
EURASIP Journal on Advances
in Signal Processing

Kianoush et al. EURASIP Journal on Advances in Signal
Processing  (2018) 2018:44 
https://doi.org/10.1186/s13634-018-0571-7

RESEARCH Open Access

Leveraging MIMO-OFDM radio signals for
device-free occupancy inference: system
design and experiments
Sanaz Kianoush* , Stefano Savazzi and Vittorio Rampa

Abstract

In device-free radio frequency (RF) body occupancy inference systems, RF signals encode information (e.g., body
location, posture, activity) about moving targets (not instrumented) that alter the radio propagation in the surroundings
of the RF link(s). Such systems are now getting more attention as they enable flexible location-based services for new
smart scenarios (e.g., smart spaces, safety and security, assisted living) just using off-the-shelf wireless devices. The goal
of this paper is to set the fundamental signal processing methods and tools for performance evaluation of passive
occupancy inference problems that leverage on the analysis of physical layer (PHY) channel state information (CSI)
obtained frommultiple antennas (spatial domain) and carriers (frequency domain) jointly. To this aim, we consider here
a multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) radio interface adopted
in high-throughput WiFi networks such as IEEE 802.11n,ac. The proposed approach investigates at first relevant CSI
features that are more sensitive to body presence; next, it proposes a space-frequency selection method based on
principal component analysis (PCA). Considering an experimental case study with WiFi links, we show that the joint
space- and frequency-domain processing of the radio signal quality indicators enable both detection and localization
of two independent targets (i.e., human bodies) arbitrarily moving in the surroundings of the transmitter/receiver
locations. Experiments are conducted using off-the-shelf WiFi devices configured to extract and process CSI over
standard PHY preambles: performance analysis sets the best practices for system design and evaluation.

Keywords: Device free occupancy inference, Occupancy detection, Radio localization, MIMO networks

1 Introduction
Device-free body occupancy inference and localiza-
tion/tracking systems are generally designed to passively
evaluate the position, size, and orientation of human bod-
ies or objects (i.e., the targets) placed near a radio link
without the need to instrument the monitored targets
[1–3]. Radio frequency (RF) signals commonly adopted
for wireless communications are perturbed by the pres-
ence of targets, their movements, and the changing sur-
rounding scenario. This happens due to the propagation
of the electromagnetic (EM) waves and their interac-
tions with the target(s) and the environment through
reflection, scattering, and diffraction phenomena. In
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general, occupancy inference is based on real-time pro-
cessing of channel quality information (CQI) values that
are commonly used at the receiver side for communica-
tion tasks, since it quantifies the radio signal quality in
almost all wireless devices. The perturbations induced by
the moving target(s) on the EM wave field can be mea-
sured from CQI data and then processed to recover a
vision of the monitored area. Applications of this technol-
ogy are found in industrial automation [4] and assisted
living [5], while typical body recognition systems address
body and occupancy detection [6–8], situation estimation
[9], and device-free localization (DFL) applications [2].
Most of the previous works consider aggregated link

layer (or upper layer) metrics to assess the CQI, such as
the received signal strength (RSS) data or the link quality
information (LQI) [1]. In fact, for its availability in almost
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all wireless devices, RSS has been adopted for many
inference problems such as localization [10–12], activity
recognition [13, 14], target size evaluation [15], and detec-
tion [16]. However, RSS metric performance degrades
in complex environments because of multipath fading
and fast temporal dynamics. The use of physical layer
(PHY) raw signal features, although not yet fully standard-
ized [10], is believed to provide significant performance
improvements.
The aim of this paper is to address fundamental pas-

sive occupancy detection and localization problems that
leverage on low-level (i.e., PHY-based) channel state infor-
mation (CSI), as well as to set the fundamental frame-
work, methods, and tools for low-level CSI processing
and data analytics. We focus here on spatial-frequency
diversity in multichannel communication with multiple
antennas extracting robust features that are sensitive to
target presence and position. In addition, we propose a
tool based on subspace decomposition method to select
the radio signal components that are more sensitive to tar-
get presence, for the twofold aim of increasing the location
estimation accuracy, without penalizing the processing
complexity. To this end, we consider a multiple-input
multiple-output (MIMO) orthogonal frequency division
multiplexing (OFDM) radio interface design adopted in
off-the-shelf WiFi networks, i.e., IEEE 802.11n and IEEE
802.11ac, and focus on standard PHY-based CSI report
fields. Such fields carry explicit channel quality informa-
tion, commonly measured for standard compliant trans-
mitter (TX) receiver (RX) low-level link adaptation, as well
as for PHY-based equalization. Focusing on the general
problem of passive body occupancy inference, different
CSI features are considered that leverage body-induced
alterations of estimated power measurements as well as
antenna/frequency correlation profiles. These features are
then compared to show their effectiveness in capturing
body movements.
The presence of the targets may modify the link con-

ditions as well as selected channel features, depend-
ing on their positions and change to non-line-of-sight
(NLOS) situations [17]. The proposed framework lever-
ages the existing WiFi standard and unmodified WiFi
devices, while features of the channel are extracted from
the PHY layer. In contrast to other works in the field
(see, i.e., [18, 19]), we are considering features that are
directly extracted from CSI standard feedback reports
(in the form of channel state information over adjacent
OFDM sub-carriers and antennas) and that are com-
monly computed by off-the-shelf, and unmodified, WiFi
transceiver devices. The paper thus exploits the char-
acteristics of a (MIMO-OFDM) wireless communication
in terms of multiple antennas and different sub-carriers
in which different channel features (namely statistical
or physical attributes) can be observed to detect and

then localize targets in the monitored area. We show
that tracking the alterations of the channel response over
MIMO TX-RX antenna pairs (or links) can improve the
detection performance by exploiting multiple links such
as the ones depicted in Fig. 1. In this figure, a WiFi
access point with Mt = 3 antennas exchanges signals
with a WiFi station equipped with Mr = 3 anten-
nas, and the different MIMO links �1, ..., �9 may be
exploited for spatial diversity processing. In addition, the
use of multi-carrier OFDM modulation enables multi-
dimensional processing of CSI over a frequency grid that
depends on the OFDM sub-carrier arrangements and
allows a fine-grained processing for target detection and
localization.

1.1 Related works
Recently, processing of PHY-based CSI data instead of
aggregated medium access control (MAC) layer strength
indicators, such as RSS values, has attracted a lot of inter-
est, since CSI is able to achieve improved accuracy, finer
sensing granularity [20, 21], and robustness in complex
environments [22]. Therefore, processing of CSI holds the
potential for building more robust recognition systems
[23, 24]. In fact, CSI has been utilized in different device-
free sensing approaches such as human localization [25],

Fig. 1 aMIMO scenario with one TX and two RX WiFi devices. Each RX
node is equipped withMr = 3 receiving antennas while the TX node
is fitted withMt = 3 transmitting antennas. b For each TX-RX
communication, the generic MIMO link �j is also identified by the
couple (u, v) corresponding to the transmitter pu and the receiver
antenna qv . For instance, link �4 is identified by p2 and q1, i.e., by the
antenna pair (u = 2, v = 1)
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activity recognition [26], and target detection [27]. In the
latter reference, the authors propose a CSI-based DFL sys-
tem leveraging temporal stability and frequency diversity
of CSI in WLAN for anomaly detection and localiza-
tion, by using a demonstrator for indoor scenarios with
commercial IEEE 802.11n network interface cards (NICs).
Device-free fall detection using WiFi is proposed in [9]
by employing CSI as an indicator of the target activi-
ties. The proposed approach learns specific CSI signal
amplitude patterns using machine learning algorithms to
detect fall events. In [5, 28], CSI are extracted for the pur-
pose of localization and device-free activity recognition
using ad hoc software radio platforms (i.e., the USRP plat-
form from Ettus). Occupancy estimation is investigated
in [7] using WiFi power measurements by characteriz-
ing the impact of the number of people on the induced
scattering effects.

