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Abstract

Millimeter wave (mmWave) technology is expected to be a major component of 5G wireless networks. Ultra-wide
bandwidths of mmWave signals and the possibility of utilizing large number of antennas at the transmitter and the
receiver allow accurate identification of multipath components in temporal and angular domains, making mmWave
systems advantageous for localization applications. In this paper, we analyze the performance of a two-step mmWave
localization approach that can utilize time-of-arrival, angle-of-arrival, and angle-of-departure from multiple nodes in
an urban environment with both line-of-sight (LOS) and non-LOS (NLOS) links. Networks with/without radio-environmental
mapping (REM) are considered, where a network with REM is able to localize nearby scatterers. Estimation of a UE
location is challenging due to large numbers of local optima in the likelihood function. To address this problem, a
gradient-assisted particle filter (GAPF) estimator is proposed to accurately estimate a user equipment (UE) location as
well as the locations of nearby scatterers. Monte-Carlo simulations show that the GAPF estimator performance matches
the Cramer-Rao bound (CRB). The estimator is also used to create a REM. It is seen that significant localization gains
can be achieved by increasing beam directionality or by utilizing REM.
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1 Introduction

The demand for wireless broadband communication
has been growing rapidly, which has been the driving
force for the emergence of 5G cellular networks. It has
recently been shown in the literature that millimeter wave
(mmWave) technology is not only feasible for dynamic
outdoor cellular networks, but can facilitate a thousand
fold increase in data capacity [1-4]. The mmWave cellu-
lar networks are expected to first be deployed in dense
urban environments where the Global Positioning Sys-
tem (GPS) signal may typically be unavailable, and the
demand for large data rates is high. With coverage ranges
that can extend to hundreds of meters, the network must
be solely responsible for localization, while also simulta-
neously achieving high data rates in such scenarios [1].
Communication performance in 5G networks will be lim-
ited by the amount of time required to align the highly
directional beams of the communicating nodes, particu-
larly for exhaustive beam searches, which are costly to
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capacity [5]. A network that is able to localize node posi-
tions can significantly reduce the time spent on beam
alignment and increase capacity [6]. Thus, it is impor-
tant to characterize the performance of mmWave network
localization for urban scenarios.

Wireless localization with strictly non-line-of-sight
(NLOS) paths is achievable for omni-directional antennas
by exploiting the time-of-arrival (TOA), angle-of-arrival
(AOA), and angle-of-departure (AOD) measurements
[7-9]. While accurately measuring AOA and AOD is
relatively difficult at lower frequencies due to the rich scat-
tering and poor path separability, this is much easier to
achieve in mmWoave channels leading to improved local-
ization performance [10]. The mmWave frequencies also
allow the use of ultra-wide bandwidths larger than 1 GHz,
which helps in providing precise TOA estimates. Figure 1
highlights channel characteristics of mmWave frequencies
that offer advantages over traditional microwave frequen-
cies for localization.
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Fig. 1 Signal propagation in microwave and mmWave frequencies
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1.1 Literature review on mmWave localization

There have been recent studies in the literature that eval-
uate mmWave localization performance in various sce-
narios. Localization with received signal strength (RSS),
TOA, and AOA are analyzed in [11] (separately and
jointly for different measurement parameters) for LOS
and NLOS scenarios, showing promising results with
TOA and AOA, and less reliable results with RSS. A
log-normal path loss model is used to evaluate RSS,
time-difference-of-arrival (TDOA), and AOA localiza-
tion methods for LOS paths in [12]. A mobile’s loca-
tion and orientation are estimated jointly in [13, 14]
for mmWave systems. It is shown in these papers that
a single fixed equipment (FE) is sufficient to localize
a user equipment (UE), but only LOS paths are con-
sidered. A direct localization approach for a user con-
nected with multiple FEs is introduced in [15], but NLOS
paths are treated as interference and LOS paths are still
required.

Atlower frequencies NLOS paths are treated as interfer-
ence. A major advantage of mmWave frequencies is that
very few paths have significant received signal strength,
which results in channel sparseness [16]. This prop-
erty enables NLOS paths to no longer be considered as
interference, but to instead be exploited as paths with
additional information that can improve localization per-
formance [17]. The work in [10] shows that it is possible
to use LOS and NLOS paths to determine the orientation
and position of a node communicating with a single trans-
mitter at mmWave frequencies under certain conditions.
Specifically, it is shown that sufficient conditions for posi-
tion and orientation estimation require at least one LOS
path or three NLOS paths. The Cramer-Rao bound for
localization and orientation is derived, and a localization
algorithm is proposed that exploits channel sparseness to
estimate AOD/AOA/TOA, which is then used to estimate

user position and orientation. The work in [18] extends
the Cramer-Rao bound to three dimensions.

1.2 Summary of the proposed mmWave localization
technique

The algorithm proposed in [10] is only suited for single
transmitter scenarios. However, there may be scenarios
where a single transmitter is unable to establish enough
paths to meet the sufficient conditions for localization.
In this work, we consider scenarios that are not neces-
sarily limited to a single transmitter. Instead, an initial
access or beam alignment stage is used to obtain rough
AOD/AOA/TOA estimates for LOS and NLOS paths
from one or multiple transmitters. Then, the user posi-
tion is estimated using the AOD/AOA/TOA estimates.
This step requires optimizing a non-convex cost function
with many local maxima. To accomplish this, we pro-
pose a gradient-assisted particle filter (GAPF) estimator.
While separately estimating TOA, AOD, and AOA is sub-
optimal, it significantly reduces computational effort and
allows links from multiple transmitting FEs to be used for
localization.

It should be noted that the work in [10] studies methods
to jointly estimate and refine AOD/AOA/TOA for LOS
and NLOS paths from a single FE. This process can be
used to obtain improved AOD/AOA/TOA estimates for
one FE at a time in place of the proposed reduced com-
plexity first step. Then, these estimates can be combined
and used in the second step for improved localization
accuracy over the proposed reduced complexity approach.
The reduced complexity approach is only considered in
this work because the minimal processing approach to
estimating AOD/AOA/TOA greatly reduces computation
time and still achieves adequate localization accuracy. The
proposed method is best suited for environments where
many nodes are connected, such as a 5G network with
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many FEs in an urban environment where a single FE may
not be able to establish enough paths to meet the sufficient
conditions for localization.

Urban environments with many buildings and large
structures contain scatterers that remain fixed in space.
The three dimensional spatial characteristics of the urban
environment can be captured by radio-environmental
mapping (REM) and later exploited to estimate scatterer
locations for NLOS paths to improve localization [19].
The knowledge provided by localization and REM can
be used to relax initial access requirements and improve
capacity for 5G communication systems [20]. In this work,
we study REM-assisted localization, which assumes scat-
terer locations are estimated a priori and can be used to
improve localization performance.

