

E
[

aᵀk (x − μk−1) + wk
]= aᵀkE[E[ x−μk−1|y1, . . . , yk]]= 0.

Hence, Theorem 1 is proved by iteratively apply the
recursion (17).When μ̂0−μ0 = 0, we haveE[ ξk]= 0, k =
0, 1, . . . ,K .

In the following, Lemma 7 to Lemma 9 are used to prove
Theorem 2.

Lemma 7 (Recursion in covariance matrix mismatch.)
If δk−1 ≤ 3σ 2/4βk, then δk ≤ 4δk−1.

Proof Let ̂Ak � aka
ᵀ
k . Hence, ‖̂Ak‖ = βk . Recall that ak

is the eigenvector of ̂�k−1, using the definition of Ek �
̂�k − �k , together with the recursions of the covariance
matrices

̂�k = ̂�k−1 − ̂�k−1aka
ᵀ
k �k−1/(λ̂k + σ 2), (18)

�k = �k−1 − �k−1aka
ᵀ
k �k−1/

(

aᵀk �k−1ak + σ 2) , (19)

we have

Ek = Ek−1 + �k−1aka
ᵀ
k �k−1

aᵀk �k−1ak + σ 2 − λ̂kaka
ᵀ
k
̂�k−1

βk λ̂k + σ 2
.
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Based on this recursion, using δk = ‖Ek‖, the triangle
inequality, and inequality ‖AB‖ ≤ ‖A‖‖B‖, we have

δk ≤ δk−1 + βk λ̂kakEk−1ak
(

βk λ̂k + σ 2
) (

βk λ̂k + σ 2 − aᵀk Ek−1a
)

· ‖̂Ak̂�k−1‖ + 1
βk λ̂k + σ 2 − aᵀk Ek−1ak

·[ λ̂k(‖̂AkEk−1‖ + ‖Ek−1̂Ak‖) + ‖Ek−1̂AkEk−1‖]

≤ δk−1 + β2
k λ̂

2
kδk−1

(

βk λ̂k + σ 2
)

(βk λ̂k + σ 2 − βkδk−1)

+ βk

βk λ̂k + σ 2 − βkδk−1
[ 2λ̂kδk−1 + δ2k−1]

≤
(

1 + 3βk λ̂k

βk λ̂k + σ 2 − βkδk−1

)

δk−1

+ βk

βk λ̂k + σ 2 − βkδk−1
δ2k−1.

Hence, if we set δk−1 ≤ 3σ 2/(4βk), i.e., δk−1βk ≤ 3
4σ

2, the
last inequality can be upper bounded by
(

1+3 · βk λ̂k

βk λ̂k + σ 2/4

)

δk−1+3· σ 2/4
βk λ̂k + σ 2/4

δk−1=4δk−1.

Hence, if δk−1 ≤ 3σ 2/(4βk), we have δk ≤ 4δk−1.

Lemma 8 (Recursion for trace of the true covariance
matrix) If δk−1 ≤ λ̂k,

tr(�k) ≤ tr(�k−1) − βk λ̂
2
k

βk λ̂k + σ 2
+ 3βk λ̂kδk−1

βk λ̂k + σ 2 − βkδk−1
.

(20)

Proof Let̂Ak � aka
ᵀ
k . Using the definition of Ek and the

recursions (18) and (19), the perturbation matrix Ek after
k iterations is given by

Ek =Ek−1+λ̂2k
̂Ak · aᵀk Ek−1ak

(

βk λ̂k + σ 2
) (

βk λ̂k + σ 2 − aᵀk Ek−1ak
)

− λ̂k

βk λ̂k + σ 2 − aᵀk Ek−1ak
· (̂AkEk−1 + Ek−1̂Ak)

+ 1
βk λ̂k + σ 2 − aᵀk Ek−1ak

Ek−1̂AkEk−1. (21)

Note that rank(̂Ak) = 1, thus rank(̂AkEk−1) ≤ 1; there-
fore, it has at most one non-zero eigenvalue,
∣

∣tr
(

̂AkEk−1
)∣

∣= ∣∣tr (Ek−1̂Ak
)∣

∣=∥∥̂AkEk−1
∥

∥ ≤ ∥∥̂Ak
∥

∥ ‖Ek−1‖
= βkδk−1.