1.2 Original contributions
Previous works in the field focused on simple CSI sig-
natures, including amplitude/phase information [29] as
well as power profiles. In this paper, we elaborate on the
use of more complex CSI statistical feature that can be
extracted from aMIMO-OFDM radio interface. Such fea-
tures are designed to capture the body-induced alterations
of the channel state as tracking the fading correlation over
co-located WiFi antennas and frequencies (OFDM sub-
carriers). In more detail, the main contributions of the
paper are:
1) A novel approach is proposed for passive occu-

pancy detection, based on the evaluation of the space-
frequency fading correlation that is induced by body
motions. Correlation profiles are extracted from aMIMO-
OFDM PHY-based interface and complies with WiFi
high-throughput standards. The approach extends the
reference [30] that is focused on multi-channel com-
munication systems, and it is tailored to detect tar-
gets in the monitoring area in a reliable and accurate
mode. The proposed method is compared with other
approaches [5, 7];
2) Tracking of the space-frequency correlation is shown

also to be beneficial in multiple target DFL applica-
tions. In particular, to support localization and track-
ing of targets, a subspace decomposition (SD) method
is proposed to isolate the MIMO links as well as the
OFDM sub-carriers that are mostly influenced by tar-
get movements from those induced by other effects
and are thus more informative for the considered infer-
ence problems. By discarding non-informative CSI mea-
surements, the method, referred to as SD-DFL, is not
only able to reduce the data set dimension but also
to improve the DFL performance in terms of accuracy
as making the most of the space-frequency diversity
processing;

3) An extensive experimental validation is conducted
using WiFi IEEE 802.11n-compliant MIMO devices
equipped with three antennas and operating at 5 GHz.
The devices are configured to extract and process
CSI over standard PHY preamble symbols that com-
ply with the MIMO-OFDM HT (high-throughput) mode.
These symbols are purposely monitored to obtain
the CSI over m = 30 contiguous sub-carriers. Exper-
iments validate the proposed approaches for joint
occupancy detection and localization in an indoor
scenario.
The paper is organized as follows: PHY layer mod-

eling of the MIMO-OFDM interface for the purpose
of device-free occupancy inference is introduced in
Section 2. The specific WiFi signal structure imple-
menting the MIMO-OFDM interface and the standard-
compliant CSI report fields is described in Section 3.
Occupancy detection problems, namely target detection
and localization, are described in Sections 4 and 5, while
Section 6 shows the experimental scenario and points
out the results. The concluding remarks are drawn in
Section 7.

2 Channel state information feature modeling for
MIMO-OFDM

In this section, we consider, at first, the problem of
modeling the CSI for MIMO-OFDM radio interfaces.
Then, we propose the use of some relevant channel fea-
tures for occupancy inference. Data processing on CSI
reports for MIMO-OFDM devices gives the opportunity
to exploit both frequency- and space-domain manipu-
lation of time series. In fact, OFDM devices exploit m
contiguous pilot sub-carriers (depending on the specific
pilot arrangement required by the IEEE 802.11n standard)
from which CSI can be estimated at the receiver side. In
addition, MIMO-enabled devices can extract CSI mea-
surements from multiple transmit-receive antenna pairs
(Mt and Mr antennas, respectively) leveraging spatial
diversity.

2.1 MIMO-OFDM channel model for occupancy inference
In what follows, we focus on the problem of obtain-
ing information about body (or target) occupancy from
the broadband, multi-carrier-modulated, and radiation of
an unmodified wireless devices (e.g., WiFi radio sources)
adopted for high-throughput communication. Consider-
ing the WiFi PHY, we assume that the effects of the
target presence on the channel response are observed
at discrete time instants t ∈ T = {1, 2, ...,T} of con-
secutive OFDM received symbols (or frames) and are
embedded into a characteristic footprint of channel varia-
tions over T symbols. The time-varying channel response
ht(τ ) at symbol time t ∈ T captures the absence
ht

(
τ | xd = ∅)

or presence ht
(
t |xd ∈ X

)
of a target d
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located at position xd = [
xd, yd

]T in the link sensing
area X as

ht
(
τ | xd

)
=

N∑

n=0
αn

(
t | xd

)
gτ−τn

(
t | xd

)
e−jφn

(
t|xd

)

.

(1)

The amplitude αn
(
t | xd) = αn +�αn

(
t | xd) perturba-

tions over sub-carriers as induced by body movements are
expressed in decibel scale and modelled as Gaussian (or
lognormal in linear domain). In addition, the phase shift
φn

(
t |xd) = φn + �φn

(
t |xd) and the delay τn

(
t |xd) =

τn+�τn
(
t | xd) of the n-th ray, with n ∈ N = {1, 2, ...,N},

highlight the additional human-induced perturbations
with respect to the human-free (i.e., the empty scenario)
state xd = ∅. The OFDM radio interface has the capa-
bility to exploit the pre-existing (standard-defined) pilot
sub-carrier arrangement, used for conventional channel
estimation [31], to extract a number of independent noisy
measurements of the frequency-domain channel response
shown in (1). The channel response is thusmonitored over
m narrow-band sub-carriers in the frequency domain fi ∈
F = {f1, f2, . . . , fm}whereF indicates the pilot sub-carrier
arrangement set for the symbol time t. Training/reference
OFDM symbols for channel estimation are usually multi-
plexed with information symbols and embedded in each
data frame according to the adopted WiFi standard (see
Section 3 for details).
Let us further consider a MIMO network and, for each

node, Mt transmitting and Mr receiving antennas: in
the frequency domain, the baseband discrete-time repre-
sentation [32] of the MIMO-OFDM received pilot sym-
bol vector Yt,qu of length m over the antenna qu with
u = 1, ...,Mr is defined as

Yt,qu =
Mt∑

v=1
diag

(
Tt,pv

) (
H�j

t

)
+ Nt . (2)

where for each link �j corresponding to the transmitter-
receiver (pv, qu) pair in Fig. 1, the vector H�j

t =[
H�j ,f1
t , ...,H�j ,fm

t

]
contains the CSI over the m pilot sub-

carriers while Nt is the additive noise vector at the u-th
receiver antenna and the vectorTt,pv collects the transmit-
ted pilot symbol, i.e., possibly pre-coded [32] to allow for
multiplexing of multiple spatial streams that are transmit-
ted by the v-th antenna.

2.2 CSI features and extraction
We assume that the channel estimator stage of the WiFi
device extracts an estimate of the CSI vectors

{
H�j

t

}

�jεL
at each symbol and for all L = Mt × Mr MIMO links

L = {�1, �2, ..., �L}. For the purpose of device-free occu-
pancy inference, we define the baseband channel vector
responsesH�j

t
(
xd

)
andHfi

t
(
xd

)
as

H�j
t

(
xd

)
=

[
H�j ,f1
t , ...,H�j ,fm

t

]
(3)

and

Hfi
t

(
xd

)
=

[
H�1,fi
t , ...,H�L,fi

t

]
, (4)

that collect the CSI measurementsH�j
t over the active sub-

carriers groups (for the j-th MIMO link �j) and similarly,
the MIMO links Hfi

t
(
xd

)
for the given i-th sub-carrier

fi ∈ F , respectively. Note that in what follows, channel
strength features (in dB scale) are modelled as Gaussian
(or lognormal in linear domain).
Till now, we have implicitly assumed a single target

scenario. In what follows, we consider body occupancy
inference problems featuring (Nd ≥ 1) targets that can
freely move within the monitored area X . Each d-th tar-
get, with d = 1, ...,Nd , thus moves by covering the discrete
locations xd ∈ {Kc}NK

c=0 = K, with NK being the number
of monitored locations (assuming that the targets do not
occupy the same position at the same time). In the next
sections, we will also assume that the wireless communi-
cations used for human sensing is established between a
TX and a RXWiFi device (or two RX devices when noted)
and that the presence of the targets does not impair the
communication itself.

