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Taking advantage of motif matrix inference
for rotated image indexing and retrieval
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Abstract

With the rapid development of information technology, the sizes of digital libraries become larger and larger. How
to quickly and effectively search the desired images in huge digital libraries becomes the challenge needed to
resolve with high priority. In this study, we firstly propose two motif-based matrices, i.e., the motif average matrix
(MAM) and motif excessive matrix (MEM), to describe the color and texture features of an image. Subsequently, in
terms of the inference of MAM and MEM, a motif matrix (MM) is further proposed to index rotated images and
resolve the issue of rotated image retrieval. That is, in the light of such an inference, MM incorporates the color and
texture characters and reveals the consistent relevance between the original and rotated images, which can be
effectively used for rotated image retrieval. To extensively test the performance of our method, we carry out the
experiments on the benchmark Corel image dataset, Brodatz texture image dataset, WIPO global brand dataset, and
the experimental results show that our approach of motif matrix inference improves the retrieval performance in
comparison with the state-of-the-art image retrieval approaches.
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1 Introduction
In recent years, with the rapid development of multi-
media and computer technologies, the sizes of digital li-
braries become larger and larger. As a result, in these
large digital libraries, how to find desired image informa-
tion, especially for numerous rotate images, has become
a challenge needed to resolve urgently. Rotated image
retrieval has a wide range of applications in IR systems.
As the number of trademark images is increasing rapidly
in trademark registration system, the design of new pat-
terns should prevent the conflict to the similar trade-
marks registered. Especially, the similar patterns caused
by rotation also need to be effectively avoided. Trade-
mark image retrieval system can find similar trademarks
immediately after entering a new trademark image for
registration, which can effectively protect the legitimate
rights and interests of registered trademarks. In recent
decade, image retrieval has become a research hot spot

in the fields of image processing, pattern recognition,
and artificial intelligence.
Image retrieval technologies based on text [1, 2] and

content [3, 4] have been extensively studied in the last
decade. Text-based image retrieval approach is firstly
proposed and widely utilized in the 1970s. Large search
engine companies, e.g., Google, Yahoo, and Baidu, exten-
sively use keywords annotated on images to implement
retrieval. However, with the widely spread digital im-
aging devices, such a kind of approach has two draw-
backs. Firstly, the need of manually handling image
databases can be too expensive. Secondly, the results of
retrieval may be inaccurate, because they are frequently
related to the subjective understanding of annotators.
To distinguish from text-based approach, content-based
image retrieval (CBIR) [5–8] has been proposed in the
early 1990s. This approach is to retrieve images using
low-level features like color [9–11], shape [12, 13], and
texture [14–16], to describe an image. Through extract-
ing the natural features of an image, CBIR calculates the
similarity between the query image and database images
[17, 18] and ranks the mostly related images in terms of
the similarities. Such an approach completely releases
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the labor of annotators and effectively reduces inaccur-
ate feedbacks without the subjective depiction [19–21].
Moreover, a large number of CBIR systems have been
developed by various organizations, individuals, and
hospitals, e.g., QBIC [22], PhotoBook [23], VisualSEEK
[24], Netra [25], Pictoseek [26], SIMPLIcity [27], and
Blobworld [28].
As an important topic in the research field of image

retrieval, CBIR is extensively studied. Generally speak-
ing, CBIR usually utilizes descriptors, i.e., color, tex-
ture, or shape, to represent an image. Various
algorithms have been designed to extract such fea-
tures. HSV histogram (HSVH) [29] extracts the color
pixel features by HSV color space. It transfers each
image to a quantized color histogram for subsequent
image comparison. In this scheme, the color feature is just
taken into account, and the spatial distribution feature of
pixels is ignored. Color co-occurrence matrix (CCM) [30]
is a conventional pattern co-occurrence matrix that calcu-
lates the probability of the occurrence of same arrange-
ment between each pair of adjacent motifs, and this
probability is considered as the attribute of the image. On
the basis of CCM, a modified color motif co-occurrence
matrix (MCMCM) [31] is given to collect the
inter-correlation between the red, green, and blue color
space which is absent in CCM. However, the intensity of
pixel variation in each motif is not considered in these
two methods and usually causes the value of the 2 × 2
pixels which have large differences share the same motif.
In view of such a defect, difference between pixels of scan
pattern (DBPSP) [32] is presented and intended to calcu-
late the differences among all pixels within motifs. The
combined algorithm, named MCMCM&DBPSP [33], re-
spectively calculates the similarity obtained from
MCMCM and DBPSP first and then utilizes a fixed coeffi-
cient to normalize the weights of them. However, it is
overly dependent on the predefined coefficient which
is difficult to select, especially for applications to dif-
ferent image datasets. Structure elements’ descriptor
(SED) [34] is a kind of a texture descriptor based on
HSV color space. It extracts color and texture features
to represent an image. However, it is very sensitive to
the image whose regions or textures are not signifi-
cant, and the effectiveness is restricted. Moreover, the
issue of image rotation is not considered in the above
methods which would generate error of judgment.
Thus, the retrieval results seem to contradict human
intuition for recognizing similar images. In the re-
search fields of fingerprint identification and LOGO
registration, many rotation invariant features or
models, e.g., Gabor transformation and statistical fea-
tures [35], wavelet hidden Markov model [36], and
local binary pattern [37], are taken into account.
However, the large amount of computations and the

