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This paper addresses the use of channel state information (CSI) for Long Term Evolution (LTE) signal fingerprinting
localization. In particular, the paper proposes a novel CSl-based signal fingerprinting approach, where fingerprints are
descriptors of the “shape” of the channel frequency response (CFR) calculated on CSI vectors, rather than direct CSI
vectors. Experiments have been carried out to prove the feasibility and the effectiveness of the proposed method and
to study the impact on the localization performance of (i) the bandwidth of the available LTE signal and (ii) the
availability of more LTE signals transmitted by different eNodeB (cell diversity). Comparisons with other signal
fingerprinting approaches, such as the ones based on received signal strength indicator or reference signal received
power, clearly show that using LTE CSI, and in particular, descriptors as fingerprints, can bring relevant performance

1 Introduction

The range of applications requiring ubiquitous (indoor
and outdoor) high-accuracy localization is rapidly
increasing, and it is well known that the accuracy and
availability of the Global Navigation Satellite System
(GNSS), which remains the most common positioning
technology, drop in indoor environments and urban
canyons. This aspect has motivated extensive work on
alternative localization solutions [1], which are based on
radio signals that are either transmitted by dedicated sen-
sors or by opportunistic transmitters (e.g., WiFi routers
or towers of a cellular system). In both cases, fingerprint-
ing may play an important role [2] in meeting the high
accuracy and low complexity requirements of indoor
positioning [3].

The basic idea of a signal fingerprinting approach is to
find the location of a mobile device by comparing its signal
pattern received from multiple transmitters, such as WiFi
Access Point (AP), cellular Base Station (BS) or dedicated
transceivers, to a predefined database of signal patterns.
Most of the proposed signal fingerprinting approaches
for indoor positioning use WiFi signals [3, 4], which are
widely available indoor without deploying a dedicated
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infrastructure. In most of the mentioned works, Received
Signal Strength Indicator (RSSI) is used as a fingerprint
due to its simplicity and low complexity requirements.
However, the use of Channel State Information (CSI),
which can be easily made available by commodity hard-
ware, is attracting more and more interest in the context of
WiFi [3, 5, 6]. Radio signals transmitted by BSs of a cellu-
lar system would have the advantage of a wider availability
(also indoor), and in any case, they could complement
the coverage of WiFi APs. Measurements on the radio
signal transmitted by the BSs of a cellular system have
been considered for localization, but mainly for outdoor
applications, using Global System for Mobile Commu-
nications (GSM) [7] or Universal Mobile Telecommuni-
cations System (UMTS) [8] and considering the RSSI as
fingerprint. Few recent works have considered Long Term
Evolution (LTE) signal for radio fingerprinting localization
[9-11]. However, in all the mentioned works, signal
strength measurements are used as fingerprints.

This work aims to provide better insights on the use of
LTE signal for radio frequency (RF) fingerprinting and in
particular in the use of measurements that are not only
related to the signal strength but also to a finer-grained
knowledge, at subcarrier level, of the channel gain, such
as the one provided by the CSI. As a matter of fact, the
term CSI usually refers to WiFi and indicates the vectors of
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channel gains per subcarrier that can be extracted by com-
modity hardware. In this work, more generally, we call CSI
a vector of channel gains per subcarrier that represents an
estimate of the channel frequency response of the prop-
agation channel. Therefore, this paper proposes an LTE
signal fingerprinting localization method that uses CSI as
fingerprint. Moreover, the proposed approach is differ-
ent from other CSI-related approaches that can be found
in the literature, mainly employed for indoor localization
and based on WiFi signals, where fingerprints are vec-
tors containing the values of measured CSI. We propose
to use as fingerprints not only the vectors of CSI but also
some “descriptors” of the “shape” of the CSI calculated
on these vectors. This would greatly reduce the require-
ments in terms of memory for the database and also the
computational complexity of the matching phase. It is also
worth outlining that the proposed method extracts the
CSI from signalling messages meaning that the mobile
device does not need to have any subscription with any
mobile operator. As a matter of fact, the device can receive
the signalling messages of different eNodeBs regardless
the specific operator.

Experimental results, in rooms of different size and
different furniture, prove the feasibility of the proposed
approach, which has the further advantage of reducing
the computational complexity of the matching phase and
the fingerprint database size. Moreover, the paper shows
how the use of CSI measurements can improve the per-
formance with respect to signal strength measurements
in fingerprinting localization using LTE signals. Being one
of the first works that investigates the use of LTE signal
and CSI measurements for indoor localization, the paper
also studies the impact of the available bandwidth and the
possibility to get cell diversity gain by using LTE signals
transmitted by different eNodeBs.

The paper is organized as follows: Section 2 provides
an overview about the state-of-the-art on RF finger-
printing techniques; Section 3 describes the theoretical
background on LTE and signal fingerprinting; Section 4
presents the proposed localization method; and Sections 5
and 6 show the experimental setup and results, while the
conclusions are drawn in Section 7.

2 Related works
The literature on wireless localization based on RF fin-
gerprinting is wide; hence, we will only discuss the major
results on the topic. Several wireless systems have been
used to apply the concept of RF fingerprinting for local-
ization, including the most common WiFi networks [12],
but also RFID technologies [13], GSM/UMTS/LTE, and
LoRa. A combination of wireless technologies can be used
to improve localization accuracy [14].

Fingerprinting localization is an indirect localization
method which is based on the collection of RF received
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signal characteristics using a two-step process: an offline
training phase which builds a database of measure-
ments for each known position and an online match-
ing/classification phase which estimates the current
position using similarity scores between the received sig-
nal characteristics and the measurements stored in the
training database. Fingerprinting methods are prone to
environmental changes of the area of interest; hence, the
offline training phase has to be carried out periodically.
Fingerprinting uses measurements made by the access
network (e.g., the base stations), the user equipment (UE),
or a combination of both. In this work, we focus on RF
measurements made by the UE (i.e., using downlink sig-
nals). In principle, features extracted from the received
signals at each location should differ from all the others to
avoid ambiguity.