Note that Ek−1 is symmetric and Âk is positive semi-
definite, we have tr(Ek−1̂AkEk−1) ≥ 0. Hence, from (21)
we have

tr(Ek) = tr(̂�k) − tr(�k) ≥ tr(Ek−1)

−
3βk λ̂k

(

βk λ̂k + 2σ 2

3

)

δk−1

(βk λ̂k + σ 2)
(

βk λ̂k + σ 2 − βkδk−1
)

≥ tr(Ek−1) − 3βk λ̂kδk−1

βk λ̂k + σ 2 − βkδk−1
.

After rearranging terms we obtain

tr(�k) ≤ tr(�k−1) + [tr (̂�k
)− tr

(

̂�k−1
)]

+ 3βk λ̂kδk−1

βk λ̂k + σ 2 − βkδk−1
.

Together with the recursion for trace of tr(̂�k) in (7), we
have

tr(�k) ≤ tr(�k−1) − βk λ̂
2
k

βk λ̂k + σ 2
+ 3βk λ̂kδk−1

βk λ̂k + σ 2 − βkδk−1
.

Lemma 9 For a given positive semi-definite matrix X ∈
R
n×n, and a vector h ∈ R

n, if

Y = X − 1
hᵀXh + σ 2Xhh

ᵀX,

then rank (X) = rank(Y ).

Proof Apparently, for all x ∈ ker(X), Yx = 0, i.e.,
ker(X) ⊂ ker(Y ). Decompose X = QᵀQ. For all x ∈
ker(Y ), let b � Qh, z � Qx. If b = 0, Y = X; otherwise,
when b �= 0, we have

0 = xᵀYx = zᵀz − zᵀbbᵀz
bᵀb + σ 2 .

Thus,

zᵀz = zᵀbbᵀz
bᵀb + σ 2 ≤ bᵀb

bᵀb + σ 2 z
ᵀz.

Therefore z = 0, i.e., x ∈ ker(X), ker(Y ) ⊂ ker(X). This
shows that ker(X) = ker(Y ) or equivalently rank(X) =
rank(Y ).

Proof of Theorem 2 Recall that for k = 1, . . . ,K , λ̂k ≥
χn,p,ε . Using Lemma 7, we can show that for some 0 < δ <

1, if

δ0 ≤ δχn,p,ε/4K+1 ≤ 3σ 2/
(

4K+1β1
)

, (22)

then for the first K measurements, we have

δk ≤ 1
4K−k+1

δχn,p,ε
4

≤ 1
4K−k

3σ 2

4β1
, k = 1, . . . ,K .
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Note that the second inequality in (22) comes from
the fact that (1/χn,p,ε − 1/λ̂1)χn,p,εσ 2 ≤ 3σ 2. Clearly,
δk−1 ≤ δχn,p,ε/16. Hence, (4 + δ)δk−1 ≤ δλk . Note
that βkδk−1 ≤ σ 2 and |λk − λ̂k| ≤ δk−1, we
have βkλk ≤ βk(λ̂k + δk−1) ≤ βk λ̂k + σ 2. Thus,
4δk−1

(

βk λ̂k + σ 2
)

+ δβkλkδk−1 ≤ δλk
(

βk λ̂k + σ 2
)

.

Then, we have 3βk λ̂kδk−1
(

βk λ̂k + σ 2
)

≤ βk λ̂k(δλk −
δk−1)(βk λ̂k + σ 2 − βkδk−1), which can be rewritten
as 3βk λ̂kδk−1

βk λ̂k+σ 2−βkδk−1
≤ βk λ̂k

βk λ̂k+σ 2 (δλk − δk−1). Hence,
3βk λ̂kδk−1

βk λ̂k+σ 2−βkδk−1
≤ βk λ̂k

βk λ̂k+σ 2 [ (δ − 1)λk + λ̂k] , which can

be written as − βk λ̂
2
k

βk λ̂k+σ 2 + 3βk λ̂kδk−1
βk λ̂k+σ 2−βkδk−1

≤ −(1 −
δ)