high dimensionality of features usually affect the per-
formance of retrieval.
In this paper, we proposed a motif matrix inference

(MMI) based on rotation invariant texture features
for rotated image retrieval. To tackle with the issue
of rotated image retrieval, we implement a minimal
upper left triangle (MULT) rule which concludes the
final eight motifs to keep the consistence on the basis
of analysis of statistics. Such an approach can effect-
ively reduce the kind of motifs and resolve the issue
of distortion after image rotation. A motif excessive
matrix (MEM) is subsequently derived from the motif
transformed image to depict a whole image. The
whole image is divided into 2 × 2 pixel grids and each
grid is replaced by a scan motif. Meanwhile, we
utilize motif average matrix (MAM) to store the gray
information of an image. Finally, a motif matrix
(MM) is further proposed to integrate MEM and
MAM to extract and describe color and texture fea-
tures. That is, we can obtain the same MM when an
image is rotated. Therefore, our approach integrates
the advantages of both textural and colorful descrip-
tion methods. What is more, through the analysis of
statistics, the proposed approach using MULT reduces
the space of MM and effectively solves the issue of
rotated image retrieval.
The remainder of the paper is structured as follows.

Section 2 gives the definition of motif and introduces
how to transform an image into its relevant MAM,
MEM, and MM. The original MM with the size of
256 × 24 only counts the textural and gray informa-
tion of an image. Its inherent structure cannot resolve
the issue of rotated image retrieval. Meanwhile, the
simply merging motif may cause the problem of

Fig. 1 The predefined priority in 2 × 2 grids
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image distortion. In this study, the proposed MULT re-
duces the space of MM into a relatively smaller scale of
256 × 8 and can effectively resolve the issue of rotated
image retrieval. Section 3 describes the evaluation method
to calculate the similarity between images. The experi-
mental results and comparisons are presented in Section
4. Conclusion is given in Section 5.

2 Methods
2.1 The original motif
In this paper, the original image is divided into 2 × 2
grids. These grids are then replaced by a particular scan
motif which would traverse the grid in the ascending
gray order (AGO), to reflect the texture of 2 × 2 grids
(see Fig. 1). Note that a fixed priority is given to resolve

Fig. 2 a The original gray of each grid. b The unique motif in 2 × 2 grids

Fig. 3 Total 24 kinds of motifs
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the issue of the grids that have same gray. That is, in
terms of such a priority, a unique scan curve can be
achieved to represent the 2 × 2 grids.
In Fig. 1, we define the upper left grid (label 1) has the

highest priority and the bottom left grid (label 4) has the
lowest priority. Such priority order can solve the prob-
lem of linking curve with the same gray for grids. Mean-
while, with the ascending gray order, we can transform
2 × 2 grids into a unique motif. Take Fig. 2 for instance,
although the gray of label 1 is same to that of label 3, we
can also obtain a unique motif with sequence 1324. In
general, 24 different motifs could traverse “2 × 2 grids”
(see Fig. 3).