1.3 Methods/experiments and contributions of this work
To our best knowledge, mmWave network localiza-
tion that exploits LOS and NLOS paths from multiple
FEs in an urban environment utilizing TOA/AOA/AOD
with/without REM has not been studied in the literature.
This paper analyzes the localization performance of 5G
mmWave communication networks specifically consider-
ing urban canyon and urban corner environments where
directional beams are captured at the UE in the downlink
from one or multiple FEs. The contributions of this paper
are summarized as follows:

e A reduced complexity two-step localization scheme
is introduced where in the first step the receiver
obtains rough estimates of AOD/AOA/TOA for LOS
and NLOS paths from initial access or beam
alignment stages from multiple FEs [10, 21].

The AOD estimate is obtained from a transmitted
reference signal where the transmitter embeds the
center beam direction and the AOA/TOA are
estimated non-jointly by the receiver. The second
step uses the AOD/AOA/TOA estimates to estimate
the receiver and NLOS scatterer location coordinates.

e A gradient-assisted particle filter (GAPF) estimator is
proposed as a maximum likelihood (ML) estimator to
estimate the UE position and scatterer coordinates
over a non-convex space. It is shown to have
performance that matches the Cramer-Rao bound
(CRB) through Monte-Carlo simulations.

e Localization performance is analyzed in urban
canyon and urban corner scenarios where a UE is
connected with one FE or two FEs.

e The localization accuracy of REM-assisted and
non-REM-assisted network performance is analyzed.
The performance of a perfect REM system that has
perfect knowledge of a scatterer locations (with no
localization error) for each observed path is used to
bound realistic REM systems.
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e The scatterer locations that are extracted from the
proposed localization approach are used to create an
REM.

The rest of this paper is organized as follows. Section 2
introduces the mmWave localization model and studies
how LOS and NLOS paths can be separated for local-
ization purposes. Section 3 discusses estimation meth-
ods and introduces the GAPF estimator for localization.
Section 4 derives the CRB for mmWave localization per-
formance. Section 5 compares estimator performance to
the CRB, analyzes mmWave localization performance in
urban canyon/corner environments with/without REM,
and examines the trade-off between system complex-
ity and localization accuracy. Subsequently, the proposed
estimator is used to create an REM. Finally, Section 6
provides concluding remarks.

2 mmWave localization system model

This section introduces the downlink system model in
a mmWave network from multiple FE nodes to a single
UE node, where the UE estimates its own position. With-
out loss of generality, our results can also be extended
to network-based localization relying on uplink mmWave
signals from the UE. First, the 2D system model for
mmWave urban localization is introduced. Then, differen-
tiating LOS from NLOS paths is studied. Additionally, ray-
tracing techniques are used to further study the effects of
directional beams at mmWave frequencies and justify that
the results in the included 2D model are representative of
a full 3D model.

2.1 Localization model

While the position of a UE in a wireless network can be
estimated directly, it is often more practical to implement
a two-step positioning approach that first determines a set
of parameters such as TOA, AOD, or AOA, which are then
used to estimate the position [22].

The considered scenario utilizes the periodic beam
training stage or initial access for mmWave network com-
munications to collect AOA/AOD/TOA for a variety of
paths [6, 23]. The beam training stage searches over
possible beams at the FE and UE where each direc-
tional beam points in a different direction. The beams
with the strongest signals are then used to estimate
AOA/AOD/TOA for the paths associated with those
beams. A propagation channel is known to be sparse at
mmWave frequencies [16, 23], for which one major reason
is the use of highly directional beams enabled at mmWave
frequencies with many antenna elements. Hence, each
beam will typically contain a LOS path or a strong single
bounce NLOS path [16, 24] along with multiple bounce
NLOS paths that will have large attenuation and much
lower signal strength [23]. Since only the strongest beams
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for each UE/FE pair are selected, multiple bounce paths
are relatively unlikely, which allows the model to be sim-
plified to LOS paths and single bounce NLOS paths [23].

Assuming a synchronized network, ultra-wide band-
widths of mmWave frequencies provide precise TOA esti-
mates [25]. Measuring AOA and AOD is not feasible
at lower frequencies because of large numbers of scat-
tered paths. However, the arrays with large numbers of
antenna elements at mmWave frequencies easily fit on
chip enabling highly directional beams. Arrays at the UE
provide precise AOA measurements, where it is assumed,
the orientation of the UE is known so that the AOA rel-
ative to the overall coordinate system is determined from
the AOA relative to the UE array. An AOD measure-
ment is obtained from the FE, which transmits the beam’s
quantized AOD relative to the overall coordinate system.
This is easily calculated from the AOD of the FE relative
to the antenna array under the assumption that the FE
orientation is known. Additionally, the FE is assumed to
broadcast its position coordinates. These low-complexity
methods of obtaining AOA/AOD/TOA make mmWave an
ideally suited technology for localization.

From the beam training stage, we assume that the
AOA/AOD/TOA are measured for paths corresponding
with beams from Npg FEs. Then, each path is identified
as LOS or NLOS, which is discussed in 2.3. It is assumed
there are N1, < Npg LOS paths and Ny NLOS paths, which
are used to estimate the location of a UE at position

p=lp.p)". 1)

Figure 2 shows NLOS and LOS paths along with each
path’s associated parameters, which are explained in the
following paragraphs.

A

NLOS: UE:p

aj,kj,i]‘ (p)

Scatterer: @k ;0 »)
Bjxe;i;(®) s()
d]',k]',i}'(p) dj,kj,()(p)
L——Bjx,0(@)
«“) «“»
FE: q(k; alk:
q(k;) ) FE:q(k)

Fig. 2 mmWave localization model for a NLOS and b LOS scenarios
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Let the vector ¢ € R2>*NeE be the two-dimensional
coordinate vector for Npg transmitting FEs and

T

a(ky) = [4x (k) ay (k)] 2)
be the location of FE k; that transmits path j. The vector
s € RZ*WN jg the two-dimensional coordinate vector for
the locations of all the scatterers of the NLOS paths, and

s = [s: (i) 5 (5)]" ®)

is the location of scatterer i; that reflects path ;.

Leto(0) € RMLANNIXT contain the AOA for all LOS and
NLOS paths, (0) € RNL+NMOXT contain the AOD for all
LOS and NLOS paths, and d(#) € RNL+HNN*1 contain the
total traveled path distance (which TOA will measure) for
all LOS and NLOS paths. A NLOS path j transmitted from
FE kj and reflected from scatterer i; will have AOA ok ;;,
AOD B; ;> and distance djy, ;. A LOS path j transmitted
from FE k; will have AOA a0, AOD B; 0, and distance
dj ;0 where the index 0 signifies a LOS path.