RF fingerprinting can be carried out using received
signal features, in particular signal strength, such as
RSSI, Reference Signal Received Power (RSRP), Reference
Signal Received Quality (RSRQ), and Channel Frequency
Response (CFR)/CSI or equivalently the Channel Impulse
Response (CIR) [3, 5, 15, 16]. Time of Arrival (TOA), Tim-
ing Advancing (TA), Time Difference of Arrival (TDOA),
and Angle of Arrival (AOA) are less frequently used in a
fingerprinting-based approaches [17, 18].

Most of the fingerprinting localization systems are
based on the use of signal strength measures. Methods
based on signal strength have two disadvantages: (1) sig-
nal strength measures have a high variability over time
for a fixed location, due to the multipath effects; (2) sig-
nal strength measures are coarse information which do
not exploit all the available information on the wireless
channel. However, the multipath effect can even be very
constructive when employed in fingerprinting localization
systems. In particular, CSI-based fingerprinting exploits
the uniqueness of the multipath delay profile of the wire-
less channel at each receiver location [6, 16].

In DeepFi [3], CSI information is collected through a
dedicated device driver and analyzed with a deep network
with four hidden layers. During the training phase, CSI
values collected at each location are utilized to learn fea-
tures, which are then stored as fingerprints. In the test
phase, online data is used to match the closest spot with
the similar features stored in the training phase. The dis-
tance between two spots was set to 50 cm, which can
maintain the balance between localization accuracy and
preprocess cost. The achieved mean error ranges from 1.8
to 1.9 m.

For what concerns an LTE network, a UE must detect
and monitor the signals transmitted by multiple cells
and perform cell reselection. Cell mobility procedures
and physical layer adaptation schemes are based on the
following measurements on the signal received from each
eNodeB: RSRP, RSSI, RSRQ, and CSL.
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A fingerprinting localization method in LTE cellu-
lar systems is presented in [10]. In this work, the
altitude is added to the adaptive enhanced cell iden-
tity (AECID) using observed time difference of arrival
(OTDOA) or uplink-time difference of arrival (U-TDOA)
measurements.

The authors of [19] presented a multi-radio position-
ing concept which can be used to enhance the positioning
performance in the WCDMA and LTE networks.

Several other works on localization in LTE networks
exploit TOA or TDOA measurements [20-22]. The fol-
lowing works are based on signal strength measurements.

In [23], LTE measurements at the UE side such as RSRP,
RSRQ, and RSSI have been used for indoor localization.
Three Samsung Galaxy S5 phones running an application
were used to gather data from around 60 different spots in
two indoor environments, where a location represents a
2 x 2-m spot within the indoor space. The achieved aver-
age prediction accuracy ranges between 59 and 84% using
only LTE signals. However, it was demonstrated that the
combination of 2G and 4G signals increases the prediction
accuracy.

In [24], a feature extraction algorithm is applied to
select channel parameters with non-redundant informa-
tion that are calculated from the LTE downlink signals. A
feedforward neural network with the input of fingerprint
vectors and the output of UEs’ known locations is trained
and used by UEs to estimate their positions. Preliminary
experimental results obtained through signal measure-
ments in LTE networks demonstrated that the proposed
localization technique yielded median positioning error
distances of 6 m for indoor and of 75 m for outdoor
scenarios, respectively.

The feasibility of using TA information together with
RSSI/RSRP for improving position estimation in LTE net-
works was studied in [18]. Performance results show that
RF fingerprint containing both RSRP and TA measure-
ments provides a higher positioning accuracy with respect
to the fingerprint containing only RSRP information.

RSSI pattern matching and dynamic time warping
are exploited in [11] for localization in LTE and LoRa
networks.

In the past research works, fingerprinting localization
using CSI was carried out only in WiFi networks. In [25],
it was preliminarily investigated the possibility to use the
CSI extracted from LTE signals for signal fingerprinting
localization. Our work represents the first study on the use
of CSI for fingerprint-based localization in a LTE network.

3 Theoretical background

3.1 LTECSI

In orthogonal frequency division multiplexing (OFDM)
systems, CSI is a vector of channel gains per subcarrier
which are estimated by the receiver and used for channel
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equalization. There has been an increased interest in using
WiFi CSI both for localization and activity recognition, as
it can be easily extracted using a customized firmware and
an open source Linux wireless driver for the Intel 5300
WiFi card. In the case of LTE, with the term CSI, we still
mean a vector of channel gains per subcarriers which rep-
resents an estimate of the channel frequency response.
However, we need to specify how to extract these chan-
nel gains from the receiver. In the following, we consider
only the LTE frequency division duplexing (FDD) mode, in
which uplink and downlink channels are separated in fre-
quency. In LTE, the information data is transmitted over
a time-frequency grid. The time-frequency resources are
organized as follows: radio frame has a duration of 10 ms
and is the largest unit of time in the LTE resource grid.
Each radio frame is subdivided into ten subframes having
a duration of 1 ms, each of which is split into two slots of
duration 0.5 ms. Each slot consists of six or seven OFDM
symbols (depending on the cyclic prefix length). In the
frequency domain, the finest granularity is provided by
OFDM subcarriers which are spaced by 15 kHz from each
other. The minimum resource unit is called resource ele-
ment (RE) and consists of one OFDM subcarrier in the
frequency domain and OFDM symbol in the time domain.
The smallest unit of resource that can be allocated to a
UE is called resource block (RB), which is a group of 12
contiguous OFDM subcarriers (180 kHz) in a time slot of
seven (or six) OFDM symbols.