2.2 The modified eight rotated invariant motifs
It is intuitive that if a motif rotates 90°, 180°, and 270°
clockwise it will transform to another three kinds of mo-
tifs respectively. Therefore, to handle rotated image re-
trieval, we classified the original motif and its three
rotated motifs as one motif. That is, after such direct in-
corporation, we can see from Fig. 4 that the total 24

kinds of motifs can be directly reduced to 6 motifs, and
the new 6 kinds of motifs are shown in Fig. 5.
It seems that such a simple incorporation process

may solve the rotated image retrieval. However, after
further analysis, it may cause the issue of rotated dis-
tortion. That is, if a unit of 2 × 2 grids encounters the
situation of the same grays, the rotation of the ori-
ginal 2 × 2 grids may cause the different motifs out of
the incorporated motif assigned. We take Fig. 6 for
instance. Through the simple incorporation, the motif
related to the original grids is assigned to the kind of
NO.2 motif, but the rotated grids via the three de-
grees produce the NO.0 kind motif, which is different
from that produced by the original grids and causes
the issue of rotated distortion. Thus we cannot just
utilize such a simple incorporation to deal with ro-
tated image retrieval. In this study, we propose a rule
of minimal upper left triangle (MULT) to solve it,
and the MULT is described as:

Step 1: Calculate the sum of the grays in labels 1, 2,
and 4.

Step 2: If the sum is less than or equal to that of other
three adjacent grays, i.e., labels 1, 2, and 3;
labels 1, 3, and 4; labels 2, 3, and 4, go to Step
4. Otherwise, go to Step 3.

Step 3: Rotate the 2 × 2 grids via 90° clockwise and
calculate the sum of the grays in labels 1, 2, and
4 again, then go to Step 2.

Step 4: Utilize AGO to obtain the motif.

Fig. 4 The incorporation of the motifs

Fig. 5 The incorporated six motifs
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The MULT rule fixed the three smaller grays in labels
1, 2, and 4 grids, no matter which degree (90°, 180°, or
270°) is taken for rotating the original image. In Fig. 7,
we also take the 2 × 2 grids (see Fig. 10) for example. Al-
though the unit of 2 × 2 grids encounters the situation of
the same grays, a unique motif can be finally achieved
by the MULT rule.
According to the MULT rule, the original 24 kinds of

motifs will be finally reduced to 8 kinds of motifs by a
complete statistics method, and these 8 kinds of motifs
are shown in Fig. 8.
It has been known that for each unit of 2 × 2 grids, the

rotation of an image not only moves its position in
space, but also rotates its inner content. After the further
analysis and extensive simulations for MULT, we find
the two special cases which are given by.

Case 1: A unit of 2 × 2 grids with three equivalent grays
and another smaller gray.
Case 2: A unit of 2 × 2 grids with two equivalent grays
and another two smaller grays.

To well handle these two cases, we improve MULT
and specify them with one of its generated motif. The
specifying process is illustrated in Fig. 9.

In order to discuss why we select these three kinds of
generated motifs to represent the finally incorporated
motifs, we firstly investigate the frequency of each case
and motif in commonly used image dataset Core-1000
[38–40], and the corresponding frequency and percent-
age are shown in Tables 1 and 2.
Note that we need to select some distinguished motifs

to represent the finally incorporated motif with respect
to these two special cases. That is, it is intuitive that the
generated motif with the lowest percentage would be se-
lected. Subsequently, we will explain why we select these
three kinds of generated motifs in Fig. 9 as follows.

(1) For Case 1, from the original grid and the
corresponding three rotated grids, three kinds of
motifs, i.e., NO.0, NO.5, and NO.7, are generated
with percentage of 11.787%, 10.31%, and 0%
respectively. Thus, the motif of NO.7 is selected to
represent Case 1.

(2) For Case 2.1, from the original grid and the
corresponding three rotated grids, two kinds of
motifs, i.e., NO.4 and NO.6, are generated with
percentage of 4.596% and 3.882% respectively.
Thus, the motif of NO.6 is selected to represent
Case 2.1.

Fig. 6 The issue of rotated distortion

Fig. 7 MULT rule to resolve rotated distortion
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(3) For Case 2.2, from the original grid and the
corresponding three rotated grids, two kinds of
motifs, i.e., NO.2 and NO.7, are generated with
percentage of 17.901% and 0 respectively. Thus,
the motif of NO.7 is selected to represent Case 2.2.

So far, after the above modification for MULT, the
number of motifs has been incorporated into the final
eight motifs and such an incorporated approach can
well organize MEM and MAM for rotated image
retrieval.

Fig. 8 The final eight motifs

Fig. 9 The direct incorporation of the two special cases with its generated motif
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2.3 The motif average matrix (MAM)
In order to extract the color feature of an image, we
utilize MAM to store the average gray in each motif.
That is, since every element is obtained from 2 × 2
grids, it is obviously known that the gray level matrix
with respect to a size of M ×N image can be trans-
formed into (M – 1) × (N – 1) MAM, where M and
N are the pixel numbers of rows and columns in ori-
ginal image respectively. The steps to construct MAM
are described as follows:

(1) Starting from the origin location (0, 0) in gray
level matrix and moving every unit of 2 × 2 grids
from left to right and from top to bottom with
1-step length.