For consistency;, let the first Ni, elements of a(6), $(9),
and d(0) correspond to LOS paths so that these elements
have indices j = 1,..,NL; kj = 1,..,Ni; and i; = 0. The
remaining Ny elements are the remaining NLOS paths
with indices j = NL + 1,..,NL + Nn; k; corresponds
to the FE locations from which NLOS path j originated;
and §; = 1,..,N\ corresponds to the scatterer location
from which path j reflects. Then, similar to [8], the mea-
sured/observed parameters for LOS paths to be used for
localization can be written as

' _ qx (k/’) — Px
) k;,0(0) = atan2 <qy (k) — py) , (4)
Px — qx (k])
ik,0(0) = atan2 | ———== |, (5)
Pikyo e (Py —4q (ki)

g0 ® = (px — a: () + (0 — a0y (k)% ()

On the other hand, NLOS paths have the parameters

%, (8) = atan2 (“’”"’) , 7)
& 5G) — 1y

o sx(ij) — %c(kj))

mww*”“ﬂ<wm—%w>’ ®

i @) = (5:G) — ) + (550 — py)°

(5 — ax))* + (5, — @y k),
©)
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where atan2(-) is the four quadrant inverse tangent:

atan(%) ifx >0,
atan( )+n ifx <0andy >0,

VAT
atan2 <Z> = f{ta“ (x) T ¥fx <0andy <0,
x 2 1fx=0andy>(),
-3 ifx=0andy < 0,
undefined ifx =0andy=0,

(10)

and atan(-) is the ordinary arctangent function.

Our goal is to estimate p = [px py]T from noisy mea-
surements of the parameters in (4)—(9) from multiple links
with one or more FEs. The noise of the AOA/AOD/TOA
path parameters is assumed to be zero-mean Gaussian
throughout this paper, and the estimation algorithm is
designed under the Gaussian noise assumption. Though,
the Gaussian distribution is just one possibility for param-
eter noise distributions. The proposed algorithms can
still be used if the parameters have non-Gaussian noise
distributions, but with degraded performance. The local-
ization estimator is optimal under the Gaussian noise
scenario, but scenarios with non-Gaussian distributions
are still expected to have reasonable performance [26].
Nonetheless, the Gaussian assumption is reasonable for
AOA/AOD/TOA at mmWave frequencies as supported
by [27-29], where [29] uses a measurement campaign to
show that Gaussian noise is a good fit for AOD and AOA
at mmWave frequencies in urban environments. TOA
estimation can be used to determine the total distance in
(6) and (9) traveled by a path for LOS and NLOS links,
respectively. The measured distance for a path is

(d)
i i = Bk 0) + 1, ki (11)
with ' ~ N (0,02> where [ = L for LOSand [ = N
},k,,, d

for NLOS paths. The center direction of the transmitted
beam can be transmitted by the FE and used as an AOD
estimate. The measured AOD is

Bii; (0) + n(’i), , 12)

B j/’ki’ll
with nl(i) ~ N (0 o ) where [ = L for LOS and [ =

for NLOS paths. The AOA can be measured by a receiver
array so that the measured AOA is

a]{vkjvb Ok, @) +n /k i’ (13)

with ”}k i~ N (O, 00%1) where / = L for LOSand/ = N
for NLOS paths.

Without loss of generality, the variance of the parame-
ters have been assumed to only depend on whether the
path is LOS or NLOS. The parameters for the paths in

(4)-(9) depend on the unknown position of the UE p and
the unknown scattering locations s, which are nuisance

(2018) 2018:35
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parameters. The vector of unknown parameters that must
be estimated is

0= [stT]T €0,

where ® € R?*2WN js the unknown parameter space.
We also consider networks that have REM capabilities.
REM provides information about the environment such as
building locations and path link information, which can be
used to determine scatterer locations and improve local-
ization performance. The best case scenario is when the
REM can provide sufficient information so that the scat-
terer locations are known perfectly. Then, the estimator
no longer has to estimate the scatterer locations for each
NLOS path and only the UE position p needs to be esti-
mated. Therefore, the performance of REM aided localiza-
tion is bounded by the case where scatterer locations are
known and constant so that the UE position coordinates
are the only parameters that need to be estimated and the
unknown parameter vector becomes:

0 =[pl e O, (15)

where ® € R2 With or without REM, the mmWave
parameter measurements in (4)—(9) can be characterized
using a nonlinear Gaussian model, which fits the general
form:

(14)

z=h@)+w, (16)

where the nonlinear function # : RN — RM and observa-
tions z are given by:

T T
1®)=|a®)"B®)a’®)] andz=[@)" (8 @)"]

The measurement noise w ~ N (0, R) is additive Gaus-
d
sian noise from ' k) , n(i) , and n' k) with measurement
] l] ],l] l
covariance matrix,

R = diag (( )1><NL (O-O%N)IXNN ’ <0§L)1XNL ’

_ 2 2 2
x (GﬂN)lxNN ’ (adL)lxNL ’ <0dN)1xNN) ’
(17)

Localization then requires estimating the UE position p
from the measurements z.

2.2 Statistics of AOA, AOD, and TOA

The authors in [29] use measurements and simulations in
urban environments to characterize the statistics of AOA,
AOD, and TOA (needed for (17)) for a system with 2.5 ns
multipath resolution and 800 MHz bandwidth, at center
frequencies 28 and 73 GHz. Horn antennas are used with
10.9°/8.9° azimuthal/elevation 3 dB beamwidths at 28 GHz
and 7°/7° azimuthal/elevation 3 dB beamwidths at 73 GHz.
It has been shown that the parameters given closely cap-
ture the statistics of measurements in urban environments
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at these frequencies. We use these parameters for each
receiver in simulations, which are summarized in Table 1.
Using the model from [29] provides an accurate repre-
sentation of an urban environment so that ray tracing
is not necessary, which greatly simplifies simulations. It
should be noted that the source of noise from the exper-
imental campaign in [29], which leads to the variances
in Table 1 is from multipath in the same timing bin and
the inability to separate them. Antennas with more direc-
tionality will reduce the number of multipaths and reduce
the noise variances from Table 1 and improve localization
accuracy. The included AOD and AOA noise variances
in Table 1 that are extracted from mmWave measure-
ments in [29] are assumed to capture the effects such as
NLOS reflection power loss, beamwidth, and interfering
multipath components. It should also be noted that these
parameters assume the same receive SINR for both central
frequencies of 28 and 73 GHz as there are no interfering
transmitters using the same bands; in other words, impact
of central frequency is limited to the statistics reported on
Table 1, and interfering path behavior at these two differ-
ent mmWave bands are not explicitly taken into account.
On the other hand, mmWave frequencies have little inter-
ference due to highly directional communications and
highly attenuated reflections [1].