In the LTE standard, the concept of antenna port has
been introduced. An antenna port is a generic term used
for signal transmission under identical channel condi-
tions and is defined for each independent channel in the
downlink direction. LTE symbols that are transmitted via
identical antenna ports are subjected to the same chan-
nel conditions, and thus, a UE must carry out a separate
channel estimation for each antenna port through sep-
arate reference symbols. Any eNodeB serving the cell c,
in order to exploit spatial diversity, can map these logical
antenna ports to T, physical transmitting antennas. Let us
denote with x, the vector of complex symbols transmitted
over N subcarriers by the eNodeB and with y, the com-
plex vector received from one of the possible transmitting
antennas of the eNodeB after the N-point Fast Fourier
Transform (FFT) at the receiver. The latter can be written
as:

Y = Xche +w (1)

where X, is the transmitted diagonal complex matrix, h,
is the vector containing the channel complex gains per
subcarrier, and w is a complex white Gaussian random
process representing the noise and the inter-cell inter-
ference. The channel gains are estimated by the receiver
using the Cell-specific Reference Signal (CRS) inserted in
specific OFDM symbols within every slot.
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Figure 1 shows the CRSs in two consecutive RBs, and
CRSs are represented by different colors corresponding
to different antennas (four antennas are assumed). In one
slot, there is a total of four CRSs per antenna, located over
different subcarriers and OFDM symbols. In this work, we
extract the complex channel gain per subcarrier for two
different signal bandwidths, i.e., 1.4 and 10 MHz. For both
cases, we assume that the channel stays rather stationary
over a slot (0.5 ms), i.e., the coherence time is equal or
greater than the time slot duration. Under this assump-
tion, the CRSs in different positions in the same slot can
be aligned at the same instant of time for each antenna,
doubling the size of the CRS resulting vector. In the case
of 1.4 MHz signal bandwidth, 6 RBs are used, which allow
to extract from the received signal N = 6 x 2 x 2 = 24 (6
RBs x 2 CRSs x 2 positions) complex channel gains for 24
different OFDM subcarriers. While receiving the 10-MHz
signal bandwidth, 50 RBs are employed for transmission;
therefore, N = 50 x 2 x 2 = 200 (50 RBs x 2 CRSs x
2 positions) CRSs are used to estimate the complex chan-
nel gains for 200 OFDM subcarriers. The complex vector
that represents the channel estimation is what we call CSI
vector in the following. It is worth outlining that an LTE
receiver can extract a CSI vector flc,t for each eNodeB that
is received in a specific position and for each transmitting
antenna port of that eNodeB:

h,, = [izc,t(O),..., Fio,t () ooy Bt (N — 1)], Ve, Ve e T, (2)

In this paper, we also consider, for comparison, other
measurements of the LTE signal for fingerprinting pur-
poses, such as RSRP and RSSI. The RSRP corresponds to
the average power of REs that carry CRSs over the entire
bandwidth, so RSRP for each transmitting antenna port
can be calculated on the vectors ﬁc,t as follows:
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Fig. 1 LTE Cell-specific Reference Symbols. Cell-specific Reference
Symbols for each antenna port in two consecutive Resource Blocks
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The RSS], instead, is the measure of the average received
power observed only in OFDM symbols containing CRSs
for antenna port 0 (symbols 0 and 4 in a slot) over all
the resource blocks in the measurement bandwidth. The
measured RSSI value includes the power from co-channel
serving and non-serving cells, adjacent channel interfer-
ence, and the thermal noise:
= )
RSSIe = 7 D 1Xe(iy )| @)
i=0
where L is the overall number of available subcarriers, that
in case of 1.4 MHz signal bandwidth (six RBs) is equal to
L = 6 x 12 = 72, while for the 10 MHz case (50 RBs) is
equal to L = 50 x 12 = 600.

3.2 Signal fingerprint-based localization

Signal fingerprint-based localization techniques find the
location of a device by comparing its signal pattern
received from multiple transmitters (e.g., WiFi APs or
cellular BSs) to a predefined database of signal patterns.
There is a variety of signal fingerprint-based localization
systems in the literature both for outdoor and indoor
localizations. The “signatures” are usually extracted from
the signal received from an AP or a BS of a cellular system.
Moreover, in most of the previous works, the fingerprint is
a tuple comprising the AP or BS identifiers and the corre-
sponding measured RSSI values. In this work, we propose
a signal fingerprinting localization method, which uses
as fingerprint-specific features calculated on the CSI esti-
mated by an LTE receiver. In general, a fingerprint-based
localization consists of the following phases:

e Fingerprint database building phase—The purpose of
this phase is to build up the offline fingerprint
database, which stores for each reference point (RP) a
fingerprint. The fingerprint is obtained by properly
processing some measurements of the signal received
by an AP or a BS. Let us denote with RF, the
reference fingerprint in the RP r.

e Fingerprint acquisition phase—For each test point
(TP), whose position is unknown, the fingerprint is
calculated using the same measurements on the
received signal. Let us denote with TF the fingerprint
ina TP.

e Fingerprint matching phase—This phase consists of
associating to the fingerprint measured in the TP, the
fingerprint stored in the built database which is
closest to the measured one according to a
predefined matching rule. The user location is then
calculated as the location of the RP corresponding to
the found fingerprint.
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The RP that is associated to the TP is identified by mini-
mizing a function of the fingerprints. In the case of nearest
neighbor (NN) matching, the RP 7, that is associated to
the TP with fingerprint TF, is the RP that minimizes a
function called Fingerprint Distance (FD):

7:ED (RF7, TF) < FD (RE,, TF), Vr#F (5)

Then, the location (x,y) of the TP is calculated through
the following association:

*y) = &my7) (6)

In case of K-nearest neighbor (KNN), the coordinates of
the K best RPs are arithmetically averaged:

1 K
) =& ;j(x ) (7)

In case of weighted K-nearest neighbor (WKNN), the
weighted average of the coordinates of RPs with the short-
est distance to the TP are computed, where the weights
are the inverse of the fingerprint distances D,:

K 1

Z H(xr:yr)
(x )_ r=14r

;y - K 1 ’

2

r=

| Dy

D, = FD(RE,, TF) (8)

3.3 (Sl spatial correlation and temporal stability

The first hypothesis of this work, which motivates to
leverage CSI as fingerprint, is that the CSI vectors of
points within a certain distance from a reference point are
similar to the CSI vector of the reference point.