(2) Extracting the average gray in each unit of 2 × 2
grids as the element of MAM.

We can take Figs. 10 and 11 for instance, Fig. 10 de-
notes an original 10 × 10 Gy level matrix for image and
Fig. 11 denotes the related 9 × 9 MAM.

2.4 The motif excessive matrix (MEM)
In this study, both characters of color and texture are
considered to comprehensively describe an image.
That is to say, we not only use MAM to store the
color features, but also utilize MEM to preserve the
texture features. Since each element in MEM is a
motif, and we extract the motif from each unit of 2 ×
2 grids, it is obvious that the size of MEM is also
(M – 1) × (N – 1) matrix associated with a M ×N
gray level image. Note that, the motif and the average
gray information are all extracted from each unit of
2 × 2 grids. Thus, the texture feature in MEM can be
mapped to the color feature in MAM with the related
location. The steps to construct MEM are described
as follows:

(1) Starting from the origin location (0, 0) in gray level
matrix and moving every unit of 2 × 2 grids from
left to right and from top to bottom with one-step
length.

(2) Utilizing the method of AGO to generate the motif
as the element of MEM.

Take Figs. 4 and 6 for instance. Based on the original
gray level matrix (see Fig. 4), we can gain the relevant
9 × 9 MEM in Fig. 12.

2.5 The motif matrix (MM)
As discussed above, MAM just calculates the color fea-
ture, while MEM just counts the texture feature. In this
study, the texture and color features are both consid-
ered as the content of an image. That is, we propose
MM to further fuse these two features into a space. It
has been known that the value of gray ranges from 0 to
255, and we have obtained total eight kinds of motifs to
represent the textures. Subsequently, we utilize the
range of gray and the kind of motifs to represent the
rows and columns of MM respectively. That is to say,
in the new generated MM is a 256 × 8 matrix, the elem-
ent MM(x, y) counts the times where in the same pixel
(i, j), MAM(i, j) is the average gray of x, and MEM(i, j)
is the yth motif. The definition of element MM(x, y) is
given by

If MAM i; jð Þ ¼ x; x∈ 0; 255½ �
and MEM i; jð Þ ¼ y; y∈ 0; 7½ �

Then MM x; yð Þ ¼ MM x; yð Þ þ 1
ð1Þ

For example, if MAM(20, 5) is 255 and MEM(20, 5) is
the second motif, the value of MM(255, 2) should in-
crease to 1. Through such an approach, we merge the
texture and color features in a fused space. That is, MM
counts the total times where each kind of motif shares
the same average gray. Therefore, such a statistics-based
approach can resolve the issue of searching the similar
texture and color features which may disperse in a dif-
ferent position of an image.
Take the MAM in Fig. 11 and MEM in Fig. 12 for ex-

ample. We can obtain the fused MM with a size of 256 × 8.
In order to explain MM in a clear way, we just take the
71st row of MM into account. That is, we count the times
of each kind of motif whose average gray is 70. We can see
from Fig. 11 that MAM(0,6) = 70, MAM(1,1) = 70,

Table 1 The frequency and percentage of each case in
Corel-1000 image dataset

Case

1 2.1 2.2

Frequency 2,575,059 858,361 12,614,285

Percentage 2.637 0.879 12.916

Table 2 The frequency and percentage of each motif in Corel-1000 image dataset

#Motif

0 1 2 3 4 5 6 7

Frequency 11,511,792 24,205,880 17,483,214 10,066,814 4,489,113 10,068,883 3,791,599 0

Percentage 11.787 24.785 17.901 10.307 4.596 10.310 3.882 0
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MAM(5,2) = 70, MAM(7,5) = 70, MAM(7,7) = 70,
MAM(8,5) = 70, MAM(8,6) = 70, and from Fig. 12
MEM(0,6) = 1, MEM(1,1) = 4, MEM(5,2) = 2, MEM(7,5) =
1, MEM(7,7) = 2, MEM(8,5) = 2, MEM(8,6) = 5, we utilize
Table 3 to depict the 71st row of MM.
In this study, we focus on CBIR, especial for rotated

image retrieval. So far we have utilized MM to organize
the color and texture features of an image. To clearly de-
pict the issue of image rotation, we also take the original
10 × 10 Gy level matrix from Fig. 10 for instance.
After rotation of 90°clockwise, we can gain the rotated