2.3 Differentiating LOS and NLOS paths

A challenging aspect for mmWave localization will be
LOS/NLOS path identification and path separation, which
is needed for generating the vector of unknown param-
eters in (14) (includes one unknown scatterer location
for each NLOS path, and no scatterer for a LOS path),
the covariance matrix in (17) and hence the likelihood
function to be defined in (20). To this end, beam direc-
tionality can play an important role in LOS/NLOS differ-
entiation and path separation since it significantly impacts
the multipath characteristics in mmWave systems. To
gain further insights, an example with Remcom’s Wireless
Insite mmWave ray-tracing simulator is used to simulate
path separation with different directionalities of beams.
A center frequency of 73 GHz is used, and a geometry is
chosen that has multipath from ground bounce and build-
ing reflection as seen in Fig. 3a. The FE is at a height of
10 m, and the UE is at a height of 2 m. The geometry is
held fixed, and two different beamwidths are used. The
first beam is semi-directional with a 80° 3 dB beamwidth,
and the second is a directional beam with a 28° 3 dB

Table 1 Standard deviation of the observation parameters that
are used in the simulations

00 ) 0p () ogq(m)  og () 0o () og (M)
28 GHz 10.5 85 0.75 10.1 9.0 0.75
73 GHz 85 55 0.75 6.0 7.0 0.75
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beamwidth. Figure 3b shows the TOA for the 80° 3 dB
beamwidth, where two clusters are observed, one of which
has the LOS path along with multiple NLOS paths includ-
ing ground bounce and reflected building paths. In this
case, the LOS path is inseparable from others as mmWave
systems will have a typical multipath resolution of 2.5 ns.
This leads to a noisy AOA measurement and reduced
accuracy. On the other hand, Fig. 3c shows the TOA for
the beam with the 28° 3 dB beamwidth. In this case,
the directional beam gain causes all multipath including
the ground bounce path to be negligible and only the
LOS path is detected. Since the 3D analysis of directional
beams are able to separate out ground bounce and multi-
path from the main path, for simplicity, it is reasonable to
use a 2D model as path separation and localization results
will be similar to a 3D model.

Directional beams and unique properties of mmWave
such as signal attenuation, small RMS delay spread, and
sparsity make differentiating individual paths and separat-
ing LOS path from NLOS paths feasible [10, 24]. The work
in [10] uses sparse estimation to separate and identify
paths, but with added computational complexity. Simpler
methods also exist that can separate LOS from NLOS
paths. For example, the AOD and AOA can be compared
using the overall coordinate system, which can be com-
puted from the AOD and AOA relative to the antenna
arrays if the FE and UE orientation are known. Then, a
LOS path will have the parameters (4)—(9) with an AOD
B and AOA « such that |« — 8| = 7. However, noisy ver-
sions of the parameters are observed with measured AOD
B’ and measured AOA «’. Therefore, a threshold & can be
introduced that identifies the paths as LOS or NLOS for a
desired probability of error:

L iflo —p/|—m <&

0,iflo/ —B'|—m>&"’ (18)

Los(@,B) = {
where I os(a’, B’) is an indicator function, which is 1 if
LOS, and 0 otherwise. Another approach to separate LOS
and NLOS paths is to exploit TOA and RSS. Urban sce-
nario path loss for 5G systems is studied in [30] and [2]
where it is shown that LOS and NLOS paths have dif-
ferent RSS statistics and a reflection from a NLOS path
will result in 4—6 dB of power loss. Therefore, the path
distance from a TOA estimate can be compared to the
theoretical RSS path loss in free space to differentiate
between LOS and NLOS paths.

3 mmWave location estimation

In this section, we will first describe the likelihood func-
tion for a UE’s location based on AOA, AOD, and
TOA observations. Subsequently, we will study gradient
methods, particle filter methods, and a gradient-assisted
particle filter technique to solve the two-step mmWave
localization problem.
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Fig. 3 a Geometry and ray tracing paths for Wireless Insite simulation in an urban environment. Paths are colored based on RSS where the strongest
RSS path is red and the weakest RSS paths is green. b TOA of simulation with 80° 3 dB beamwidth. € TOA of simulation with 28° 3 dB beamwidth

3.1 Maximizing the likelihood function

It is assumed that the distributions of the parameter
observations (11)—(13) are known and used to calculate
the covariance R as in (17). Then, an estimator for an
unknown UE location can be obtained by maximizing the
likelihood of a measurement (16) as follows:

6= arg moax p(z:0), (19)

where the likelihood for a measurement is

= expl L e hO)T R e
r(z0)= "R eXP{ 5 F—hO)L R [z h(")]A},

(20)
and
2= h@la={m( —a) m(E - @-a)]
(21)

enforces the difference between angular parameters
(AOD and AOA) to be in the range [ —m,x]. This is
achieved with the following modulus function that forces
its argument into the interval [ —7, 7 ]:

(22)

mx) =x — 21w Lx+nJ.

2

This then prevents a linear treatment of angles, which
have a circular coordinate system and two angles cannot
have a magnitude difference greater than 7. Without the
modulus, the likelihood function will have discontinuities
that result from the atan2 function in (4), (5), (7), and (8),
which results in estimators with inherent bias [31].

3.2 Non-REM-assisted localization

Networks without REM must estimate the UE coordinates
p jointly with the scatterer locations (nuisance param-
eter) s. Thus, maximization of the likelihood function
as in (19) is required over the 2 + 2Ny dimensions of
0 = [pT sT]T to localize a UE. The nonlinearity of (16)
requires a nonlinear estimation algorithm to maximize

(20). Furthermore, localization without REM is particu-
larly challenging as it leads to a non-convex likelihood
function that must be maximized over many dimensions.
The global maximum of the likelihood function is the
optimal estimate.

3.3 REM-assisted localization

The REM provides a map of the estimated building and
scatterer locations, which can be used to estimate a scat-
terer location for an NLOS path. It should be noted that a
realistic implementation of the REM requires addressing
many challenging aspects. A major challenge in a real-
istic REM implementation is linking a measured NLOS
path’s AOA/AOD/TOA parameters to a particular scat-
terer location. One method of achieving REM is to use
AOA/AOD/TOA to compute and store the scatterer loca-
tion for each NLOS path received by a node in a commu-
nicating network. This allows a database to be created that
serves as an REM map, which stores scatterer locations
as well as AOA/AOD/TOA and other path information
for each observed path. Then, the scatterer location from
an unknown NLOS path can be linked with an observed
AOA/AOD/TOA by searching the REM map database for
scatterers that are associated with similar path parame-
ters. The authors in [19] and [20] provide algorithms that
use REM to reduce the search space for UE path tracking.
Further details on REM implementation is left as future
work.

Instead of focusing on REM implementation, we use
a perfect REM system with zero scatterer location esti-
mation error to provide bounds on the limits of REM
performance. This serves as a performance bound to any
realistic REM system that can be implemented. Thus, the
performance of a real REM system will be in between the
perfect REM bound and the bound of a system without
REM. A perfect REM system has knowledge of scatterer
locations s so that s can be treated as a constant and the
dimensionality of the likelihood function is reduced to two
dimensions so that a UE is localized by maximizing the
likelihood function over 6 =[ p].
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3.4 Gradient methods

Gradient optimization methods such as gradient
descent, Newton’s method, Gauss-Newton method, and
Levenberg-Marquardt method are often used for maxi-
mizing likelihood functions. These algorithms all rely on
the first and second derivatives of the nonlinear function
to iteratively find the maximum of (20). However, these
optimization methods alone are not guaranteed to find
the global maximum or even converge. If (20) has many
local maxima, these methods will converge to the local
maximum that is closest to the initial estimate. An advan-
tage of these methods is that they are computationally
efficient. The function Isgnonlin in MATLAB implements
the “trust-region-reflective” algorithm, which is a variant
of Newton’s method. It will be referred to as “gradient
method” for the rest of this paper as any of the other
mentioned gradient-based algorithms will give similar
performance.