2.2.1 Channel strength and perturbation features

We define the terms sfi,�j ,t = |H�j ,fi
t |2dB that represent the

quality/strength of the CSI observed over the pilot sym-
bol (or frame) t, for a given MIMO-OFDM sub-carrier
fi ∈ F and link �j ∈ L. In the following, these values are
interpreted as PHY-based RSS or channel strength data
measured in decibel scale. According to Eqs. 3 and 4, at
the frame time t, the vector

s�j ,t =
∣∣∣H�j

t

∣∣∣
2

dB
=

[
sf1,�j ,t , . . . sfm,�j ,t

]T
(5)

collects all frequency-domain measurements of the chan-
nel response, and, similarly, the vector

sfi,t =
∣∣∣Hfi

t

∣∣∣
2

dB
= [

sfi,�1,t , . . . sfi,�L,t
]T (6)

collects the space-domain measurements over all active
MIMO links, for the given i-th pilot sub-carrier.
For instance, Fig. 2 shows received signal average μfi,�j

and standard deviation σfi,�j in space and frequency
domains in empty and occupied environment with single
and double targets. Figure 2a shows the received signal
average over time for the link index 5 (i.e., �5) versus
the sub-carriers and clearly represents that received signal
attenuates more in the occupied environment and, there-
fore, may be exploited to discriminate between single and
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a b e

c d

Fig. 2 aMean and b standard deviation of the power measurements of empty and occupied environment acquired by the MIMO receiver RX for
the given link �5 in the frequency domain. cMean and d standard deviation of the power measurements in space domain for the given sub-channel
f2. In e, the layout adopted for both single and double target experimental measurements is shown

double targets. Figure 2b shows the standard deviation
versus the sub-carriers F that is used as a proper feature
to capture target-induced information. For these figures,
both single (Nd = 1) and double (Nd = 2) target scenarios
are shown where the targets are obstructing the TX-RX
line-of-sight (LOS) path. The corresponding test cases are
described in Fig. 2e, where NK = 7 positions along the
LOS path are monitored. In the single target case, the tar-
get d = 1 can change its position moving from K1 up to
K7, while in the double target scenario, the target d = 2
is always located in position K1 while the other target can
freely move and occupy the remaining positions from K2
up to K7. Likewise, Fig. 2c, d shows the average of the CSI
measurements μf2,�j and the standard deviation σf2,�j for
the specific frequency index 2 (i.e., f2) versus the links L.
The targets obstructing the TX-RX LOS path produce sig-
nificant perturbations of the channel response over both
OFDM sub-carriers andMIMO links. Furthermore, single
and double target effects are easily separable both in the
space and frequency domain. As shown in Section 4, these
qualitative considerations will be exploited to solve the
target detection and localization problems. As an addi-
tional example, Fig. 3 shows the target-induced recieved
signal attenuation sf15,�5,t versus the frame time t obtained
from link �5 and sub-carrier f15 at two MIMO receivers.
Figure 3b shows the fluctuations of the channel attenua-
tion corresponding to the target obstructing the blue link
(i.e., target is located at position K14) compared with the

unobstructed red link. Figure 3d shows the signal attenu-
ation for the target at position K28 in the monitored area.
As expected, the target presence affects both attenuation
and random fluctuations of the CSI measurements.
Stochastic modeling is adopted here to relate the per-

turbations of the power measurements to the target(s)
located at positions xd ∈ K. In what follows, the whole set
of target positions, X is defined as X = {

xd
}
d=1,...,Nd

. A
lognormal power model [33] is here adopted to relate the
RSS mean and variance with the target location. Specif-
ically, ∀�j ∈ L, the RSS sfi,�j ,t is modelled as a Gaussian
random variable with statistics that depend on the absence
or presence of at least one target inside the sensing area
X , as [34]

sfi,�j ,t =
{

μfi,�j(∅) + wfi,�j(∅) if ∀d : xd /∈ X ,
μfi,�j(X) + wfi,�j(X) if ∃d : xd ∈ X . (7)

In the empty scenario case xd /∈ X , i.e., for all targets
outside the sensing area, the RSS has mean μfi,�j(∅) =
μ

(p)
fi,�j(∅) + μ

(m)

fi,�j (∅) that accounts for path loss μ
(p)
fi,�j(∅)

and static multipath effects μ
(m)

fi,�j (∅), while wfi,�j(∅) ∝
N

(
0, σ 2

fi,�j(∅)
)
models the random fluctuations over time

due to the measurement errors or caused by small varia-
tions in the environment. When at least one of the targets
is located in X then μfi,�j(X) = μ

(p)
fi,�j(∅) − �μ

(d)

fi,�j(X) +
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Fig. 3 Target-induced channel attenuation for the link �5, identified by the antenna pair (u = 2, v = 2), and the by the sub-carrier f15. In a, the target
is located at position K14, and in b, the corresponding CSI values are measured by both RX1 and RX2 receivers. In c, the target is located at position
K28, while in d, the corresponding channel attenuation is measured by both RX1 and RX2

μ
(m)

fi,�j (X), where �μ
(d)

fi,�j(X) is the additional attenuation

caused by the target(s) and μ
(m)

fi,�j (X) describes the body-
induced multipath effects.
According to (7), when the targets are moving inside

the sensitivity area, the received signal is subject to an
increased fluctuation due to the random term wfi,�j(X) ∝
N

(
0, σ 2

fi,�j(X)
)
(see Fig. 3). The target-induced attenuation

μfi,�j(X) and the standard deviation σ�(X) are given by

μfi,�j(X) = μfi,�j(∅) − �μfi,�j(X) (8)
σfi,�j(X) = σfi,�j(∅) + �σfi,�j(X) (9)

where �μfi,�j(X) = �μ
(d)

fi,�j(X) + μ
(m)

fi,�j (∅) − μ
(m)

fi,�j (X) high-
lights the changes induced by the target presence with
respect to the empty scenario, while �σfi,�j(X) ≥ 0
denotes the corresponding increase of the RSS fading.
Note that RSS observations are continuously sampled over
a finite time interval (e.g., 10 ms for system validation of
Section 6) that depends on the device duty cycle. During
the validation tests, the targets can freely move, turn, or
change posture and position while the localization results
are updated every sample interval (i.e., every 10 ms, as

previously mentioned, for the experimental setup shown
in Section 6).

2.2.2 Space- and frequency-domain profiles
Given the targets located at X, the probability terms
Pr(st|X) for st = sfi,t and st = s�j ,t , representing both
space- and frequency-domain CSI measurements, respec-
tively, can be effectively modeled as a multivariate Gaussian
distribution. Using the model in (7), (8) and (9), it is

Pr(st|X) = 1
(2π)L/2 |C(X)|1/2×

×exp
{
−1
2

(st − μ(X))T C−1(X) (st − μ(X))

}
.

(10)

The mean vector and covariance matrix pairs
{μ(X),C(X)} can be defined over the frequency
domain, namely

{
μ�j(X),C�j(X)

}
or the space domain

{
μfi(X),Cfi(X)

}
. In particular, the mean vector

μ�j(X) =
[
μf1,�j(X),μf2,�j(X), ...,μfm,�j(X)

]T
(11)
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of sizem × 1 and the covariance matrix

C�j(X) = E

[(
s�j ,t − μ�j(X)

) (
s�j ,t − μ�j(X)

)T]
(12)

of sizem×m denote the target-induced frequency-domain
multipath profile. Similarly, the mean vector

μfi(X) = [
μfi,�1(X),μfi,�2(X), ...,μfi,�L(X)

]T (13)

of size L × 1 and the covariance matrix

Cfi(X) = E

[(
sfi,t − μfi(X)

) (
sfi,t − μfi(X)

)T]
(14)

of size L × L describe the corresponding space-domain
multipath profile.