gray level matrix, and the relevant MAM and MEM
shown in Fig. 13a–c respectively. Subsequently, the new
generated MAM and MEM are utilized to construct the
relevant MM. In order to compare this new constructed
MM with the original MM without rotation, we also
take the 71st row of new MM into account. We can see
from Fig. 13b that MAM(1,7) = 70, MAM(2,3) = 70,
MAM(5,0) = 70, MAM(5,1) = 70, MAM(6,0) = 70,
MAM(6,8) = 70, and MAM(7,1) = 70 and from Fig. 13c
MEM(1,7) = 4, MEM(2,3) = 2, MEM(5,0) = 2, MEM(5,1)
= 1, MEM(6,0) = 5, MEM(6,8) = 1, and MEM(7,1) = 2.
Table 4 is used to depict the 71st row of the new MM.

In comparison with Table 3, we can see that the 71st
row of new MM in Table 4 is obviously the same with
that of the original MM. That is, through using MM and
the eight kinds of modified motifs, we can resolve the
issue of image rotation.

3 Similarity measure
In this study, the MM is proposed to depict the texture
and color features of an image. Thus, we can only calcu-
late the distance between MMs to reveal the similarity
between relevant images. For each template image in the
database, its MM with the size of 256 × 8 has been ex-
tracted and stored in advance. In this paper, the distance
between the elements related to the template MM and
query MM is given by

D MMT i; jð Þ;MMQ i; jð Þ� �
¼ j MMT i; jð Þ−MMQ i; jð Þ j

1þMMT i; jð Þ þMMQ i; jð Þ ð2Þ

where MMT(i, j) and MMQ(i, j) are the respective elem-
ent of template MM and query MM. Since MM(i, j)
counts the times of the ith kind of motif whose average
gray is j, it is actually set as a positive integer or zero. It
is intuitive that when ∣MMT(i, j) −MMQ(i, j) ∣ →
0, D(MMT(i, j), MMQ(i, j))→ 0. That is, the similar
features would lead to the shorter distance. On the con-
trary, as ∣MMT(i, j) −MMQ(i, j) ∣ →∞,D(MMT(i, j),
MMQ(i, j))→ 1. That is, the greater contrast would

Fig. 10 An original 10 × 10 Gy level matrix

Fig. 11 The constructed MAM

Fig. 12 The constructed MEM

Table 3 The 71st row in MM obtained from Figs. 11 and 12

#Motif 0 1 2 3 4 5 6 7

Times 0 2 3 0 1 1 0 0
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result in the bigger distance. Thus, the distance be-
tween the template MM and the query MM is given by

DMMI MMT ;MMQ
� � ¼ X255

i¼0

X7
j¼0

D MMT i; jð Þ;MMQ i; jð Þ� � ð3Þ

where MMT and MMQ are respective motif matrix of
template image and query image. Subsequently, the simi-
larity between the template image and the query image
is defined as

SMMI T ;Qð Þ ¼ 1

1þ DMMI MMT ;MMQ
� � ð4Þ

The above formula transforms the similarity via con-
ventional cognition. That is, the shorter distance makes

the bigger similarity and vice versa. Moreover, it can
avoid the problem of denominator being 0. In the field
of image retrieval, Euclidean distance and Cosine simi-
larity are usually adopted as the evaluation methods; the
respective formula is given by

DEuc MMT ;MMQ
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX255

i¼0

X7

j¼0
MMT i; jð Þ−MMQ i; jð Þ� �2r

ð5Þ

SCos MMT ;MMQ
� � ¼

P255
i¼0

P7
j¼0MMT i; jð Þ �MMQ i; jð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP255

i¼0

P7
j¼0MMT i; jð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP255
i¼0

P7
j¼0MMQ i; jð Þ2

q

ð6Þ
In comparison with Euclidean distance and Cosine

similarity, the evaluation measure given by us is easy to
calculate the similarity without square or square root
operation. Moreover, our approach is more effective
than them, since it can achieve a better performance
compared to those of the relatively more complicated
Euclidean distance and Cosine similarity in the following
experimental section. The flow chart of our approach is
shown in Fig. 14.