3.5 Particle filters

As an alternative to gradient methods, an exhaustive
search estimator is guaranteed to find the global maxi-
mum, but is not computationally feasible for maximiza-
tion over high dimensional functions. Particle filters can
be used for multivariate nonlinear estimation and attempt
to approach the performance of exhaustive searches with
less computational effort [32]. Each particle corresponds
to a point where the likelihood function is evaluated.
Instead of computing the cost function over the entire
space, particle filters use random particle searches to
focus on likelihood maxima. However, the number of
particles required to ensure that the global maximum is
reached increases with search space dimensionality. The
sequential importance resampling (SIR) particle filter [33]
is a simple technique compared to other types of particle
filters and is modified in our implementation.

SIR particle filters are typically used to track a target
state vector §; € RN in a nonlinear time-dependent sys-
tem where t = #; is the time instant at sample index k € N.
The target state evolves in time by

ok szfl (0](,1) + Vi—1»

where f;_;(-) is a nonlinear function from the target
model and vi_; is process noise, which is included for
errors in the model. A measurement of the target state at
time ¢ = # is given by:

(23)

zr = hy (0r) + wy, (24)

where hj is a nonlinear measurement function and wy
is measurement noise. Typically, a particle filter is used
to estimate the target state 8 as it evolves in time (as
opposed to 4(#) in (16)) from the mesurements z;. How-
ever, it can also be used as a maximum-likelihood esti-
mator. Instead of letting k represent a state in time, let it
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represent an iteration and the target not evolve; in other
words, let the observations be given by:

O =01+ V. (25)

Then, instead of estimating an evolving target state at
each instant of time with an additional measurement zy,
the target state estimate is improved with each iteration
k from a single measurement from (16). The target state
0 then represents a collection of N particles, which are
evaluations of the likelihood function where 02 is used
to represent an individual particle. Under these modifica-
tions, the measurement and process noise from (24) and
(25) are Gaussian, wg ~ N (0, Ry) and vx_1 ~ N (0, Qx_;)
so that

P (zl0x) =N (h(0;),Ri),
P (0kl0k—1) =N (0, Q1)

Since each iteration uses the same measurement (z; = z),
it is seen that (26) is identical to (20) if the covariance Ry =
R and state 6, = 0.

(26)
(27)

3.6 Gradient-assisted particle filter

Algorithm 1 GAPF iteration: { 02 }f\il =
. , N
GAPFiteration ({02_1, Wi, }i=1 , zk)
e Resample the particles: {02 }fil =

; . N
RESAMPLE ({0 W },-_1)
fori=1:Ndo
e Draw particles 02 ~ p(0k|0§(_1)
e Gradient method estimation with each particle

Bi)is, = aMm ({8}l

o Evaluate likelihood function 171/;'( = p(zk|05<)
end for
o Sum likelihood function evaluations: ¢ = Efi 1171/2
fori=1:Ndo
e Normalize: W;( = ﬂ/;'( /t
end for
e State estimate is particle with largest weight from all

iterations: 6 = 0’1 : m/l = max ({wi }k _ )
m=1

m

The proposed GAPF estimation algorithm is a joint
particle filter gradient method algorithm that is able to
overcome the weaknesses of the individual gradient-based
and particle filter-based algorithms. The gradient method
is used to find likelihood function maxima nearest to par-
ticles, which reduces the number of particles required
to search over the parameter space. The particle filter
enables random searches of the parameter space in search
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of other maxima, which aims to eliminate convergence to
local maxima.

Each iteration of the GAPF estimator in algorithmic
form [33] is given in Algorithm 1. First, the particles are
resampled using the particles 0;;71 and weights WL , from
the last iteration. The resampling function is taken from
[33], which draws particles in proportion to the weights
so that particles that correspond to small likelihood eval-
uations are replaced by duplicate particles with larger
likelihood function evaluations. Then, the particles are
drawn according to 02 ~p (9k|02_1) from (27), which
spreads out the particles randomly with the process noise
covariance Q;_; defined by the user. Subsequently, the
gradient method is applied to these drawn particles to find
the nearest local maxima. The likelihood of each parti-
cle is evaluated according to (26) to determine the weight
for that iteration. The particle with the greatest weight is
the target parameter estimate. An iteration of the particle
filter estimator is visualized in Fig. 4.

Each iteration of the particle filter begins on the peaks of
a set of local maxima. The particles are randomly spread
out to surrounding maxima, and the gradient method
finds the peaks of the surrounding maxima. Typically,
mmWave localization leads to a likelihood function with a
cluster of peaks. The estimator must iterate until all of the
peaks have been located to find the global maximum.

3.7 Initialization

An initial grid search is required for estimation where the
grid points/particles for the initial search @} are fed into
the first iteration of the estimator from Algorithm 2. The
grid must be extensive enough to guarantee that at least
one of the initial particles in the grid is close to the likeli-
hood function maximum, but not so extensive that it adds
unnecessary computation. Sufficient conditions for local-
ization require a minimum of one LOS path or two NLOS
paths. It is noted that [10] requires three NLOS paths. The
discretion occurs because we assume the UE orientation
is known and [10] additionally estimates orientation.
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Each parameter being estimated adds another dimen-
sion that the initial grid must cover. Scenarios with only
LOS paths only require a 2D grid to estimate the UE
coordinates. On the other hand, NLOS scenarios require
the 2D UE coordinates to be estimated in addition to
scatterer coordinates for each NLOS path. This adds an
extra two dimensions that must be searched over for
each NLOS path, making it difficult to cover the entire
search space. One option for scenarios with many NLOS
paths is to jointly use all paths, which becomes com-
putationally expensive as it requires many particles to
cover the high dimensionality that results from all of
the unknown scatterer locations. A second option takes
advantage of the fact that only two NLOS paths are
required to localize the UE and estimate both scatterers.
Then, two or three NLOS paths can be separated from
the other paths and used to estimate the UE location
and scatterer locations for those paths. This can be done
for different sets of paths until each path has been used,
which results in scatterer location estimates for all paths
with significantly less numbers of required overall parti-
cles. Then, the UE location estimates from every set of
paths can be averaged to give a better estimate for the UE
location.

Instead of a full exhaustive grid search in each dimen-
sion for the initial particles ¥, an alternative initialization
is proposed as seen in Algorithm 2 that performs a sepa-
rate grid search that significantly reduces the number of
grid points required for scenarios with many NLOS paths.
Algorithm 2 reduces the dimensionality of the search
space by selecting paths such that a grid search is per-
formed with a series of 2D grids rather than the entire
grid space at once. For example, a scenario with two LOS
paths and two NLOS paths is initialized by first only using
the two LOS paths to search over the 2D UE coordinates
for an initial estimate. Then, the estimated UE coordinates
are held fixed and each of the NLOS paths are analyzed
individually with a 2D grid search for the scatterer loca-
tion. It should be noted that NLOS scenarios require the

Particles from last
iteration: 6},_,

Resample:

Draw particles:
0ic P Bi—1)

Gradient Method:

Evaluate Likelihood:
p(2k; 0})

Fig. 4 One iteration of the GAPF estimator
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use of at least two paths in order to have enough measure-
ments to calculate the UE coordinates, which also require
estimating the scatterer locations. A single grid point is
generated from initialization, which is fed into the parti-
cle filter as 6. The initial grid point gives a rough estimate
of the peak, and the GAPF estimator searches around this
point to find a better estimate.