2.2.3 Space- and frequency-domain correlation features
Considering the MIMO-OFDM interface, an additional
statistical attribute considered here for body occupancy
inference is the CSI correlation measured across selected
links (space) and/or across selected sub-carriers (fre-
quency) pairs. Effects of body movements on space- and
frequency-domain correlation of channel fading are still
unexplored in the literature (see Section 1.1). In the fol-
lowing sections, we prove that, compared to the unob-
structed environment, the presence of the target affects
both space- and frequency-domain channel correlation,
while such alterations can be exploited as a reliable fea-
ture for body detection and localization. Considering the
MIMO channel response over the sub-carrier fi, correla-
tion between links �a and �b is defined as

rfi�a,�b = Et
[
sfi,�a,ts

T
fi,�b,t

]
. (15)

Likewise, frequency-domain correlation for a given link
�j and between the frequency pair fa and fb is described by

r�jfa,fb = Et
[
sfa,�j ,ts

T
fb,�j ,t

]
. (16)

Sample averaging considers here T = 10 consecu-
tive PHY layer frames from which new CSI reports are
extracted. As clarified in Section 3, this corresponds to a
time window of 100 ms.

3 WiFi MIMO-OFDM radio interface and case
study description

In this section, we introduce the experimental scenario
and describe the details about the WiFi network configu-
ration adopted for algorithm validation. The experimental
activities have been conducted inside an indoor lab envi-
ronment of about 4 m × 6 m shown in Fig. 4a. The
area is subject to co-channel WiFi interference originated
from other WiFi devices. In addition, people can walk and
move outside the room (in a corridor) causing unwanted

perturbations of the RF field inside the monitored area.
NK = 28 landmarks, depicted in Fig. 4b, are used for
model (7) calibration as well as for the evaluation of
the projection matrices that are needed in the sub-space
decomposition method (Section 5.2). Although all targets
can freely move in the detection area independently with-
out crossing each other, in Fig. 4c, three trajectories are
considered for the double target scenario: trajectory #1 is
represented by positions 14 down to 8, trajectory #2 by
positions 15 to 21, and trajectory #3 by positions 28 down
to 22.
We employed a network of MIMO-OFDMWiFi devices

configured in monitor mode and working in the 5.32-GHz
band (i.e., WiFi band 2, channel 64, sub-carrier spacing
312.5 kHz, and nominal bandwidth equal to 20 MHz).
The monitor mode has been selected here for CSI data
collection since it allows any deployed transceiver to
observe the WiFi traffic on the considered channel with-
out explicit IP handshaking procedures. One TX device is
programmed to inject (or transmit) custom IEEE 802.11n
PHY protocol data units (PPDU) structured as stan-
dard high-throughput (HT) greenfield WiFi format [35],
including preamble, MAC addresses, header, and pay-
load; injected frames are sent at regular time intervals
of 10 ms.
As depicted in Fig. 4, in our tests, only two receiver

devices (i.e., RX1 and RX2) are used. In general, many
WiFi devices can be placed in monitor mode and config-
ured to capture WiFi frames at the PHY layer. A modified
chipset firmware and driver [36] have been used to obtain
the CSI samples of received IEEE 802.11n data frames.
The adopted chipset is the Intel Wireless Link 5300 (i.e.,
the IWL5300 PCIe Mini Card) working as a MIMO-
OFDM baseband modem in HT mode as well as exploit-
ing spatial multiplexing through transmit beamforming.
The modified driver allows to extract the standard CSI
reports for unicast/broadcast packets but limits the pos-
sibility of opportunistically collecting CSI matrices by
eavesdropping [37]. As shown in the scenario depicted in
Fig. 4a, all WiFi devices are installed on low-power single-
board computers (SBC) supporting battery-powered
operations.
The considered WiFi chipset reports the CSI for a sub-

set of the OFDM sub-carriers, as defined by the grouping
option Ng in the IEEE 802.11n standard [35]. Focusing
on the 20-MHz bandwidth mode, with 64 available sub-
carriers, that include data, pilot, and null sub-carriers,
the IWL5300 board reports CSI data for m = 30 sub-
carriers, with grouping number Ng = 2. According to the
MIMO-OFDM baseband model depicted in Fig. 4d, the
effective bandwidth considered for monitoring of channel
frequency selectivity is equal to 18.75 MHz.
All IWL5300 boards are equipped with Mt = Mr = 3

antennas used both at the transmitter and receiver side.
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Fig. 4 Experimental layout for single and double target performance evaluation. a Office layout with one transmitter (TX) and two receivers (RX1
and RX2). b Single target d = 1 scenario. c Two targets d = 1, 2 (i.e., Nd = 2) with sample trajectories. d Simplified baseband model of the
MIMO-OFDM device: CSI I/Q extraction and PHY protocol data unit injection

The transmitter multiplexes three spatial streams, while
the modulation and coding scheme (MCS) adopted for
the injected frames corresponds to the QPSK modulation
with coding rate 1/2 [38] (i.e., MCS 17). Focusing on CSI
estimation, a single probe transmitted from all the anten-
nas is used at the receiver side to provide an estimate of
the frequency-domain CSI terms [39] for each pilot sub-
carrier, Ĥfi

t = WHfi
t , multiplied by the corresponding

spatial pre-coding matrix W. To obtain the CSI vectors
Hfi

t to be used for occupancy inference, we post-multiply
the obtained estimates Ĥfi

t asH
fi
t = W−1Ĥfi

t , while known
pre-coding matrix W is extracted from the beamforming
information and depends on the specific Intel chipset
used [37].

In the next sections, the problem we tackle is
twofold. First, we address the target occupancy detection
(Section 4), then the problem of multi-target position-
ing inside the same detection area is investigated. For
both cases, different PHY-based channel features (defined
in Section 2) are evaluated to compare body-induced
alterations, over the space and/or frequency domain,
respectively.

4 Passive bodymotion detection: tracking of
body-induced fading correlation

We consider here Nd = 2 targets, labelled as d =
1, ...,Nd that are located at positions Xt = X at a given
time t; the targets can freely move inside the detection
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area X (Fig. 4a) surrounding the WiFi links. According
to the model in (7), the occupancy detection problem,
i.e, absence or presence of the subjects inside the detec-
tion area, is solved by tracking the MIMO-OFDM space-
frequency correlations of the CSI, defined in Eqs. (15)
and (16), among links (i.e., antennas) and sub-carriers. In
particular, the occupied environment affects both space
correlation rfi =

{
rfi�a,�b : ∀(�a, �b)

}
, for the sub-carrier

fi, considering all link pairs, and frequency correlation
r�j =

{
r�jfa,fb : ∀(fa, fb)

}
, for the link �j, considering all pilot

sub-carriers pairs.
In the example of Fig. 5a, the frequency-domain corre-

lation r�jfa,fb between fa = f2 and fb = f25 is evaluated over
all available links. In Fig. 5b, the corresponding space-
domain correlation rfi�a,�b is now shown for the selected
link pair �a = �1 and �b = �9 with respect to all
sub-carriers. The red lines correspond to the occupied
environment with single target (Nd = 1), while the blue
ones refer to the environment now occupied by two tar-
gets (Nd = 2). For all cases, the presence of the moving
subjects leaves a characteristic footprint on the correlation

a

b

Fig. 5 Space-frequency correlation. a Frequency correlation r
�j

f2, f25

versus all links. b Space correlation rfi�1,�9 versus all sub-carriers

when compared with the fading correlation curves (green
lines) observed in the empty environment. In fact, when
the target(s) enter(s) in the monitored area, the observed
space/frequency correlation of the channel reduces, as
also observed in [40], with respect to the empty envi-
ronment. This is the result of the perturbed radio prop-
agation and the new multi-path components originated
from the interaction with the targets. Using both features,
in Section 6, we will analyze and compare the detector
performance.