4 Results and discussion
In this section, we implement our approach of MMI for
image retrieval on Corel image dataset [38–40], Brodatz
texture image dataset [20, 41, 42], and WIPO global brand
dataset [43, 44], which are three most widely adopted
benchmark datasets in the literatures of CBIR and trade-
mark search. In our experiments, Corel image database
composed of 1000 images, named Corel-1000, is adopted
to testify the effectiveness of our approach. Corel-1000 is
divided into 10 categories, i.e., human beings, landscapes,
departments, busses, dinosaurs, elephants, flowers, horses,
mountains, and foods, and each category contains 100 im-
ages. Moreover, in order to implement rotated image re-
trieval, each of these images are processed through 90°,
180°, and 270°clockwise rotation. We can see from Table 5
that total 4000 images are finally generated as our dataset.
Brodatz texture image dataset comprises 990 images, and
they are divided into 110 categories. That is, each category
contains 9 images. WIPO global brand dataset is a com-
prehensive source of data on the intellectual property. It
contains tens of thousands of the brand data from mul-
tiple national and international sources, and has been
widely used for empirical studies, reports, and factual in-
formation. Subsequently, when a query image (or trade-
mark) is input, the feedback images (or trademarks) are
ranked in the light of the relevant similarity.
Precision, recall, and F1-measure are three typical evalu-

ation quotas in the field of information retrieval. In our
experiments, all of them are utilized to evaluate the effect-
iveness of our approach. Precision is defined as the ratio

a

b

c

Fig. 13 The rotated image and its generated MAM and MEM. a The
10 × 10 gray level matrix rotated by 90°clockwise from Fig. 10. b The
generated MAM. c The generated MEM.

Table 4 The 71st row in MM obtained from Fig. 13b, c

#Motif 0 1 2 3 4 5 6 7

Times 0 2 3 0 1 1 0 0

Xu et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:62 Page 9 of 19



between the number of the correctly retrieved images M
and the total number of the retrieved images D. Recall is
defined as the ratio between M and the total number of
the images A in each predefined category. Subsequently,
precision P, recall R, and F1-measure are given by

P ¼ M=D ð7Þ

Fig. 14 The flow chart of our approach

Table 5 The description of Corel-1000 and Corel-4000 image
datasets

Corel-1000 Corel-4000

human beings 100 100 × 4

landscapes 100 100 × 4

departments 100 100 × 4

busses 100 100 × 4

dinosaurs 100 100 × 4

elephants 100 100 × 4

flowers 100 100 × 4

horses 100 100 × 4

mountains 100 100 × 4

foods 100 100 × 4

# total images 1000 4000
Fig. 15 The results of recall versus mean precision when performing
the three similarity measuring methods
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R ¼ M=A ð8Þ

F1−measure ¼ 2� P � R
P þ R

ð9Þ

In our experiments, 40 images are randomly chosen
from each category in the Corel-4000 dataset query im-
ages. With regard to each querying image, we calculate
the recall and the corresponding precision first. Subse-
quently, the recall and mean precision pair with respect
to these 400 randomly chosen querying images is ob-
tained. Figure 15 displays the experimental results com-
paring our similarity measuring method with the
Euclidean distance and Cosine similarity methods.
We can see from Fig. 15 that our method performs

much better than the Euclidean distance and Cosine
similarity methods. Note that, although these two
methods are widely used for measuring similarity, our
method is more appropriate and achieves a better per-
formance. That is because formula (2) normalizes the
distance between MMs, and the effective denominator is
taken into account in the formula.
To reveal the performance of our method of MMI, we

compare it with state-of-the-art image retrieval ap-
proaches including SED [34], HSVH [29], CCM [30],
DBPSP [32], MCMCM [31], and MCMCM&DBPSP
[33]. In the following experiments, the pair of mean pre-
cision and recall in Fig. 16 and the mean precision with
respect to first-N percentage in Fig. 17 are both exerted
to demonstrate the effectiveness of MMI in depth.
From Fig. 16, we can see that for each algorithm the

mean precision decreases with the raising of recall. Our
approach of MMI achieves the best performance in
comparison with SED, HSVH, CCM, DBPSP, MCMCM,

and MCMCM&DBPSP. For the latter six algorithms,
SED performs relatively better with mean precision of
0.800 when recall is 0.1. In contrast, the mean precision
of MMI is 0.907. When recall reaches 1, MCMCM per-
forms relatively better with mean precision of 0.224 in
the latter six algorithms. By comparison, the mean preci-
sion of MMI is 0.323. For other recalls, i.e., 0.2 to 0.9,
MMI achieves superior mean precisions and performs
better than other six algorithms. In Fig. 17, we evaluate
these seven algorithms by comparing the mean precision
for first-N percentage images in each category. We can
see from Fig. 17 that the experimental results clearly re-
veal that for the first 10–100% images of each category,
MMI is significantly superior to other six algorithms.
Specifically, the mean precisions of the first 10% images