βk λ̂k
βk λ̂k+σ 2 λk . By applying Lemma 8, we have

tr(�k) ≤ tr(�k−1) − (1 − δ)
βk λ̂k

βk λ̂k + σ 2
λk ≤ tr(�k−1)

− (1 − δ)
βk λ̂k

βk λ̂k + σ 2
tr(�k−1)

s
� fktr(�k−1),

where we have used the definition for fk in (5). Subse-
quently,

tr

⎛

⎝�k) ≤
⎛

⎝

k
∏

j=1
fj

⎞

⎠ tr(�0

⎞

⎠ .

Lemma 9 shows that the rank of the covariance will not
be changed by updating the covariance matrix sequen-
tially: rank(�1) = · · · = rank(�k) = s. Hence, we may
decompose the covariance matrix �k = QQᵀ, with Q ∈
R
n×s being a full-rank matrix, then Vol(�k) = det(QᵀQ).

Since tr(QᵀQ) = tr(QQᵀ), we have

Vol2(�k) = det(QᵀQ)
(1)≤ prodsj=1(Q

ᵀQ)jj
(2)≤
(

tr(QᵀQ)

s

)s

=
(

tr(�k)

s

)s
,

where (1) follows from the Hadamard’s inequality and (2)
follows from the inequality of arithmetic and geometric
means. Finally, we can bound the conditional entropy of
the signal as

H[ x|yj, aj, j ≤ k] = ln(2πe)s/2Vol(�k)

≤ s
2
ln

⎧

⎨

⎩

2πe

⎛

⎝

k
∏

j=1
fj

⎞

⎠ tr(�0)

⎫

⎬

⎭

,
(23)

which leads to the desired result.

Proof of Theorem 3 Recall that rank(�) = s, and hence
λk = 0, k = s + 1, . . . , n. Note that for each iteration, the
eigenvalue of ̂�k in the direction of ak , which corresponds
to the largest eigenvalue of ̂�k , is eliminated below the

threshold χn,p,ε . Therefore, as long as the algorithm con-
tinues, the largest eigenvalue of ̂�k is exactly the (k + 1)th
largest eigenvalue of ̂�. Now, if

δ0 ≤ χn,p,ε/4s+1, (24)

using Lemma 4 and Lemma 7, we have that

|λ̂k − λk| ≤ δ0, for k = 1, . . . , s, |λ̂j| ≤ δ0 ≤ χn,p,ε

− δs, for k = s + 1, . . . , n.

In the ideal case without perturbation, each measure-
ment decreases the eigenvalue along a given eigenvector
to be below χn,p,ε . Suppose in the ideal case, the algorithm
terminates at K ≤ s iterations, which means

λ1 ≥ · · · ≥ λL ≥ χn,p,ε > λK+1(�) ≥ · · · ≥ λs(�),

and the total power needed is

Pideal =
K
∑

k=1
σ 2
(

1
χn,p,ε

− 1
λk

)

. (25)

On the other hand, in the presence of perturbation,
the algorithm will terminate using more than K itera-
tions since with perturbation, eigenvalues of � that are
originally below χn,p,ε may get above χn,p,ε . In this case,
we will also allocate power while taking into account the
perturbation:

βk = σ 2
(

1
χn,p,ε − δs

− 1
λ̂k

)

.

This suffices to eliminate even the smallest eigenvalue
to be below threshold χn,p,ε since

σ 2λ̂k−1

βk−1λ̂k−1 + σ 2
= χn,p,ε − δs < χn,p,ε .