5 Device-free localization: space- and
frequency-domain decompositionmethods

A DFL technique is designed to leverage the MIMO-
OFDM interface for tracking of multiple targets in the
occupied environment. We assume that the detection of
the subjects entering in the area follows the approach
described in the previous section. The DFL tool allows to
recover the positions Xt of the subjects and track their
locations X over time t. Positioning is based on the run-
time collection of the CSI from multiple MIMO links and
sub-carriers as defined by the measurement vector in the
space st = sfi,t or frequency st = s�j ,t domain as already
explained in Section 2.
In the following section, two localization approaches

are compared to effectively track body-induced space-
frequency channel profiles using PHY layer MIMO-
OFDM WiFi links. According to the first approach, both
space- and frequency-domain channel profiles are applied
to the positioning problem, then we propose a novel
method that exploits the subspace decomposition algo-
rithm to optimally choose the more informative sub-
carriers/links for location estimation. Comparative analysis
is finally carried out by an experimental campaign.

5.1 DFL approaches with space- and frequency-domain
CSI profiles

In this section, space- and frequency-domain channel pro-
files are exploited for location estimation. A maximum
likelihood (ML) approach [34] is here revisited as tailored
for low-level CSI features. For Nd targets occupying the
detection area X , maximization of the log-likelihood

LK(st|Xt) = log [Pr(st|Xt)] (17)

gives the estimated target locations X̂t ; (ML criterion) by
using space-domain channel profiles, the estimate is given
by

X̂t = argmax
xdt ∈X ,∀d

∑

fi∈F
LK

(
st = sfi,t|Xt

)
. (18)

To obtain the likelihood Pr
(
st = sfi,t|Xt

)
, also in

(10), both reference configuration
{
μfi(∅), Cfi(∅)

}
, cor-

responding to the empty scenario, and the space pro-
file

{
μfi(X), Cfi(X)

}
should be evaluated during the
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calibration stage for each sub-carrier fi ∈ F and over a
selected Nd set of landmarks inside the detection area.
Using frequency-domain profiles, it is

X̂t = argmax
xdt ∈X ,∀d

∑

�j∈L
LK

(
st = s�j ,t|Xt

)
. (19)

In this case, the likelihood Pr
(
st = s�j ,t|Xt

)
is evalu-

ated according to both reference
{
μ�j(∅), C�j(∅)

}
and

frequency-domain configuration
{
μ�j(X), C�j(X)

}
for

every Nd set landmarks x ∈ X and MIMO links �j ∈ L,
obtained during the same calibration stage.
Space and frequency profiles are here exploited for

real-time multi-target localization scenario. The Bayesian
approach for device-free localization [12] makes a deci-
sion based on the a posterior probability Pr(Xt | St),
where St = [s1, ..., st]T collects all CSI measurements up
to time t. Using the space-domain profiles, the a posterior
probability (in log-domain) is computed as

logPr(Xt | St) ∝∑
fi∈F LK

(
st = sfi,t|Xt

) + logPr
(
Xt | St−1 = Sfi,t−1

)

(20)

being Sfi,t−1 = [
sfi,1, ..., sfi,t−1

]
. With frequency-domain

profiles it is

logPr (Xt | St) ∝∑
�j∈L LK

(
st = s�j ,t|Xt

) + logPr
(
Xt | St−1 = S�j ,t−1

)

(21)

with S�j ,t−1 = [
s�j ,1, ..., s�j ,t−1

]
. In both cases, the a priori

probability Pr(Xt | St−1) is updated iteratively as

Pr (Xt | St−1) =
= ∑

xt−1∈X Pr (Xt | Xt−1) × Pr (Xt−1 | St−1)
(22)

where Pr (Xt | Xt−1) serves as the motion model for the
prediction of the Nd target movements (i.e., the random
walk model of reference [41]). For positioning, the maxi-
mum a posterior (MAP) estimation can be thus adopted

X̂t = argmax
xdt ∈X ,∀d

logPr(Xt | St). (23)

Applying the above Bayesian techniques to the CSI
features extracted from a MIMO-OFDM radio interface
may result in a significant increase of algorithm com-
plexity, i.e., especially when applied to multiple targets
[42]. Indeed, not all sub-carriers and MIMO links capture
the target presence in the same way as some frequencies
and links might be affected by background noise or co-
located/co-channel interference components. Therefore,
an accurate space-frequency analysis is an essential pre-
processing task designed to select the link/frequency set
that is more sensitive to the presence of the target.

In what follows, we show that selecting an optimal
set of links/frequencies also reduces the complexity and
increases the performance. In the next section, we pro-
pose a more deep analysis of space-frequency selectivity,
as well as an ad hoc approach that allows to jointly analyze
the space-frequency channel profiles during the training
phase and select informative frequency and links for the
real-time localization.

5.2 Subspace decomposition-based DFL approach
We propose here the use of a subspace decomposition
method for DFL applications, referred to as SD-DFL, with
the aim of selecting the optimal combination of links
and the sub-carriers that can better capture the body-
induced signal changes. The method is tailored for the
MIMO-OFDM interface and can be also effectively used
to extract the links/sub-carriers that discriminate envi-
ronmental changes not related to the target presence (e.g.,
caused by people moving outside the main area) or RF
co-channel interfering devices.
Subspace decomposition methods have been widely

used in spectral estimation, sensor array processing, and
radio localization [43] to improve estimation performance
in noise-limited environments. It is closely related to
principal component analysis (PCA) [44] to map a high-
dimensional feature space to a lower-dimensional space
along the dimensions with highest variance.
The subspace decomposition (SD) method is designed

to capture body-induced signal changes inside the detec-
tion area and in turn isolate these alterations from those
induced by other environmental effects taking place out-
side the detection area. During calibration, we use both
CSI measurements corresponding to an empty detection
area and occupied (by a single target) on a subset of land-
marks. These are used to compute the subspaces (over
the space and frequency domains). We thus use single tar-
get measurements mainly to simplify the calibration stage.
Using such training, PCA method is then evaluated for a
double target scenario.
In passive localization systems, the radio signal fluctu-

ations may be induced by the targets as moving in the
monitored areaX , or by other environmental changes [4].
Therefore, the goal of the proposed subspace decompo-
sition is to separate the signal perturbations due to the
subject(s) from the ones induced by background noise
or other effects (e.g., body movements outside the detec-
tion area or interfering devices). Background noise here
refers to the alterations of the CSI data that are induced by
(possibly time-varying) environmental changes in the sur-
rounding of the detection area that are not attributable to
body movements (i.e., open/closed door, people moving
outside the detection area). We thus define the body-
induced signal subspace and the background noise sub-
space, respectively. Projectionmatrices for both spaces are
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obtained during the calibration phase, using space- and
frequency-domain training CSI measurements, sfi,t(xA)

and s�j ,t(xA), that correspond to a single target located in
selected landmarks xA. The projection matrices for both
the subspaces are therefore extracted from the single tar-
getmeasurements obtained during the training phase. The
proposed subspace decomposition approach is detailed in
the following sections by looking separately to the space-
and frequency-domain CSI profiles. In particular, we show
that the body-induced and background subspaces can be
used during online multi-target (i.e., Nd = 2) localization
to separate the alterations of the CSI as induced by body
movements inside the detection area X from those due
to the environment (or other subjects moving outside X ),
respectively.