Fig. 16 The comparison of the pair of mean precision and recall

Fig. 17 The comparison of mean precision with respect to
first-N percentage

Table 6 The comparison of F1-measure
F1-measure

MMI SED HSVH CCM DBPSP MCMCM MCMCM&DBPSP

human beings 0.6208 0.5942 0.4718 0.3617 0.2334 0.4141 0.3327

landscapes 0.3135 0.2856 0.4237 0.3067 0.2270 0.4678 0.3173

departments 0.4380 0.5800 0.3963 0.3130 0.3199 0.3163 0.3513

busses 0.4191 0.5657 0.4859 0.4747 0.4524 0.4961 0.3862

dinosaurs 0.9964 0.7217 0.7468 0.8151 0.3812 0.8968 0.7862

elephants 0.5031 0.3060 0.3562 0.2648 0.2391 0.2980 0.2811

flowers 0.7746 0.7232 0.3524 0.7623 0.7138 0.6702 0.6824

horses 0.4755 0.4601 0.6953 0.3761 0.2368 0.5202 0.4714

mountains 0.2139 0.3128 0.3172 0.2817 0.1871 0.2616 0.2325

foods 0.4007 0.4276 0.3743 0.3187 0.2509 0.3084 0.4703

Mean
F1-measure

0.5156 0.4977 0.4620 0.4275 0.3242 0.4650 0.4311
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for MMI, SED, HSVH, CCM, DBPSP, MCMCM, and
MCMCM&DBPSP are 0.916, 0.821, 0.771, 0.753, 0.439,
0.794, and 0.761 respectively, and when first-N percent-
age reaches 100%, the corresponding mean precisions
are 0.589, 0.519, 0.480, 0.467, 0.285, 0.509, and 0.472
respectively.
Moreover, in view of the value of recall ranging from

0.1 to 1.0, we count the corresponding mean precision
and calculate F1-measure with respect to each category,
which is subsequently shown in Table 6.
We can see from Table 6 that our approach of MMI

achieves the best F1-measure in four categories includ-
ing human beings, dinosaurs, elephants, and flowers.
Although for other categories MMI could not obtain the
best performance, it still performs better than the other
six algorithms in terms of the evaluation of mean
F1-measure shown in the last row of Table 6.
In order to further reveal the superiority of our

proposed method, the standard Brodatz dataset is ap-
plied in subsequent experiment. In specific, we select
querying image from each category of Brodatz data-
set. The corresponding precision is then calculated

with the recall of 1. That is, we count the precision
when nine corresponding images are all retrieved
with respect to the relevant category. In Table 7, our
approach of MMI is compared with SED, CCM,
DBPSP, MCMCM, and MCMCM&DBPSP via the
mean precision.
Note that, HSVH [29] is based on HSV color space,

and the images in Brodatz dataset are all png format
of gray level, which cannot be converted to HSV
color space. In view of such reason, the proposed
MMI approach is only compared with SED, CCM,
DBPSP, MCMCM, and MCMCM&DBPSP. We can
see from Table 7 that our approach of MMI achieves
the best retrieval performance in terms of the highest
mean precision.
In order to directly display the retrieval results and

reveal the performance of the proposed method, in
Corel-4000 dataset, we randomly select an image
from each category as a query. The similarity is then
computed between the query image and the image in
database. The returned images are ranked in terms
of the descending order of the similarity. The image
retrievals of eight examples are displayed from
Figs. 18, 19, 20, 21, 22, 23, 24, and 25.
From Figs. 18, 19, 20, 21, 22, 23, 24, and 25, we

can see that eight examples of image retrieval on
Corel-4000 dataset are tested. For each query, the
top 48 images are ranked based on their correspond-
ing similarities. Among the returned 48 images of
each query, the first four feedback images are the

Table 7 The comparison of mean precision in Brodatz dataset

6 different algorithms

MMI SED CCM DBPSP MCMCM MCMCM&DBPSP

Mean
precision

0.8199 0.6385 0.6546 0.3781 0.5502 0.6872

Fig. 18 Image retrieval for human beings on Corel-4000 image dataset
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original image and its three rotated images with the
corresponding similarity of 1. Note that each series
of four images shares the same similarity. That is be-
cause although each image is rotated by 90°, 180°,
and 270° clockwise, the achieved MMs comprised of

color and texture features remain the same. More-
over, although the analogous texture and color fea-
tures may disperse in different position of the
returned images, these similar images can be also ob-
tained, owning to the concept that the generated