We first estimate the total amount of power used atmost
to eliminate eigenvalues λ̂k , for K + 1 ≤ k ≤ s:

βk = σ 2(1/(χn,p,ε − δs) − 1/λ̂k) ≤ σ 2(1/(χn,p,ε − δs)

− 1/(χn,p,ε + δ0)) ≤ σ 2 (4s + 1)δ0
(χn,p,ε − 4sδ0)(χn,p,ε + δ0)

≤ 20
51

σ 2

χn,p,ε
.

where we have used the fact that δs ≤ 4sδ0 (a consequence
of Lemma 7), the assumption (24), and monotonicity of
the upper bound in s. The total power to reach precision ε

in the presence of mismatch can be upper bounded by

Pmismatch ≤
s
∑

k=1
βk ≤ σ 2

{ K
∑

k=1

(

1
χn,p,ε − δs

− 1
λ̂k

)

+20(s − K)

51
σ 2

χn,p,ε

}

.
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In order to achieve precision ε and confidence level p, the
extra power needed is upper bounded as

Pmismatch − Pideal ≤ σ 2
{ K
∑

k=1

(

1
3

1
χn,p,ε

+ δ0

λ2k

)

+ 20(s − K)

51
1

χn,p,ε

}

≤ σ 2
{

1
4s+1

K
∑

k=1

χn,p,ε

λ2k
+ 20s − 3K

51
1

χn,p,ε

}

<

(

20
51

s −
(

3
51

− 1
4s+1

)

K
)

σ 2

χn,p,ε

≤
(

20
51

s + 1
272

K
)

σ 2

χn,p,ε
,

where we have again used δs ≤ 4sδ0 ≤ 4sχn,p,ε/4s+1 =
χn,p,ε/4, 1/λ̂k − 1/λk ≤ δ0/λ

2
k , the fact that λk ≥ χn,p,ε for

k = 1, . . . ,K .

Proof of Lemma 2 It is a direct consequence of Lemma 6.
Let θ = tr(�)/‖�‖ ≥ 1. For some constant δ > 0, set

L ≥ 4n1/2tr(�)(‖�‖/δ2 + 4/δ).

Then, from Lemma 6, we have

P
{‖̂� − �‖ ≤ δ

} ≥ P
{

‖̂� − �‖
≤
(
√

2n1/2(θ + 1)/L + 2θn1/2/L
)

‖�‖
}

> 1 − 2n exp(−√
n).

The following Lemma is used in the proof of Lemma 3.

Lemma 10 If for some constants M, N, and L that satisfy
the conditions in Lemma 3, then ‖η‖1 ≤ τ with probabil-
ity exceeding 1 − 2/n − 2/

√
n − 2n exp(−c1M) for some

universal constant c1 > 0.

Proof Let θ � tr(�)/‖�‖. With Chebyshev’s inequality,
we have that

P

{

|zi| <
τ

6M

}

≥ 1 − 36M2σ 2tr(�)

NLτ 2
, i = 1, . . . ,K ,

P

{

|w| < M
σ 2

L
+ τ

6

}

≥ 1 − 72σ 4M
NL2τ 2

,

and

P

{

|b| < (M + √
M)n

}

≥ 1 − 2
n
.

When

N ≥ 4n1/2tr(�)

(

36n2M2‖�‖
τ 2

+ 24nM
τ

)

, (26)

with the concentration inequality for Wishart distribution
in Lemma 6 and plugging in the lower bound forN in (26)
and the definition for τ in (15), we have

P{‖̂�N − �‖ ≤ τ/[ 3n(M + √
M)] } ≥ P{‖̂�N − �‖

≤
⎛

⎝

√

2n1/2θ
N

+ 2θn1/2

N

⎞

⎠ ‖�‖}

> 1 − 2n exp(−√
n).

Furthermore, when L satisfies (14), we have

P

{

|zi| <
τ

6M
} ≥ 1 − 1

M
√
n
, P{|w| <

τ

3

}

≥ 1 − 1√
n
,

P

{

|b| < (M + √
M)n

}

≥ 1 − 2
n
.

Therefore, ‖η‖1 ≤ τ holds with probability at least 1 −
2/n − 2/

√
n − 2n exp(−√

n).

Proof of Lemma 3 With Lemma 10, let τ = Mδ/c2, the
choices of M, N, and L ensure that ‖η‖1 ≤ Mδ/c2 with
probability at least 1 − 2/n − 2/

√
n − 2n exp(−√

n). By
Lemma 5 in Appendix 1 and noting that the rank of �

is s, we have ‖̂� − �‖F ≤ δ. Therefore, with probability
exceeding 1−2/n−2/

√
n−2n exp(−√

n)−exp(−c0c1ns),
‖̂� − �‖ ≤ ‖̂� − �‖F ≤ δ.