5.2.1 Space domain
We first obtain the covariance matrix Cfi representative of
an occupied environment bymarginalizing out the space-
domain covariances Cfi (xA) in (14) over the selected
landmarks xA ∈ X inside the detection area. It is

Cfi =
∑

xA∈X
Cfi(xA)Pr(xA). (24)

The obtained marginal covariance (24) is used here to
extract the body-induced subspace. Notice that the terms
Cfi(xA) can been obtained during the calibration phase
from the training measurements sfi,t(xA) corresponding
to a single target occupying the selected landmarks xA.
Then, we apply the singular value decomposition (SVD)
method on the space-domain covariance Cfi for a given
sub-carrier fi

Cfi = Ufi
fiU
T
fi (25)

where 
fi = diag
{
λ�1,fi , ..., λ�L ,fi

}
is the ordered

diagonal matrix composed by the eigenvalues
λ�1,fi ≥ λ�2,fi ≥ ... ≥ λ�L,fi , that implies the order of the
new link sequence �1, �2, ..., �L, whileUfi = [

u�1,fi , ...,u�L,fi
]

contains the corresponding eigenvectors. Selection
of the first Pfi principal components of matrix Cfi
is then applied to capture the most significant sig-
nal changes due to the target position. Here, we
choose Pfi = max

{
j : λ�j,fi, > hf

}
where the thresh-

old hf is computed over the training measurements
as defined in Section 6. Based on such components,
we finally construct the body-induced subspace as:
Ûfi,Pfi =

[
ufi,1,ufi,2, ...,ufi,Pfi

]
.

Using the subspace matrix Ûfi,Pfi , the input CSI mea-
surements sfi,t = sfi,t(Xt) for the unknown target posi-
tions Xt can be decomposed as

sfi,t = ŝfi,t + s̃fi,t (26)

where ŝfi,t is the body-induced component, namely the
projection of the profiles onto the body-induced subspace

ŝfi,t = Ûfi,kiÛ
T
fi,Pfi

sfi,t = �fi,D sfi,t , (27)

while s̃fi,t is the background noise component, namely
the projection of the CSI space-domain profiles onto the
background noise subspace

s̃fi,t =
(
I − Ûfi,Pfi Û

T
fi,Pfi

)
sfi,t = �fi,S sfi,t . (28)

In particular, �fi,D =
(
Ûfi,Pfi Û

T
fi,Pfi

)
is the projection

matrix for the body-induced subspace while �fi,S =(
I − Ûfi,Pfi Û

T
fi,Pfi

)
is the projection matrix for the back-

ground noise subspace. To select the subspace size, in
Section 6, we will show that choosing the same number of
components for each MIMO link can still provide near-
optimal performance while strongly reducing complexity.
We thus select a unique subspace dimension for all sub-
carrier groups, that is Pf = max{Pfi , fi ∈ F}. The example
of Fig. 6a shows that the first Pf = 7 eigenvalues (out of 9
available MIMO links) with the threshold values set ∀fi to
hf = 15 capture most of the body-induced changes in the
monitored area.
During online localization, CSI profile sfi,t values are

replaced with its corresponding filtered version ŝfi,t in
(27) to obtain the position estimate. By replacing sfi,t with
projection ŝfi,t , ML estimation (18) now reduces to

X̂t = argmax
xdt ∈X ,∀d

∑

fi∈F
LK

(
ŝfi,t|Xt

)
. (29)

Likewise, as shown in (23), the MAP approach can be
also defined as

X̂t = argmax
xdt ∈X ,∀d

logPr
(
Xt | Ŝt

)
, (30)

now with Ŝt = [
ŝ1, ..., ŝt

]T .

5.2.2 Frequency domain
Following the same approach used for space-domain case,
we first obtain a covariance matrix C�j by marginaliz-
ing out the frequency-domain covariances C�j(xA) in (12)
obtained from training data s�j ,t(xA) over the same land-
marks xA ∈ X ,

C�j =
∑

xA∈X
C�j(xA)Pr(xA). (31)

The SVD on the marginal covariance C�j

is then obtained as C�j = U�j
�jU�j
T with


�j = diag
{
λ�j ,f1 , ..., λ�j ,fm

}
being the ordered

diagonal matrix composed by the eigenvalues
λ�j ,f1 ≥ λ�j ,f2 ≥ ... ≥ λ�j ,fm of the matrix C�j . The matrix
U�j =

[
u�j ,f1 , ...,u�j ,fm

]
collects the eigenvectors u�j ,fi over

the whole sub-carrier set F being f1, f2, ..., fm the new sub-
carrier sequence. It is worth noticing that, by re-arranging
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a

b

c

Fig. 6 Principal components and selected component numbers P�

and Pf obtained during the training phase from single target
measurements with a space-domain and b frequency-domain CSI
measurements. In c, the components corresponding to the two
different targets #1 and #2 for the given link �1 are shown

the eigenvalues in descending order, the corresponding
first principal component u�j ,f1 points to the sub-carrier
that is most sensitive to the body presence inside the
detection area. Moreover, the following principal com-
ponents u�j ,f2 ,u�j ,f3 , ... may reveal other sub-carriers of
interest for tracking.
Selection of the first P�j principal components of the

matrix C�j is applied to capture the most significant signal
changes due to the target position: P�j = max{i : λ�j ,fi >

h�}. Following the same procedure used for the subspace
decomposition approach, we again construct the target-
induced subspace as Û�j ,P�j

=
[
u�j ,1,u�j ,2, ...,u�j ,P�j

]
, now

for frequency-domain features, and such that the input
CSI profiles can be decomposed as s�j ,t = ŝ�j ,t + s̃�j ,t .
Applying the same definitions employed for the space-
domain profiles, ŝ�j ,t = ��j ,D s�j ,t is the target-induced
(dominant) signal component while s̃�j ,t = ��j ,S s�j ,t is
the background noise (stochastic) signal component while
��j ,D = Û�j ,P�j

ÛT
�j ,P�j

and ��j ,S = I−Û�j ,P�j
ÛT

�j ,P�j
are the

corresponding frequency-domain projection matrices for
both components, respectively. To simplify the computa-
tion, we again use the same number of components, now
for each MIMO link, therefore P� = max{P�j , �j ∈ L}.
Online localization is finally obtained using the projected
CSI profile components ŝ�j ,t as

X̂t = argmax
xdt ∈X ,∀d

∑

�j∈L
LK

(
ŝ�j ,t|Xt

)
. (32)

Figure 6b shows that the first P� = 12 eigenvalues (out
of 30 OFDM sub-carriers) with eigenvalue thresholds set
∀�j to h� = 5 capturemost of the body-induced changes in
the monitored area. Therefore, for the real time localiza-
tion, we only use the 12 sub-carriers selected at calibration
phase to estimate the target position.
Figure 6c shows the principal components correspond-

ing to two different targets d = 1 and d = 2 (as shown in
Table 1) for a given link (i.e., �1). In both cases, it is reason-
able to choose the first 12 components that capture most
of the changes corresponding to the target presence.