Algorithm 2 Grid initialization: N; LOS paths and Ny
NLOS paths
if N; > 0 then
e Search over UE coordinates (px, py) using N, LOS
paths as measurements.
e Let the coordinates that maximize the likelihood be
(laml}y)
if Ny > 0 then
for j=1:Ny do
e Hold UE coordinates fixed at (py,py) and
search over scatterer j coordinates (s, (), sy(j))
using all LOS paths and NLOS path j as mea-
surements.
e Let the coordinates for scatterer j that maxi-
mize the likelihood be (5, (), 5y ())).
end for
end if
else
e Search over UE coordinates (py, py) and scatterer
coordinates (sy(m),sy(m), sx(n),s,(n)) using NLOS
paths m and # as measurements.
e Let the grid point that maximizes the likelihood
have UE coordinates (py,py) and scatterer coordi-
nates § = (Sy(m), 8y(m), $x(n), 5, (n)).
for j=1:Ny (j # m, n) do
e Hold UE coordinates fixed at (py, py) with other
scatters fixed at § and search over scatterer j coor-
dinates (sx(j), sy(j)) using NLOS path j as measure-
ments.
e Let the coordinates for scatterer j that maximize
the likelihood be (5, (j), $,(j)) and add to 5.
end for
end if
. Initial estimate is
{DxrPys 8x(i = 1: Nn),3y(i = 1: Nn) )

0o =

4 Fundamental lower bounds for nmWave
localization

Lower bounds on mmWave localization performance can

provide insight into the limits of 5G networks and are

helpful in identifying key factors when designing a net-

work to meet certain specifications. The CRB is often used

to bound localization performance as it provides a lower
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bound on the covariance C; of any unbiased estimator

(é) that satisfies the regularity conditions in [26]:

C—10) =0, (28)

where I(0) is the Fisher information matrix and > 0 rep-
resents a positive semidefinite matrix. The covariance on
estimator @ is defined as,

G =E[(é —~E8)) (8 —E[é])T].

Additionally, using (28), it can be shown that the vari-
ance for element m of 8 is bounded by,

var@,,) = [C;],, = [T ®)],,.-

for all m. Since the observations are assumed Gaussian
z ~ N'(h(8), R) and the covariance does not depend on 6,
each element of Fisher information matrix is given by [26]:

(29)

(30)

on@)1" | [oh®)
1(0 = R , 31
L)), [ 20, ] 20, (31)
where 1 < m,n < M and %(:? is the mth column of the
Jacobian:
@) @) . dh®)
30, 30, 30N
ah 0 31’12(0) '.'
9rO) _ | o . (32)
a0 .
ahg\;[(()) L dhm(9)
061 EEN;

It should be noted that the estimator only approaches
the performance bound if the observation noise is actually
Gaussian. However, the CRB still bounds non-Gaussian
scenarios as other noise distributions will lead to degraded
performance [26].

For completeness, the individual elements of the Jaco-
bian matrix are calculated in “Appendix: Elements of the
Jacobian matrix” For an unbiased estimator, we need to
have E[6] = 6 and the mean square error (MSE) for the
mth element of @ is equivalent to the mth diagonal element
of the covariance, given by

MSE(ém)zE[(ém—om)z}zE [(ém—zs [0,”])2}: c;l .

Using (30), the MSE for the mth element of the unbiased
estimator is bounded by the mth element of the inverse of
Fisher information matrix, which is substituted from (31):

) oh©)1'  [on®)] T

(33)

An estimator with MSE that achieves the equality in (33)
is referred as an efficient estimator.
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In the rest of this paper, the root-MSE (RMSE) will
be used instead of the MSE where RMSE <9m) =

MSE (9,") so that the RMSE of a UE position estima-

tor is in meters (m). From (33) the RMSE of the two-
dimensional estimate of the UE coordinates (RMSEcg(8))
are lower-bounded by RMSEcRrg (@), where

RMSE:(6) = \/E [(91 - 01)2] +E [(62 - 02)2}

(34)
is the RMSE for the unbiased estimator @ and
RMSEcrp(8) = /I (0) +1,(6) (35)

is the CRB. The UE coordinate estimator RMSE in (34)
cannot be evaluated exactly, but it can be approximated
with Monte-Carlo (MC) simulation,

Nsim A
Z ((px px, + (Py _Pyi)z
N51m Nsim

i=1

RMSEst (0) = ) (36)

where N, is the number of Monte-Carlo simulations and
Px; and py, are the ith Monte-Carlo simulation estimates
of the UE position coordinates p, and p.

Another bound that was considered was the periodic
CRB (PCRB) [34]. The likelihood function (20) prevents
noisy angular measurements differing from the actual
angle by more than 7. This is a cyclic Gaussian process
where very noisy measurements can wrap around and be
closer to the actual estimate, which needs to be taken into
account in bounding the parameters. The PCRB bounds
such processes and was implemented. However, it was
found that the angular noise required for the PCRB to take
effect was larger than what we consider.
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5 Numerical results and discussion

In this section, we evaluate the localization performance
of mmWave networks in urban environments. First,
Monte-Carlo simulations of the GAPF estimator and the
CRB are used to analyze localization performance as a
function of beamwidth. Then, mmWave localization per-
formance is studied in urban canyon and urban corner
scenarios with one and two FEs using both LOS and NLOS
observations, where the urban canyon is represented by
two parallel walls and an urban corner is represented by
two intersecting orthogonal walls.

5.1 Localization performance as a function of beamwidth
The trade-off between beamwidth and localization perfor-
mance is examined in an urban corner scenario with one
LOS and two NLOS paths available as seen in Fig. 5a. The
urban corner is simulated with a vertical building wall at

= 0 (m), a horizontal building wall at y = 0 (m), an
FE at (18, 10) (m), and a UE at (8, 35) (m). A Monte-Carlo
simulation is run where the TOA distance noise standard
deviation is fixed at o5, = o4, = 0.75 (m). The AOD
and AOA noise standard deviations are assumed equal to
Oangle = Oq, = 0, = Ogy = 0py and increased. Equating
all of the angular noise standard deviations and varying
Oangle is similar to what occurs if a mmWave antenna
varies its beamwidth [35]. A larger beamwidth results in
a larger AOD variance since the it is more likely the path
did not travel from the center of the beam, which is what
is transmitted as the AOD estimate. Larger beamwidth
also results in more multipath energy, which corrupts
the AOA estimate at the receiver and increases the AOA
variance. Thus, varying oangle has similar effects as vary-
ing beamwidth and is useful in providing insight into
beamwidth effects on localization performance.