As a matter of fact, in the matching phase, the test point
is associated to the position of the reference point with
a more “similar” CSI. In other words, CSI must be char-
acterized by some spatial correlation. On the other hand,
this spatial correlation should decrease with the distance,
and points that are “far” from the reference point should
be characterized by low correlation.

Figure 2 shows the spatial correlation of RSSI and CSI
vectors in one of the rooms of the considered apartment,
in terms of normalized absolute distance with respect to
the values measured in the center of the area (red cross):
deep blue means that CSI vectors, or RSSI of that point
is very “similar” to the values of the reference point in the
center of the area. From Fig. 2, it is evident that CSI has
a good spatial correlation around the reference point up
to a distance that is around 50 cm. After that distance,
the correlation decreases more quickly, and after 1 m, it is
almost completely uncorrelated. The trend of the spatial
correlation is better for CSI with respect to RSSI.

The second hypothesis encouraging the employment of
CSI as fingerprint is that it is expected to show greater
temporal stability at a fixed location. This hypothesis is
confirmed by Fig. 3 that shows the standard deviation
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normalized to the mean value for RSSI, RSRP, and CSIL
The standard deviation is evaluated over a time interval of
30 min. At a fixed location, CSI is much more stable than
RSSI and also RSRP.

4 CSlfingerprinting localization

In this section, we explain more in detail how the signal
fingerprint-based localization approach can be applied to
LTE CSI (Fig. 4).

The LTE receiver provides for each antenna port of each
decoded cell a sequence of CSI vectors h.; over a time
interval corresponding to Nsp or. CSI amplitudes are con-
sidered and time-averaged to remove noise. The receiver
also provides the vectors of RSRP and RSSI over the same
time interval equivalent to Ns;ot:

RSRP,;(0)
RSRP,, = RSRI:’C,t(s) )
RSRPC,t(A;SLOT -1
RSSI,(0)
RSSI, = RSS:IC(S) (10)

RSSI;(NsLor — 1)

where RSSI.(s) represents the average RSSI value between
the symbols 0 and 4 in a slot. From all these vectors rel-
ative to the LTE signals transmitted by different antennas
of multiple eNodeBs, a database like the one shown in
Table 1 is built.

In Table 1, for each RP r, and for each eNodeB ¢ (denoted
as Cell), whose signal is received in the RP, a reference fin-
gerprint R, is calculated. We distinguish the following
approaches for calculating Ry :

Reference Symbols Received Power R, islinked to the
vector of RSRP.;, which represents the sequence of the
values of the reference symbol received power from the
cell ¢ and the Tx antenna ¢. Therefore, considering the cth
eNodeB with 7T, = 4 antennas, R, is given by:

R, = [Rr,c,lr Ryc2, Ry 3, Rr,c,4] (11)
where
L Nspor—1
R,.: = RSRP; = Neor ; RSRP..(s)  (12)
and then the whole reference fingerprint is
RF, = [Ry1,...,Ryer.. ., Ryc] (13)
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Fig. 2 Spatial correlation. RSSI and CSI spatial correlation over an area of 1 m x 2 m.a RSSI. b CSI

Obviously, the same procedure is followed for every test
fingerprint TF, and according to Eq. 5, it is also necessary
to define a fingerprint distance metric FD, which in the
case of RSRP, comparison has been chosen equal to:

C
FD(RE,, TF) = % > [4(RF,, TE,)]

c=1

(14)

where d is the Euclidean distance between two vectors,
and FD is its average over all the available cells.

Direct Channel State Information R, is a vector con-
taining directly all vectors h.;, which are the CSIs esti-
mated on the signal received from the cell ¢ and the Tx
antenna ¢. Therefore, considering again the cth eNodeB
with T, = 4 antennas, R, is given by

Rr,c = [Rr,c,l; Rr,c,z; Rr,c,?n Rr,c,4] (15)
where
Rr,c,t = hc,t = [h01 ey hn: ooy hN—l] (16)

0.4 T T

0.3

0.2

Normalized Standard Deviation

0.1

0

. RSSI
=2 RSRP
I CS#1
C——1CSI#100
[ CS1#200

Fig. 3 Temporal stability. RSSI, RSRP, and CSI temporal stability evaluated over a time interval of 30 min
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A FINGERPRINT DATABASE BUILDING
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FINGERPRINT
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SIGNAL " | DEMODULATOR EXTRACTION PROCESSING
FINGERPRINT ESTIMATED
MATCHING TEST
RULE POSITION
2. FINGERPRINT ACQUISITION
TEST OFDM Ll csl > csl
SIGNAL DEMODULATOR EXTRACTION PROCESSING
Fig. 4 CSl-based fingerprinting localization. The signal fingerprinting localization method based on LTE Channel State Information

This is how traditionally CSI fingerprinting approaches
work. In case of direct CSI comparison, the matching fin-
gerprint distance metric FD has been chosen equal to:

c T,
1 1
FD(RF,, TF) = — » = ) d (RF,;, TE,,)
c=1 ¢ =1

17)

where d is again the Euclidean distance between two vec-
tors, that is now computed between vectors relative to the
same transmitting antenna of the same eNodeB.

RSRP and CSI descriptors R, is a vector containing F
features calculated on the vector RSRP,; or h, ;. Each fea-
ture is a number which is somehow related to the statistics
of the RSRP (Table 2) or to the “shape” or statistics of the
CSI (Table 3). A similar approach has already been suc-
cessfully employed in [26] to perform device-free crowd
counting and occupancy estimation by WiFi.