5.3 Occupancy detection
A problem tightly related to localization is occupancy
detection. In this case, we do not want to estimate the
position of the targets but only their presence by detect-
ing if the environment is empty or occupied. To solve
this problem, we propose to exploit the spatial correlation
mean rfi , for each sub-carrier, that it is computed over all

Table 1 Target body structure

Target Height (m) Weight (kg)

d = 1 1.60 57

d = 2 1.80 92
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link pairs of the link-by-link correlation rfi . Discrimina-
tion between empty and occupied environment is simply
done by applying thresholding on the observed corre-
lation mean for all sub-carriers. Using spatial correla-
tions, the empty environment, namely N̂d = 0, is thus
detected when

∑

fi∈F
1rfi≥τ�,0 >

∑

fi∈F
1rfi<τ�,0 , (33)

where τ�,0 is a threshold and 1x>y(x) is the indicator func-
tion defined as 1x>y(x) = 1 if x > y and 1x>y(x) = 0
otherwise. The threshold value is here optimized by using
the measurements acquired at the training stage.
Likewise, the frequency correlation mean r�j , obtained

from r�j , is also considered for detection; in this case, the
empty environment is detected when

∑

�j∈L
1r�j≥τf ,0 >

∑

�j∈L
1r�j<τf ,0 , (34)

where τf ,0 is a threshold and 1x>y(x) is the indicator func-
tion. The channel correlation mean is computed over all
sub-carrier pairs obtained from the F set while the opti-
mal threshold τf ,0 is computed, as shown before, by using
the measurements acquired at the training stage.

6 Experimental validation: detection and
localization

In order to evaluate the performance of the proposed
approach, we ran several experimental measurements
according to the setup illustrated in Section 3. In the pro-
posed scenario, two targets (Nd = 2) are considered while
we define a number of test trajectories for both subjects
designed to uniformly cover the detection area (see also
Fig. 4c). While target d = 2 (male, 1.80 m height and
92 kg) is standing in a given position (e.g., position 14), tar-
get d = 1 (female, 1.6 m height and 57 kg) moves through
trajectory #1 from position 13 down to 8. Then, target
d = 2 moves to the next position (i.e., 13) following the
same trajectory #1, and target d = 1 moves again on the
same trajectory from position 12 to 8, and so on to com-
plete all positions along trajectory #1. Finally, both targets
repeat the same procedure following the three trajectories
defined in Fig. 4c.
Table 2 shows the setting parameters used for the

occupancy detection and localization purposes. During

Table 2 Measurements campaign

Scenario Landmark RX TX TX-RX Sub-carrier Sample
number number number antenna

Single
target

28 2 1 3 30 600

Double
target

63 2 1 3 30 600

calibration, we have considered 28 landmarks correspond-
ing to the occupied body positions and then collected
training measurements for each position. In more detail,
we have collected data sequences of 600 samples for each
MIMO link (out of 9) and sub-carrier (out of 30). Two
WiFi RX devices, equipped with three antennas each,
have been used to collect CSI measurements by exploit-
ing WiFi injected packets (Section 3) originated from a
WiFi access point, equipped with three antennas, too.
The proposed algorithms have been verified and tested
by considering two targets (namely, target d = 1 and
d = 2) moving along the trajectories described above.

Fig. 7 Examples of a link correlation vs. sub-carriers and b frequency
correlation vs. links. Both empty environment (Environment) and
occupied environment correlations, corresponding to the single and
double target scenarios, are shown. The threshold values τ�,0 = 0.25
and τf ,0 = 0.28 are shown
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Fig. 8 ROC results using the multi-frequency occupancy detector (that exploits spatial correlations), the multi-link occupancy detector (that uses
frequency correlations), and the trivial detector. The measurements adopted for these plots are related to the double target scenario where the
bodies move along the main LOS path (connecting TX and RX2)

Targets have different body structure and size accord-
ing to the following Table 1. Real-time localization is
based on the proposed SD-DFL technique and uses CSI
data projected onto the body-induced subspaces (space
and frequency-domain subspaces). Finally, to highlight
the effectiveness of the proposed subspace decomposition
method, the accuracy of SD-DFL has been compared with
conventional Bayesian localization methods [2, 5, 34].

6.1 Occupancy detection
The setup illustrated in Section 3 and Fig. 4a is used here
to validate the proposed body detection scheme where
Nd = 1, 2 targets move in the monitored areaX . Focusing
on occupancy detection, Fig. 7a draws the spatial correla-
tionmean rfi , for each sub-carrier, that it is computed over
all link pairs of the link-by-link correlation rfi . The empty

Table 3 Performance evaluation of target detection with
measurements related to a single and double target moving
along the main LOS path (i.e., only the receiver RX2); both space-
and frequency-domain correlation methods with a single
threshold are employed

Method using single
threshold

Sensitivity Specificity Accuracy FPR

Frequency-domain
CSI correlation rt,�j )

0.97 0.49 0.9 0.5

Space-domain CSI
correlation rt,fk )

0.98 0.46 0.92 0.53

environment is detected according to Eq. 33. In the plot,
the results for the empty and the occupied environment
(by a single and double target) are shown while the thresh-
old value is here set to τ�,0 = 0.25. Likewise, the frequency
correlation mean r�j , obtained from r�j , is also consid-
ered for performance evaluation; in this case, as shown in
Fig. 7b, the empty environment is detected according to
Eq. 34 where the optimal threshold value considered here
is τf ,0 = 0.28.
Figures 7a, b confirm also the considerations of Section

5.2 regarding the use of single target measurements for
subspace computation; occupancy detection and data
reduction/filtering are therefore obtained just comparing
the properties of the empty environment with respect to
the ones of the occupied environment when only one
target is present.

Table 4 Performance evaluation of target detection with
measurements related to a single and double target moving
along the main LOS path (connecting TX and RX2); both space-
and frequency-domain correlation methods with optimized
thresholds are employed

Method using
optimized thresholds

Sensitivity Specificity Accuracy FPR

Frequency-domain
CSI correlation rt,�j )

0.89 0.78 0.88 0.2

Space-domain CSI
correlation rt,fk )

0.93 0.83 0.92 0.16
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Fig. 9 Double target scenario. a Target d = 2 is standing and target d = 1 is localized while moving on the highlighted trajectory #1. b Positioning
RMSE for target d = 1 vs. sub-carriers using space-domain CSI profiles for Bayesian DFL and SD-DFL methods. c Positioning RMSE for target d = 1 vs.
MIMO links now using frequency-domain CSI profiles for Bayesian DFL and SD-DFL methods

Figure 8 shows the receiver operating characteristic
(ROC) curve for the proposed multi-frequency detector
that considers a varying threshold for links (τ�,0) in the
space domain. Figure 8 shows also the results of the ROC
curve for the multi-link detector considering a varying
threshold τf ,0 for all sub-carriers in the frequency domain.
The trivial (i.e., random) detector is also included for com-
parison. Only the measurements related to the double
target scenario have been employed to carry out the per-
formance evaluation of the real-time occupancy detector.
Moreover, measurements have been collected by using the
RX2 node only (i.e., using only the path TX-RX2), while
the targets were freely moving in the monitored area.
It is apparent from the ROC plots that the multi-

frequency detector (in the space domain) provides bet-
ter sensitivity than the multi-link one (in the frequency
domain) for a given false-positive rate. The previous
results have been obtained with a single path. However,
an increased number of paths would provide better spatial
accuracy for target detection, but this analysis is outside
the scope of this paper.

Unlike Fig. 8, that refers to the measurements col-
lected in the double target scenario by a single receiver
(i.e., RX2) only, the detector performances summarized
in Tables 3 and 4 have been obtained using two paths
(i.e., the paths TX-RX1 and TX-RX2) and both single
and double target measurements for the occupied envi-
ronment. Table 3 summarizes the results using a single
threshold for links and a single threshold for sub-carriers,
while in Table 4, the thresholds have been optimized for
each link and sub-carrier, separately. Adopting the sin-
gle threshold approach (i.e., using τ�,0 and τf ,0), Table 3
shows that performances are quite similar even if there is a
small advantage in using space-domain features instead of
frequency-domain ones. On the contrary, Table 4 shows
that, exploiting optimized thresholds for each sub-carrier
τ
fi
�,0 and for each link τ

�j
f ,0, the space-domain features

should be used since they show better results. Clearly,
better performances can be also obtained by SISO (single-
input single-output) nodes but at the expense of a larger
number of RF RX/TX devices (and corresponding paths).
For instance, in [4], 12 SISO single carrier (SC) IEEE
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Fig. 10 Double target scenario. a Target d = 2 is standing, and target d = 1 is localized while moving on the highlighted trajectory #2.
b Positioning RMSE for target d = 1, 2 vs. sub-carriers using space-domain CSI profiles for Bayesian DFL and SD-DFL methods. c Positioning RMSE
for target d = 1, 2 vs. MIMO links. Both Bayesian DFL and SD-DFL methods are compared

802.15.4-compliant nodes have been employed. Usage of
MIMO-OFDM devices thus paves the way to an increased
accuracy with respect to SISO-SC ones by exploiting both
space and frequency domain measurements.