Figure 5b plots RMSE bounds from the CRB (35) in
addition to RMSE from Monte-Carlo simulations (36)

NLOS Only
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b
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LOS Only: CRB
@ LOS Only: Estimator
LOS and NLOS: No REM CRB
— — LOS and NLOS: REM CRB
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NLOS Only: No REM CRB
== == NLOS Only: REM CRB
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A NLOS Only: REM EStimator

Iuf
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Fig. 5 a Urban corner with one FE, one LOS path, and two NLOS paths. b RMSE curves for all path combinations with and without REM for
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with the GAPF estimator. The RMSE is shown for both
REM and non-REM systems utilizing different subsets of
the available paths from Fig. 5a. Monte-Carlo simulations
show the estimator to be closely aligned with the CRB,
providing evidence that the GAPF estimator is an efficient
estimator. It should be noted that implementation of the
particle filter or the gradient method individually leads
to RMSE results that are not near the CRB. This results
from the convergence of the estimator to local maxima
and leads to RMSE values that are larger than those given
by the CRB. The individual methods only approach the
CRB under certain conditions if initialization is able to
provide initial estimates in the immediate vicinity of the
global maximum, which is not normally expected.

For systems without REM, it is observed that increased
beam directionality leads to linear improvement in RMSE
values and localization performance. On the other hand,
more directionality comes at a cost because it is achieved
by adding antenna elements at the transmitter. It may

Page 12 of 19

not be feasible to fit the required number of antenna

elements at the transmitter to reach a desired direction-

ality. Furthermore, the cost of the transmitter grows with

each additional antenna element. Thus, transmitter size

constraints and affordability limit the achievable direc-

tionality. Additionally, it is seen that utilizing only the LOS

path has much better localization performance than using
only the NLOS paths while the addition of NLOS paths to
the LOS path only provides modest improvements. The
REM system RMSE curves reach a threshold where the
RMSE does not increase with larger beamwidths. This
occurs because REM provides knowledge of the scat-
terer locations. At smaller beamwidths, angles provide
precise information and reduce the area of likely UE posi-
tions. Eventually, as the beamwidths increase, a threshold
is reached where AOD/AOA measurements become less
relevant and the angular uncertainty allows the spread of
likely UE positions that are too disparate from the TOA
measured path distances.

1

20 RMSE
(m)

0 10 0

X (m)
Fig. 6 a Urban canyon with one FE, one LOS path, and one NLOS path. b CDF of RMSE. € RMSE at 73 GHz without REM. d RMSE at 73 GHz with REM.
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This threshold has important implications in designing
mmWave systems for localization. High accuracy local-
ization can be achieved by two methods. Highly direc-
tional beams from antennas with many elements can be
implemented, but this can be costly and increases the dif-
ficulty of beam alignment. On the other hand, systems
can use REM, which has a high computational cost. From
this example, it is apparent that environments that are
mainly LOS, such as rural areas must rely on increasing
beam directionality to improve localization performance.
Scenarios with many scatterers and NLOS paths, such
as dense urban environments can most easily improve
localization performance with the use of REM if the
network can handle the computational load. It should
be noted that these calculations are under the assump-
tion of perfect REM where the scatterer for each NLOS
path is known without any estimation error. The plotted
results are a bound on the performance of any REM sys-
tem. Realistic localization with REM will have nonzero

Page 13 0of 19

errors in scatterer location errors and has many chal-
lenges that must be addressed before obtaining small
error values. Thus, an actual REM system will have
RMSE values between the non-REM CRB and REM CRB
with values depending on the scatterer location estima-
tion error that the REM localization system is able to
achieve.

5.2 Localization in urban environments

In this section, we consider mmWave localization sce-
narios in urban canyon and urban corner environments
where 5G mmWave cellular networks are expected to first
get deployed and there may be one or two FEs available
to be used for localization purposes. The performance
with/without the use of REM for localization is analyzed,
where with REM, we assume the scatterer locations are
available as in (15). Frequencies of 28 and 73 GHz are
considered where Table 1 is used to define simulation
parameters. Since the GAPF estimator is closely aligned
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Fig. 7 a Urban canyon with two FEs, two LOS paths, and two NLOS paths. b CDF of RMSE. € RMSE at 73 GHz without REM. d RMSE at 73 GHz with
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with the CRB, system performance is determined by eval-
uation of the CRB (35) for each scenario to obtain RMSE.
The results for each scenario are shown in identically
organized figures where a shows the geometry under con-
sideration for an example UE location, b plots the RMSE
cumulative distribution function (CDF) curve for all pos-
sible UE locations with and without REM for 28 and
73 GHz systems, c is a contour plot of RMSE values
(RMSENoreM) for UE locations throughout the scenario
without REM at 73 GHz, d is a contour plot of RMSE val-
ues (RMSERgMm) for UE locations throughout the scenario
utilizing REM at 73 GHz, and e is a contour plot of the
improvement in RMSE from non-REM to REM at 73 GHz
where ARMSE = RMSENorREM — RMSERgM.

5.2.1 Urban canyon
An urban canyon is simulated with parallel walls at x = 0
20 (m) as shown in Fig. 6a with an exam-

(m) and x

ple set of paths for an FE on the left wall at (—1,2) (m)
and a UE located at (10,40) (m). In this case, a single
LOS and a single NLOS path reflected by the right wall
are received by the UE from the FE. From Fig. 6b, it
is seen that localization performance is improved with
the addition of REM as expected. As with all scenarios,
73 GHz performs slightly better than 28 GHz. Refer-
ring to Table 1, 73 GHz is equivalent to 28 GHz in
timing estimation, but has better estimation of AOA
and AOD. As it is at a higher frequency, more anten-
nas can be fit on a chip, allowing a more directional
beam. The more directional beam captures less multipath
and reduces the variance on AOA and AOD estimation,
enabling improved performance. Figure 6¢c—e shows that
REM provides little improvement when the UE is near
the FE, but significant improvement far from the FE. As
with every scenario, REM performs better closer to the
reflecting walls. This can be understood by treating the

b
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scatterers as additional FEs, which are known as a result
of REM. Thus, UE locations near the wall give lower
RMSE because they are closer to the these FEs for each
path.

Another scenario adds a second FE to the urban canyon
at (21,48) (m), which has an additional LOS link and
a NLOS link reflected from the left wall as seen in
Fig. 7a. The RMSE curve seen in Fig. 7b shows that
REM again greatly improves localization performance. We
also realize from Fig. 7b that adding a second mmWave
BS significantly improves the localization accuracy with
and without REM. Figures 7c—e show that REM offers
more performance gain as the UE travels further from
either FE.