Table 1 Reference fingerprint database

RP Coordinates Cell1 Cellc CellC
1 x1,¥1) Ry R Ric
2 (x2,¥2) R2/1 L. RZ,C .. RQ,C
r Xr yr) R/ . R - ce. R/
R (R, YR) Rg, e Rec e Rec

The offline fingerprint database storing fingerprints for RPs

Since descriptors are heterogeneous quantities, which
can vary in very different intervals, before performing the
deterministic classification, it is fundamental to normalize
the fingerprints in order to balance all the terms for dis-
tance calculation. A min-max normalization approach is
applied to both reference and test fingerprints:

Ry — Il;lilcl‘l [Rr,c,t]

~

Rr,c,t =

.Vt (18)

rr},z}x [Rr,c,t] - n;‘l,lcn [R}",C,[]

A

Te: — n}lcn [Rr,c,t]
T = :

, VYt 19
n}ix [Rr,c,t] - H}},lcn [Rr,c,t] 1)

and in this case, the fingerprint distance is calculated as
the vector distance between the normalized fingerprints
and then averaged over the available cells:

FD (RE,, TF) = % XC: (4 (E,., TE.)]

(20)
The descriptor approach, which is novel, has two funda-
mental advantages:

e [t reduces the amount of data that must be stored in
the database.

e It reduces the computational complexity associated
to the matching phase.

Received Signal Strength Indicator In the traditional
RSSI fingerprint-based localization approach, the refer-
ence fingerprint R, is simply given by the average RSSI
measured from all the available eNodeBs:

Nspor—1

Z RSSI.(s)

s=0

R,. = RSSI, =

(21)
Nsror
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Table 2 RSRP descriptors

Page 8 0of 18

Descriptor

Formula

Description

Mean "=

Nsior

Nsior—1

Z RSRP[ 5]
s=0

Standard deviation

. Nsor—1 ,
o= |foT 523 (RSRP[s] —pt)

The arithmetic mean of the RSRP.

The standard deviation of the RSRP.

Fano factor FF = "7 The ratio between the variance of the RSRP and its arithmetic mean.
The list of RSRP statistical descriptors c
RF, = [Rr,b Ry, Rr,C] FD (RE,, TF) = Z Rr,c: TE )]
(22) = (23)
- [Rssh, ...,RSSL,..., RSSIC] XC:

The fingerprint distance metric FD in case of RSSI com-

parison has been chosen equal to:

Table 3 CSI descriptors

where d is simply the magnitude of the difference between
the reference and the test RSSI.

Descriptor Formula Description
Mean n= % Ni; hn The arithmetic mean of the CSI.
n=|
Standard deviation o= ﬁ N_;(hﬂ — )2 The standard deviation of the CSI.
n=|
Fano factor FF = ‘L—z The ratio between the variance of the CSI and its

Spectral centroid

Spectral lambda

Spectral entropy

Spectral flatness

Spectral slope

Spectral spread

Spectral moment

Spectral central moment

Spectral kurtosis

Spectral skewness

N=1
Z hnfn
n=0
C= N=1
2 hi
i=0
[\[,
_ 1 hn—hn_1 2
A=—g= n; A A
N—1
SE=— fo log, Nﬂ”
n=0 hy 3 hi
j=0 i=0
IN=1
N hn
n=0
SF = =
n 2

SSL =
(o2
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arithmetic mean.

The “center of mass” calculated as the weighted mean
of the frequency values with CSI normalized magni-
tudes as weights.

The mean of the derivative function for the CSI.

The amount of information contained in the CSI.

A measure used in digital signal processing to quan-
tify how noise-like the CSl is.

A measure of the slope of the spectral shape of CSI.

A measure of how the spectrum is distributed around
its centroid.

The jth order spectral moment of the CSI.

The jth order spectral central moment of the CSI.

A measure of the “tailedness” of the CSI.

A measure of the asymmetry of the CSI about its
spectral centroid.

The list of CSl statistical and shape descriptors
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It should also be considered that in small and static envi-
ronments, there is a fixed set of base stations received at
every reference point during database building phase and
at every test point during matching phase. However, one
should not neglect that in larger areas, it is easy to observe
different eNodeBs between reference and test points, and
furthermore, in dynamically changing environment, these
sets of eNodeBs can also temporally vary due to signal
fluctuations. This issue is managed by comparing two fin-
gerprints only in relation to the cells in common and
excluding the others from the averaging process.

5 Methods

5.1 Experimental test-bed

Experimental results have been carried out indoor in a 90-
m? apartment with six rooms and three balconies (Fig. 5).
The apartment has rooms of different sizes and differ-
ently equipped. Firstly, we have assessed the performance
of the proposed method over this complex environment.
Then, we have also evaluated the performance within sin-
gle rooms, as it has been most commonly done in other
literature works. The experimental area has been mapped
by reference points in a mesh grid of 0.5 m. Since the
apartment is not empty and there is furniture, it was not
possible to completely grid the rooms. We have acquired
two different datasets, one as reference and one for test-
ing. A total of 113 RPs were placed in the apartment, and
30 TPs were randomly chosen all over the area, as shown
in Fig. 6. During the experiments, the furniture was not
moved, all internal doors were closed, and all the balconies
were open.

5.2 Data acquisition and processing

The receiver employed for data acquisition is the Great
Scott Gadget HackRF equipped by an ANT500 omni-
directional antenna, which is able to tune its operating
frequency from 1 MHz to 6 GHz and to capture up to

Fig. 5 Room classification. The apartment has been divided into (1)
kitchen with balcony, (2) bathroom, (3) living room, (4) small corridor
and cabinet, (5) office with balcony, and (6) bedroom with balcony
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20 MS/s with 8-bit resolution. The receiver can receive
LTE signals both at 800 and 1800 MHz. The HackRF SDR
platform has acquired the raw samples of the received sig-
nal in each RP and TP and has stored them in binary
files. The raw files have then been post-processed by an
LTE software receiver, which performs the channel esti-
mation and outputs RSSI, RSRP, and CSI vectors to be
imported into MATLAB. A time interval of 1 s, corre-
sponding to Nspor = 2000 slots, has been considered
to incoherently average the captured RSRP and CSI or to
calculate descriptors.