6.2 Localization
The setup illustrated in Section 6.1 for the occupancy
detection tests is also used here to validate the proposed
localization approaches. Nd = 2 targets are moving in
the monitored area X , while the bodies are first located
using the methods proposed in Sections 5.1 and 5.2. In
the first test, whose layout is depicted in Fig. 9a, the tar-
get d = 2 is fixed in a given position while the target
d = 1 moves along the highlighted trajectory #1 that fol-
lows the LOS path between the WiFi transmitter and the
receiver. The localization accuracy for the target d = 1,
in terms of root mean square error (RMSE), is drawn in
Fig. 9b, c, using space- and frequency-domain CSI pro-
files, respectively. The results obtained with the proposed
SD-DFL technique are also compared against the plain
Bayesian DFL tracking approach [2, 34]. To obtain the

subspaces used by the SD-DFL method, we used the
database of CSI measurements collected during the train-
ing phase and featuring a single test target moving in the
area to cover a pre-defined set of landmarks. Such mea-
surements are used to find the proper subspace dimension
P� and Pf over both space and frequency domains as
shown in Fig. 6. Selected subspace dimensions are then
validated for the considered scenario, now featuring two
real targets. For online tracking of both targets, we eval-
uate the alterations of the space- and frequency-domain
CSI profiles every second.
Considering the frequency-domain feature method, the

projection matrix for all active MIMO links Û�j ,P�
=

[
u�j ,1,u�j ,2, ...,u�j ,P�

]
is extracted using 12 sub-carrier

groups corresponding to the largest eigenvalues such that
λ�5,fi ≥ h�, with h� = 5; the related results are shown
in Fig. 6a. For real-time location estimation, the pro-
jection matrix thus reduces the size of the data to be
processed, discarding also non-informative sub-carrier
measurements. The RMSE of the location estimation is
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Fig. 11 DFL performance comparison. RMSE (m) of location estimation vs. link index in the double target scenario using the MIMO single sub-carrier
(f15) method (red line), the MIMO OFDM sub-carriers scheme (blue line), and the proposed SD-DFL MIMO-OFDM approach (green line)

compared with the DFL approach in [34] versus MIMO
links in Fig. 9c. As shown in the aforementioned figure,
the localization accuracy improves by more than 30 cm
for almost all MIMO links using SD-DFL with respect
to DFL.
Considering now the space-domain features, similarly to

what done for the frequency domain case, the optimal
number of components is found as Pf =max{Pfi , fi ∈ F}=7
and the corresponding results are shown in Fig. 6b.
Sub-carrier group f15 provides the maximum num-
ber of (space-domain) informative components; there-
fore, the projection matrix for sub-carriers Ûfi,kf =
[
ufi,1,ufi,2, ...,ufi,kf

]
is extracted by picking the seven

largest eigenvalues such that λ�j,f15 ≥ hf , with hf = 15.
The localization RMSE is depicted in Fig. 9b, while
improvements with respect to Bayesian DFL technique
are clearly visible; for example, considering the sub-
carrier index i = 15, the accuracy improves of more
than 24 cm.
Figure 10 focuses on a more general scenario where

both targets are now freely moving inside the detection
area. Similarly to what is shown before, we compare the
performance of DFL and SD-DFL methods when applied
to space- and frequency-domain CSI profiles, respec-
tively. Figure 10a highlights the scenario where targets
d = 1, and 2 are moving on trajectory #2. Figure 10b
represents the RMSE of the location estimation apply-
ing DFL and SD-DFL approaches using space profile, and
the results are drawn versus sub-carriers for both tar-
gets. The localization accuracy for the target #1 is lower

with respect to the target #2; in fact, target #2 (height
1.8 m and weight 92 kg) is taller than target #1 (height
1.6 m and weight 57 kg) causing extra attenuation and
perturbation from its larger body reflections and thus
affecting the received signal fluctuations corresponding
to the target #1 in a given position. Figure 10c repre-
sents the RMSE using frequency profile, and the result
is drawn versus the MIMO links. For example, for the
given link �3, location estimation of target #1 improves
of about 25 cm using the SD-DFL method. In both sin-
gle and double target cases, it is apparent that the use of
space-domain CSI profiles (over MIMO links) improves
the localization accuracy better than the frequency-
domain ones.
In Fig. 11, we now compare the performance of the

proposed SD-DFL approach with DFL methods that use
either a single carrier (i.e., f15) [28, 42], that is equiva-
lent to the received signal strength (RSS) method [2, 34],
as well as multiple sub-carriers [5, 30]. Performance are
analyzed for different MIMO links, according to the same
double target scenario previously described, where tar-
gets obstruct the path between TX-RX2. The obtained
RMSE (m) of location estimation confirms that, compared
with the conventional Bayesian DFL method [2, 28, 34],
the use of the SD-DFL approach provides an effective
means to select the sub-carriers that are more sensitive
to human body presence. In fact, although frequency-
domain processing provides benefits, the additional use of
the SD analysis in both space and frequency domains not
only reduces the number of MIMO links and sub-carriers
to be considered for localization but also improves the



Kianoush et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:44 Page 18 of 19

accuracy as providing a de-noising effect. We also notice
that, when multiple targets are considered (see reference
[42]), discrimination of two targets, that are very close
to each other, is not possible as their combined influ-
ence is similar to the one induced by a single target. On
the contrary, when the subjects are separated in space,
their mutual influence is low, and SD-DFL can better iso-
late the alterations of CSI as caused by the two distinct
bodies.
To conclude as previously mentioned, we want to stress

the fact that the usage of MIMO-OFDM devices for DFL
applications paves the way to an increased localization
accuracy with respect to SISO SC ones. Networks of
MIMO-OFDM nodes are expected to estimate the target
position with an increased accuracy, especially in harsh
and complex scenarios with heavy multipath effects by
exploiting both frequency- and, especially, space-domain
measurements.

7 Conclusions
This paper proposed signal processing methods and tools
to enable passive body occupancy detection and localiza-
tion based on the analysis of the channel state information
(CSI) collected from MIMO-OFDM radio interfaces (i.e.,
WiFi devices). In the proposed study, PHY layer CSI data
is processed over both space (using MIMO links) and
frequency (using consecutive OFDM pilot sub-carriers)
domains to isolate relevant perturbations induced by tar-
get movements. In particular, alterations of the space- and
frequency-domain fading correlation are tracked to esti-
mate the target presence and position(s). A case study
with a WiFi IEEE 802.11n network is presented to eval-
uate the performance of the proposed approaches in an
indoor scenario. Selection of the most informative OFDM
sub-carriers andMIMO links based on an ad hoc subspace
decomposition policy (SD-DFL) is proposed to improve
the localization accuracy. With respect to the previous
approaches, we showed that the exploitation of either
space- or frequency-domain diversity can provide signif-
icant accuracy improvements. Such benefits are particu-
larly interesting when practical limitations are imposed
on the number of installed WiFi physical devices. Future
work will address how accuracy scales when using large
MIMO-OFDM distributed configurations.
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