5.2.2 Urban corner
An urban corner is simulated with a vertical building
0 (m) and a horizontal building wall at

wall at x
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y 0 (m) as seen in Fig. 8a with an example set of
paths for a FE at (18,10) (m) and a UE at (15,15) (m).
In this case, two LOS paths and two NLOS paths, one
reflected from each wall are received by the UE from
the FE. Figure 8b shows that the geometry of the cor-
ner allows better localization accuracy relative to the
canyon as it allows more NLOS paths. From Figs. 8c—e,
it is seen that REM provides the most gain far from the
FE, which is most significant close to the left reflected
wall.

A second FE can be added to the urban corner scenario
at (18,48) (m) as in Fig. 9a. The geometry of the corner
allows four NLOS paths in addition to two LOS paths, pro-
viding large amounts of information for localization. It is
seen from Fig. 9b that the use of many paths results in high
localization accuracy. Figure 9c—e shows that localization
performance does not only depend on the distance from
the FEs. The midpoint between the two FEs has worse
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performance than points further from both FEs that are
closer to the left wall.

This scenario is similar to what is expected for the first
deployed 5G networks where there may be multiple FE
in range and many LOS/NLOS links may be available
and exploited for significant gains in localization perfor-
mance. These results provide evidence that 5G networks
using two-step localization in environments rich in avail-
able links can expect sub-meter localization accuracy even
without REM.

5.3 Building REM from localization outcomes

The scatterer locations are nuisance parameters in the
estimation of the UE position. However, the scatterer loca-
tions are valuable information and can be used to create
an REM. Figure 10 plots the estimated scatterer locations
(red) obtained from NLOS paths for a given UE trajec-
tory (green dots). Figure 10a shows the estimated scatterer
locations from the urban canyon in the scenario shown
in Fig. 7. It is seen that scatterer estimates are along the
entire length of both the left and right building as both of
the FEs are able to establish paths that reflect from both
buildings, providing good coverage of the environment.
Figure 10b shows the estimated scatterer locations from
the urban corner in the scenario shown in Fig. 9. In this
scenario, each FE is able to establish two NLOS paths for
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each UE location. However, it is seen that the very interior
of the corner has no scatterer coverage. Coverage is pos-
sible if a UE travels further into the corner, but it should
be noted that REM may not always provide complete cov-
erage of the environment. The scatterer locations can be
stored with the AOD/AOA/TOA parameters associated
with them to create an REM. An algorithm that uses the
information from REM to assist in localization is left for
future work.

6 Conclusions

In this paper, we analyze the localization performance
of a reduced complexity method for 5G mmWave urban
networks with multiple available LOS/NLOS links with
one or more FEs. Specifically, we study the localiza-
tion performance in urban canyon and urban corner
settings utilizing AOA, AOD, and TOA measurements
at a UE from one or more FEs. We consider scenar-
ios with and without REM, where in the latter case,
all the scatterer locations for NLOS links are also
simultaneously estimated along with the UE location.
This results in a high dimensional unknown parameter
space. As a consequence, mmWave localization requires
processing of a likelihood function for the unknown
parameter vector with many local maxima, making it dif-
ficult to find the global optimum solution. To address
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this problem, we propose a GAPF estimator which com-
bines particle filter and gradient method, and Monte-
Carlo simulations show that its performance matches that
of the CRB in terms of localization RMSE. The scat-
terer locations that are estimated using the proposed
algorithm can be used to create an REM for an urban
environment.

Our results show that when REM is used with
the proposed two-step approach, sub-meter localiza-
tion accuracy is feasible in mmWave urban networks
using even a single FE. However, further research
is required for evaluating the feasibility of realizing
REM effectively. Without REM (when scatterer loca-
tions need to be estimated simultaneously), median
RMSE lower than two meters is possible with a sin-
gle FE, and lower than a meter is possible with
two FEs. Results show that the urban corner pro-
vides better localization performance due to availabil-
ity of larger number of NLOS paths. Thus, dense
urban environments with non-trivial building struc-
tures and many scatterers are best suited for mmWave
localization. It is shown that localization is improved
by increasing the number of antenna elements to
increase beam directionality or by implementing REM
to assist in estimating NLOS scatterer locations, both
of which come with the trade-offs of higher cost and
complexity.

7 Appendix: Elements of the Jacobian matrix
The Jacobian in (32) is calculated as:

de@) da@) da®) . _de® @) . _3B®O)
Py 0, s, (1 98, (N sy (1 38y (N]
0h®) _| 0y abh 986 op@y ohw 5w
90 | opx dpy  0sx(1) dsx(NN)  dsy(1) dsy(NN) |
od©6) 3d®) 9d@) . _3d@) ad®6) . _3d(®)
0px dpy  09sx(1) dsx(NN)  0sy(1) dsy(NN)
(37)

and the corresponding derivatives in (37) for the AOA,
AOD, and distance with respect to UE coordinates con-
sidering LOS and NLOS links are given by:

¢t ;,0(0) _ Py — qy(kp) , (38)
Opx (px — ax))” + (py — (k)
datjj;,0(0) _ qx(kj) — px ’ (39)
dpy (px — ax(kD)” + (py — 2y (k)
9Bjx;,0(0) _ Py — qx(kj) o)
px (px — ax))* + (py — (k)
9B;,k;,0(0) _ gx(kj) — px (41)

by (pe— k)’ + (py — (k)
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9djj;,0(0) _ Px — q4x(kj) @)
Pe o J(pn— 0 ) + oy — ayK)?

ddljk;0(6) _ Py — ay(kj) @)
opy \/(px — () + (py — ay(kp)”

304, (0) _ Py — $y(ij) , (44)
W (i) = px)” + () — py)°

ey j,i;(0) _ 8x(j) — px ’ (45)
apy (sx(i)) — px)” + (5,i)) — py)”

Adj 1,0 _ D — 5x(i}) )
o \/ (525 = )" + (5G) ~ py)”

3ddj ;i (0) _ Py — sy(§j) . 47)
Py ) - p) + (56) — 1)’

where the derivatives of the AOD with respect to UE coor-
dinates for the NLOS case are assumed zero based on (8).
Note that if the wall orientation is available, it can be pos-
sible to relate AOD explicitly to UE location for the urban
localization setting, which is left as a future work.

The derivatives in (37) for the AOA, AOD, and distance
with respect to scatterer coordinates considering NLOS
links are given by:

e j,i; (0) sy(ij) — py
; = . 2 . 2’ (48)
Isx@)  (s2() — px)” + (5yG)) — py)
a j, j,i/'(o) X T Ox j
Qj i : _ ' p . S (L,)A . (49)
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9B;x;,i;(0) _ sy(ij) — qy(kj)
05:)) (5.6 — q20))” + (5,0 — @y (k)
(50)
Bk (0) qx(kj) — sx(ij)
05)  (52) — qek)’ + (550) — (k)
(51)
ad/’,k/,i,‘ @) . Sx(ij) — Px
BB (i) = pa) + (56 - py)?
N 8x (i) — qx(kj) ,
lx6) = 4 8) + (556 — 4y (k)
(52)
8d]‘,kj,ij (0) _ Sy(l/) _py
W) J(suip = pe) + (556 — y)?
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(53)
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and all other remaining elements are zero since there are
no scatterers for LOS case.
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