5.3 Experimental methodology
The following experiments have been carried out in the
same environment.

Experiment 1 The HackRF platform has been config-
ured to capture spectrum raw samples at a sampling rate
of 1.92 MS/s and with a receiving filter bandwidth of
2.5 MHz. The receiver gains were set to fixed values in
order to avoid distortions introduced by the Automatic
Gain Control (AGC). The RF amplifier was disabled and
the intermediate frequency gain was set to 40 dB and the
baseband gain to 30 dB. The ANT500 omni-directional
receiving antenna has then been placed on the ground in
each RP and TP, and signal samples relative to the LTE
cells 49 (796 MHz), 255 (806 MHz), 116 (816 MHz), 285
(1817.5 MHz), and 21 and 75 (1870 MHz) have been cap-
tured for a time interval of 10 s at each frequency. The raw
samples have been processed and, at such sampling rate,
have allowed to observe 6 RBs and thus to get N = 24
complex channel gains. Since the just-mentioned LTE cells
are all configured to work with two transmitting anten-
nas, each fingerprint has included data from both of them.
Figure 7 shows the percentage of points, with respect to all
reference and test points, where it was possible to decode
the signal corresponding to one specific eNodeB.

Experiment 2 The HackRF receiver has been configured
to work at a sampling frequency of 15.36 MS/s and with
a receiving bandwidth of 10 MHz. The RF amplifier and
AGC were disabled and the intermediate frequency gain
was set to 40 dB and the baseband gain to 30 dB as in the
previous experiment. Since the scope of the experiment
was just to exploit the effect of a bandwidth increase to
the localization performance, only the samples relative to
the best cell 255 (806 MHz), which, as shown in Fig. 7, was
available in all RPs and TPs, were captured for the same
time interval of 10 s. In this case, the higher rate samples
allowed to observe up to 50 RBs and provided N = 200
complex channel gains for both antennas.

5.4 Performance evaluation criteria
We have considered the following performance metrics:
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particular, by providing the 50th and 75th percentile of the
localization error. MDE is related to the accuracy, but its
value could be strongly affected by an outlier. Therefore,
the use of both MDE and the CDF gives a more complete
understanding of the performance.

Room Classification Accuracy (RCA) is the percentage
of TPs over the total number of TPs for which the identi-
fied position is within the correct room, as show in Fig. 5.
In other words, we wonder, regardless of the accuracy in
terms of MDE, which is the technique in which rooms are
confused as less as possible.

6 Experimental results and discussion

6.1 CSlvs RSSI vs RSRP in a narrowband scenario

First of all, we wonder whether (and when) the use of CSI
for LTE signal fingerprinting improves the performance
with respect to the use of more classical approaches
based on RSSI and RSRP. Moreover, we wonder whether
using RSRP/CSI descriptors as fingerprint rather than
direct CSI vectors is feasible and, in case, convenient.
Results shown in this section are achieved using the signal
received only from cell 255 (cell diversity is not consid-
ered) using 6 RBs (experiment 1), i.e., the LTE signal is
observed over a small bandwidth of 1.4 MHz (narrowband
scenario).

Table 4 summarizes the achieved results in terms of
MDE, RCA, and 50th and 75th percentile of the achieved
accuracy. Table 4 compares the results when different fin-
gerprints are used: RSSI, RSRP, direct CSI vectors (CSI
in the table), and RSRP/CSI descriptors (as explained in
Section 4). In case of RSRP/CSI descriptors, three cases
are considered: two, three, or four descriptors. We have
not considered a higher number of descriptors as we have
observed that increasing the number of descriptors does
not contribute to further improve the performance.
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The selected RSRP/CSI descriptors providing the best
performance are shown in the last column of Table 4. First
of all, Table 4 and Fig. 8 clearly show that using CSI greatly
improves the performance with respect to the use of RSSI.
The MDE goes from 4.32 m with RSSI to 2.91 m, while
RCA increases from 36 to 57% using CSI vectors as finger-
print. CSI-based approaches (CSI vectors and descriptors)
also show better performance with respect to the RSRP
approach even if, in this narrowband scenario, only a slight
improvement of performance is observed.

Furthermore, the very interesting result is that the
reduction of the database size and the computational
complexity of the matching phase that can be achieved
using descriptors rather than CSI vectors is not paid in
terms of performance; as a matter of fact, a signal fin-
gerprinting method based on the use of descriptors out-
performs a method based on CSI vectors. Moreover, with
respect to the RSRP, using two descriptors reduces the
MDE of 6%, the 50th percentile of 15%, the 75th per-
centile of 10%, and only slightly reduces the RCA (1%).
It is worth outlining once more that the results shown
in this section do not consider cell diversity, and the
bandwidth of the LTE signal is rather small (1.4 MHz).
Moreover, these results are achieved using an NN clas-
sifier. Therefore, in next sections, we first investigate the
impact of the selected classifier, considering also the KNN
and the WKNN classifiers. Then, the impact of cell diver-
sity and a larger bandwidth of the acquired LTE signal is
investigated.

6.2 Selection of classifier in a narrowband scenario

In Section 3.2, it was stated that in case of determinis-
tic matching, the estimated location could be found not
only by considering the most similar fingerprint (NN) but
also extracting the first K-nearest neighbor fingerprints

Table 4 Comparison of signal fingerprinting approaches based on RSSI, RSRP, CSI vectors, and RSRP/CSI descriptors (1 cell, 6 RBs)

Fingerprint MDE CDF 50% CDF 75% RCA Descriptors
(m] (m] [m] [%]
RSSI 432 3.76 540 36 -
RSRP 3.00 2.28 463 58 -
csl 291 228 417 57 -
2 RSRP/CSI descriptors 2.82 1.94 4.17 57 CSImean
RSRP standard deviation
3 RSRP/CSI descriptors 2.81 2.07 4.17 57 CSImean
RSRP mean
RSRP standard deviation
4 RSRP/CSI descriptors 2.86 2.07 463 57 CSImean
RSRP mean

RSRP standard deviation
RSRP Fano factor
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and then performing an arithmetic mean (KNN) or a
weighted mean (WKNN) of their relative reference coor-
dinates. In this section, the impact of the parameter K on
the localization performance for all the proposed methods
is analyzed. The performance comparison between KNN
and WKNN as a function of K is shown in Fig. 9, where
K < 5 since it was found that larger values does not con-
tribute to decrease the MDE. As a result, it has been found
out that for both KNN and WKNN, the minimum error
is achieved with K = 2 and K = 3, respectively, for CSI
and descriptors. While larger values of K tend to increase
the error in case of using direct CSI, the localization error
using RSRP/CSI descriptors is more stable after K = 3;
this is particularly true when WKNN is used. The best
performance are achieved with KNN classifier with direct
CSIfor K = 3.