Fig. 19 Image retrieval for departments on Corel-4000 image dataset

Fig. 20 Image retrieval for dinosaurs on Corel-4000 image dataset
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MMs count the times where each kind of motif
shares the same average gray. Thus, such kind of re-
trieval strategy is much closer to the human under-
standing for content-based image retrieval. From the
results, the retrieval precisions of human beings, de-
partments, dinosaurs, elephants, flowers, horses, and

food categories are better than that of a landscape cat-
egory. In specific, the top 48 retrieval images with regard
to the first 7 queries are entirely relevant. However, for the
eighth query of landscapes, some inaccurate images, e.g.,
series 2 about mountains and series 7 and series 11 about
departments, are returned. By further analyzing such

Fig. 21 Image retrieval for elephants on Corel-4000 image dataset

Fig. 22 Image retrieval for flowers on Corel-4000 image dataset
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results, we find that although they come from different
categories, their color and texture are indeed similar to
the query image, due to the similar MMs.
In the last experiment, for the purpose of simulat-

ing trademark retrieval, the proposed method is

implemented on WIPO global brand dataset for fur-
ther revealing its performance. Six typical trademark
images are selected as query images, and the similar-
ities are then computed between each query trade-
mark and the trademarks in database. The returned

Fig. 23 Image retrieval for horses on Corel-4000 image dataset

Fig. 24 Image retrieval for foods on Corel-4000 image dataset
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trademarks are ranked in terms of the descending
order of the similarity. The six examples of trademark
retrieval are displayed in Fig. 26.
We can see from Fig. 26 that the six examples of

trademark retrieval on WIPO global brand dataset
are performed. For each query trademark, the top
nine returned trademarks are ranked in terms of
their similarities, and these nine trademarks are all
vision relevant to the respective query. Moreover, al-
though some partial shapes are rotated comparing to
the original shapes in the query trademark, i.e., the
fourth to ninth returned trademarks in Fig. 26a, the
third returned trademarks in Fig. 26e, and the first
returned trademarks in Fig. 26f, they are also re-
trieved by the proposed method. In brief, the pro-
posed method can find the similar trademarks to its
query. Moreover, the similar shapes after rotation can
also be retrieved. That is to say, our method can be
used as an effective tool to implement trademark re-
trieval, which would protect the legitimate rights and
interests of registered trademarks.

5 Conclusions
In this study, eight kinds of novel motifs are first
proposed to describe all textures in each 2 × 2 grids
of an image. Subsequently, two motif-based matrices,
i.e., MAM and MEM, are constructed to describe the
color and texture features of an image respectively.
What is more, in terms of the inference, we integrate

the advantages of both structural and statistical
methods. That is, MAM and MEM are further
mapped to MM to resolve the issues of rotated
image retrieval. In view of MM, such a 256 × 8
matrix incorporates the colorful and textural charac-
ters and depicts the consistent feature between the
original and its rotated images. In order to effectively
measure the similarity between images, a normalized
evaluation measure is utilized to calculate the simi-
larity between the template MM and query MM. We
first carry out the experiments on the benchmark
Corel image dataset, and the experimental results
show that our normalized evaluation measure per-
forms better than traditionally used Euclidean dis-
tance and Cosine similarity. Subsequently, the
proposed MMI is compared with SED, HSVH, CCM,
DBPSP, MCMCM, and MCMCM&DBPSP on Corel
image dataset and compared with SED, CCM, DBPSP,
MCMCM, and MCMCM&DBPSP on Brodatz texture
image dataset (As HSVH is based on HSV color
space, it cannot be performed on Brodatz dataset,
which are all png format of gray-level images), and
the experimental results demonstrate the superiority
of our method. In order to directly display the re-
trieval results, eight examples on Corel dataset and
six examples on WIPO global brand dataset are
tested, and the experimental results demonstrate the
effectiveness of our method for CBIR and trademark
retrieval.

Fig. 25 Image retrieval for landscapes on Corel-4000 image dataset
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Fig. 26 The six examples of trademark retrieval. a The trademark retrieval for query image "m". b The trademark retrieval for query image
"mitsubishi". c The trademark retrieval for query image "w". d The trademark retrieval for query image "HUAWEI". e The trademark retrieval for
query image "MI". f The trademark retrieval for query image "ip"
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