The proof will use the following two lemmas.

Lemma 11 (Moment generating function of multivari-
ate Gaussian [40]) Assume X ∼ N (0,�). The moment
generating function of ‖X‖2 is E[ es‖X‖2 ]= 1/

√
I − 2s�.

Note that |�k| can be computed recursively. We may
derive a recursion. Let zk � aᵀk (x − μk−1) + wk = yk −
aᵀk μk−1. Also Let �k � aᵀ(μ̂k − μk). Note that �k = aᵀξk
for ξk = μ̂k − μk in (16). Based on the recursion for ξk in
(16) that we derived earlier, we have

�k = σ 2

βk λ̂k + σ 2

[

�k−1 + aᵀk Ek−1ak
(

yk − aᵀk μk−1
)

βk λ̂k + σ 2 − aᵀk Ek−1ak

]

and

|�k| ≤ 1
λ̂k(βk/σ 2) + 1

[

|�k−1| + δk

(λ̂k − δk) + σ 2/βk
|zk|
]

.

Proof of Lemma 1 The recursion of the diagonal entries
can be written as

�
(k)
ii = �

(k−1)
ii −

(

�
(k−1)
ijk−1

)2

�
(k−1)
jk−1jk−1

+ σ 2/βk

=
�

(k−1)
ii �

(k−1)
jk−1jk−1

(

1 − ρ
(k−1)
ijk−1

)

+ �
(k−1)
ii σ 2/βk

�
(k−1)
jk−1jk−1

+ σ 2/βk
.



Song et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:32 Page 16 of 17

Note that for i = jk−1,

�
(k)
jk−1jk−1

= �
(k−1)
jk−1jk−1

σ 2/βk

�
(k−1)
jk−1jk−1

+ σ 2/βk
≤ γ

1 + γ
�

(k−1)
jk−1jk−1

,

and for i �= jk−1,

�
(k)
ii ≤ �

(k−1)
ii �

(k−1)
jk−1jk−1

(

1 − ρ(k−1))+ �
(k−1)
ii σ 2/βk

�
(k−1)
jk−1jk−1

+ σ 2/βk

≤ �
(k−1)
ii

�
(k−1)
jk−1jk−1

(

1 − ρ(k−1))+ σ 2/βk

�
(k−1)
jk−1jk−1

+ σ 2/βk

≤ �
(k−1)
ii

1 − ρ(k−1) + γ

1 + γ
.

Therefore,

tr(�k) ≤
(

1 − ρ(k−1)

1 + γ

)

tr(�k−1) − 1 − ρ(k−1)

1 + γ
�

(k−1)
jk−1jk−1

≤
[

1 − (n − 1)ρ(k−1) + 1
n(1 + γ )

]

tr(�k−1).

Proof of Theorem 4 Let ε ≥ √‖�K‖ · χ2
n (p), i.e. ‖�K‖ ≤

χn,p,ε . Then, Theorem 4 follows from

Px∼N (μK ,�K )[ ‖x − μK‖2 ≤ ε]

≥ Px∼N (μK ,�K )[ ‖x − μK‖2 ≤
√

‖�K‖ · ε2]

≥ Px∼N (μK ,�K )[ (x − μK )ᵀ�K−1
(x − μK ) ≤ χ2

n (p)]= p.
(27)

This says that, if ‖�K‖ ≤ χn,p,ε , then (27) holds, we have
‖x̂− x‖ ≤ ε with probability at least p. From Lemma 1, we
have that when the powers βi are sufficiently large

‖�K‖ ≤ tr(�K ) ≤
(

1 − 1
n(1 + γ )

)K
tr(�).

Hence, for (27) to hold, we can simple require
(

1 − 1
n(1+γ )

)K
tr(�) ≤ χn,p,ε , or equivalently (11) in

Theorem 4.
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