6.3 Effect of cell diversity

This section investigates the performance of different LTE
signal fingerprinting localization approaches when more
LTE signals, received from different eNodeBs, are avail-
able and used by the fingerprinting method. We present
the results only for direct CSI and RSRP/CSI descrip-
tors. As shown in Fig. 7, in most of the RPs, it is possible
to receive up to six signals from six different eNodeBs.
Therefore, the different fingerprinting approaches have

been compared assuming the use of signals from up to six
cells. For each method, applying the best classifier chosen
in Section 6.2, all possible combinations of available cells
have been considered.

In Fig. 10, for every fingerprinting approach and for
different number of cells, the MDE achieved by the
best combination of cells has been plotted. All methods
show a noticeable improvement in the performance when
two/three cells are considered. In the case of CSI vectors,
the MDE goes from 2.53 m with one signal to 2.23 m
with two signals. With the descriptors, the best results
are achieved using up to three signals coming from three
eNodeBs, where the MDE goes below 2.10 m. However,
it is also evident that further increasing in the number of
cells (e.g., LTE signals from different eNodeB) does not
improve the performance.

This can be explained considering that the different
eNodeB signals are received with different quality; some
of them have high signal quality while some others have
low signal quality. In any reference point, it is not expected
to receive more than two/three good quality signals. As
a matter of fact, since the fingerprint is built using both
“useful information” and “noise” from the signal received
from each cell, with each signal having a different portion
of each, then there exists a trade-off between “useful
information” and “noise” bringing to an optimum number
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of signals (i.e., cells) which minimizes the localization
error.

6.4 Effect of bandwidth

In the previous sections, the LTE signal is observed over
a small bandwidth of 1.4 MHz. This section shows the
same comparisons as in Section 6.1 using an LTE signal
of larger bandwidth. In particular, the signal from cell 255
has been acquired by the highest available sampling rate of
15.36 MS/s (complex samples). This allows to extract CSI
over a bandwidth of 10 MHz (wideband scenario).

Table 5 summarizes the results. Similarly to the narrow-
band case, CSI approaches outperform the RSSI approach.
However, the most relevant result in Table 5 is that
when larger bandwidth LTE signals are used, the pro-
posed descriptor approach largely outperforms the RSRP
approach and also the CSI approach based on CSI vec-
tors. Moreover, by looking at the selected descriptors, in
this case, all of them are CSI descriptors related to the
shape of the CFR, while in the narrowband case, almost
all of them are related to RSRP. It is also worth outlin-
ing that, in this wideband case, the database compression
achieved by using descriptors rather than CSI vectors is
even larger with respect to the narrowband case; as a mat-
ter of fact, instead of storing the CSI vector of size 200
(total number of subcarriers), we just need to store a vec-
tor of size 4 (number of descriptors). To better understand
the impact of a larger bandwidth LTE signal, we have also
investigated the performance considering two intermedi-
ate bandwidths between 1.4 and 10 MHz, corresponding
to the use of 15 RBs and 25 RBs, which respectively cor-
respond to the feasible LTE sampling rates of 3.84 and
7.68 MS/s. Figure 11 shows the MDE as a function of
the available RBs (and hence, available bandwidth) for
the CSI-based approaches. In the latter cases, the relative
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CSI vectors have been obtained by decimating the ones
extracted from the measurements taken at 15.36 MS/s
during experiment 2.

Interestingly, for the signal fingerprinting approach
based on CSI vectors, the performance does not improve
by increasing the bandwidth since multipath is both a
source of information and a disturbance. A completely dif-
ferent behavior is observed when descriptors are used. In
the latter case, performance greatly improve by increasing
the bandwidth of the LTE signals. These results confirm
the intuition behind the proposed method based on CSI
and shape descriptors, i.e., the fact that each point can
be uniquely characterized by the way the multiple repli-
cas of the transmitted signal are combined at the receiver,
and this “unique” characteristic is effectively caught by
the shape of the CFR. In the case of narrowband sce-
nario, the CFR is almost flat, and no much gain can be
achieved by its use. Over a larger bandwidth, and assum-
ing a rather frequency selective channel, the CFR has a
unique shape strictly related to the multipath propagation
in that point. Therefore, a larger bandwidth increases the
resolution in distinguishing different multipath profiles.
However, in case of direct CSI vectors, the matching phase
uses larger vectors, where each element is a noisy sam-
ple. Therefore, on one hand, these new vector elements
bring information on the channel. On the other hand, they
introduce more noise. This balance is evident in the case
of CSI vectors. However, results show that by using some
distinctive characteristic of the shape of the CER greatly
helps in effectively extracting only the useful information
from the signals and take full advantage of the availability
of larger bandwidths. Figure 12 shows that in the wide-
band case, the best performance is obtained through the
WKNN with K = 2. In particular, the achieved localiza-
tion accuracy with four descriptors has an MDE of 1.98 m;

Table 5 Comparison of signal fingerprinting approaches based on RSSI, RSRP, CSI vectors, and RSRP/CSI descriptors (1 cell, 50 RBs)

Fingerprint MDE CDF 50% CDF 75% RCA Descriptors
[m] [m] [m] (%]
RSSI 4.12 417 535 28 -
RSRP 322 214 4.50 55 -
csl 3.10 2.28 3.90 61 -
2 descriptors 248 1.89 3.36 69 CSI'mean
CSI 2nd spectral central mom.
3 descriptors 2.24 1.89 3.18 56 CSI'mean
CSl spectral entropy
CSl spectral spread
4 descriptors 211 1.82 293 65 CSImean

CSl spectral lambda
CSl spectral kurtosis

CSl spectral flatness
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50th and 75th percentiles of 1.78 and 2.58 m, respectively;
and an RCA of 66%.

6.5 Effect of reference point reduction

Signal fingerprinting-based localization techniques can
guarantee very high localization accuracies, but to achieve
good performance, an extensive training campaign is
required. In general, an increase in the number of ref-
erence points or a reduction of their relative distances
provides an improvement in the localization accuracy, but
in case the coverage area becomes larger, this mapping
can be extremely time-consuming. For this reason, there
is much work in the literature proposing interpolation-
based techniques able to give a quite accurate estimate
of the RSSI distribution over the area of interest by only
taking a small number of reference samples [27]. In this
section, it is investigated how the number of reference
points can influence the localization accuracy, and for this
reason, multiple reference grids have been considered in
which the number of reference points has not been simply
decreased, but they have also been distributed as evenly
as possible all around the area of interest, and at least
one reference point has been left in every environment. In
detail, four different configurations have been analyzed:
R; with 113 RPs (100%), R, with 60 (56%), R3 with 27
(25%), and finally R4 with just 1 RP for every room and
balcony consisting of a total of 11 RPs (10%). The behavior

of MDE with respect to the change of the reference grid
is shown in Fig. 13 for the WKNN RSRP/CSI descriptors
method with K = 2.

As it could be expected, all methods are characterized
by an MDE increase as a consequence of the gradual
exclusion of fingerprints from the reference database.
Nevertheless, as shown in Fig. 13, it is also worth not-
ing that the performance obtained through the descriptors
over one cell and with just one tenth of the RPs is still
much better than the ones employing RSSI and all the
RPs. This means that even with just one RP per envi-
ronment, it is possible to find a combinations of three
or four descriptors that can still guarantee good perfor-
mance. This represents an important result when also the
implementation issues are considered; reducing the num-
ber of “needed” reference points to get a certain accuracy
allows to decrease the memory occupancy, but mainly to
greatly reduce the time and the effort to take reference
measurements all over the area of interest.

6.6 Single room localization performance

In the previous sections, the proposed system has been
tested over a large complex indoor environment. To ease
the comparison with state-of-the-art works, which usually
test their system in single rooms of different sizes, Table 6
also reports the localization performance of the proposed
LTE signal fingerprinting system for each single room of
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Table 6 Single room localization performance
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Environment Size Method MDE CDF 50% CDF 75%
[m] [m] [m] [m]
Apartment 11 x 18 4 descriptors (LTE) 1.98 1.78 2.58
Kitchen 3.7 x 3.7 0.74 0.83 0.84
Bathroom 25x17 0.14 0.14 0.2
Living room 5x7 1.05 09 1.64
Office 3.6 x 4.9 0.74 0.62 0.94
Bedroom 4.6 x 3.7 091 0.89 1.12
Laboratory 6x9 DeepFi (WiFi) 1.81 - -
Living room 4x7 0.94 - -
Office 65 %7 CSI-MIMO (WiFi) 0.95 - -

Localization performance within different apartment rooms and comparison with DeepFi [3] and CSI-MIMO [28]

the apartment. In particular, the reported performance
are the ones achieved employing a signal fingerprinting
approach based on the use of four descriptors with 50 RBs
available (10 MHz bandwidth) on a single cell. Table 6
also reports the performance achieved with recently
proposed systems, namely DeepFi [3] and CSI-MIMO
[28], for indoor localization with using CSI with WiFi
signals.

Reported results in Table 6 show that the proposed LTE
signal fingerprinting approach based on CSI has localiza-
tion performance that are comparable with the ones of a
WiFi-based system using CSI. For instance, in the case of
the living room, which has almost the same size of the
living room in the DeepFi system, MDE is only slightly
higher (1.05 rather than 0.94).

7 Conclusions

This paper investigates the possibility to use the CSI
extracted from LTE signals for signal fingerprinting
indoor localization. Moreover, the paper proposes a novel
way to use CSI as fingerprints; in the proposed system,
fingerprints are descriptors of the “shape” of the CFR
calculated on these CSI vectors, rather than direct CSI
vectors. This greatly reduces the requirements in terms
of memory for the database and also the computational
complexity of the matching phase. It is also worth out-
lining that the proposed method works on the signaling
messages sent by an eNodeB, and hence, the device that
must be localized does not need to have any subscrip-
tion with a specific operator. This also gives the possibility
to use different signals coming from different eNodeBs
(regardless of the specific operator) and hence eventually
get a cell diversity gain. Experimental results shown in the
paper prove that using CSI for LTE signal fingerprinting
can effectively contribute to improve localization accuracy
with respect to the RSSI and RSRP. In particular, we can
conclude that:

1. When only small bandwidth LTE signals can be
extracted (narrowband scenario), and with no cell
diversity, CSI-based signal fingerprinting approaches
improve the performance with respect to the use of
RSSI and RSRP (the latter has been most commonly
used in the literature with LTE signal fingerprinting).

2. The CSI-based approach can greatly take advantage
of the available cell diversity up to two to three
different eNodeBs included in the fingerprint.

3. When LTE signals with larger bandwidth can be
extracted, the proposed CSI-based approach with
descriptors shows noticeable better performance
with respect to both an RSRP approach and a CSI
approach with CSI vectors. These performances are
comparable with the ones achieved by a
state-of-the-art signal fingerprinting system based on
WiFi signals and CSI.

4. The proposed approach has been proven to be robust
to a reduction of the number of reference points
needed for building the database.

In the future, it could be interesting to investigate the
possibility to combine CSI-based approaches using both
WiFi and LTE signals. Furthermore, it will be crucial to
investigate implementation issues related to the database
building.
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