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Abstract

Periodic/aperiodic sequences with low autocorrelation sidelobes are widely used in many fields, such as
communication and radar systems. Besides the correlation property, the frequency stopband property is often
considered in the sequence design when the systems work in a crowded electromagnetic environment. In this paper,
we aim at designing periodic/aperiodic sequences with low autocorrelation sidelobes and arbitrary frequency
stopbands, and propose an efficient algorithm named FFT (fast Fourier transform)-based conjugate gradient
algorithm. To calculate the step size efficiently, a method based on Taylor series expansion is developed. By changing
the number of FFT points, the proposed algorithm can be easily used to generate periodic/aperiodic sequences. Since
the gradient and step size can be implemented by FFT operations and Hadamard product, the whole algorithm is
computationally efficient and can be used to design very long sequences. Numerical experiments show that the
proposed algorithm has better performance than the state-of-the-art algorithms in terms of the running time.

Keywords: Autocorrelation, Integrated sidelobe level, Stopband property, Gradient, Periodic/aperiodic sequence
design

1 Introduction
Sequences with low periodic or aperiodic autocorrela-
tion sidelobes have been studied for a long time since the
1950s. The applications of such sequences cover both mil-
itary field and civil field, such as the pulse compression
radar and wireless communication [1, 2]. In pulse com-
pression radar, the output of the pulse compression can be
regarded as the convolution of each scattering point and
the waveform’s autocorrelation. As the traditional wave-
forms (e.g., linear frequency modulation (LFM) signal)
suffer high range sidelobes, the detection performance
and imaging quality of radar systems are limited. Thus,
sequences with low autocorrelation sidelobes are applied
to suppress the sidelobe jamming from the adjacent strong
scattering points and thus improve the detection perfor-
mance of weak target [3]. Moreover, sequences with low
autocorrelation sidelobes have many advantages in the
code division multiple access (CDMA) systems [4], for
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instance, reducing the influence of the multipath effect
and improving the synchronization precision.
Owing to the extensive application and great practical

value of the sequences with low autocorrelation sidelobes,
many scholars have shown a great interest in generating
such sequences. The related studies can be classified into
two categories. The first category is the design of binary
sequences by using the search methodologies, such as
exhaustive search method [5] and evolutionary algorithm
[6]. And the second category is the design of polyphase
sequences [7–13]. In recent years, with the development
of the optimization theory, the problem of designing
polyphase sequences with low autocorrelation sidelobes
has been a research hotspot. Stochastic optimization algo-
rithms [7, 8] were applied to design such sequences at
the early stage. However, because of the high computa-
tional burden, these algorithms are impractical and unable
to design sequences with large length. In order to fix
this problem more efficiently, algorithms named CAN
(cyclic algorithm new) and Accelerated-MISL (acceler-
ated monotonic minimizer for integrated sidelobe level)
which were both based on fast Fourier transform (FFT)
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were proposed in [9, 10]. In [9], the CAN algorithm was
proposed to design unimodular sequences of large length
by minimizing a criterion which is “almost equivalent”
to the integrated sidelobe level (ISL) metric. Different
from the CAN algorithm, the Accelerated-MISL algo-
rithm [10] was deduced via majorization-minimization
(MM) method. Since the Accelerated-MISL algorithm is
based on an acceleration scheme which can greatly reduce
the iteration number, it outperforms the CAN algorithm
on both the merit factor (MF) and the computational
efficiency. Besides, there are some literatures on design-
ing sequences with zero correlation zone [11–13] or low
periodic autocorrelation [14].
Apart from the correlation property, the stopband prop-

erty (which means suppressing several frequency bands)
is usually considered in sequence design for suppressing
narrowband interferences or avoiding the certain fre-
quency bands that reserved for some applications, such
as navigation andmilitary communications [15–19]. Since
the discontinuous frequency of the transmit waveform
leads to high autocorrelation sidelobes, the correlation
and stopband properties are both considered. At the
early stage, the cyclic algorithms named SCAN (stopband
CAN) and WeSCAN (weighted SCAN) were proposed
in [20] to design sequences with good correlation and
stopband properties. But since the WeSCAN requires
N FFT operations and the eigenvalue decomposition at
each iteration, its convergence speed is slow. Afterwards,
the improved cyclic algorithms named SDCA (steepest
descent-based cyclic algorithm) [21] and MMSE-WISL
[22] are proposed for sparse frequency waveform design
on the basis of the CAN and WeCAN (weighted CAN)
algorithms [9]. However, like the WeSCAN algorithm,
these two improved algorithms are also time-consuming
and not suitable for long waveform design [22]. In recent
years, some efficient algorithms, such as the majorization-
minimization (MM) method [10], gradient-based algo-
rithms [23, 24], Lagrange programming neural network
(LPNN) [25], alternating projection [26], and alternating
direction method of multipliers (ADMM) [27], have also
been applied to unimodular sequence design with stop-
band property, where LPNN and ADMM can be applied
to generate both the periodic and aperiodic waveforms. It
is worth noting that the sidelobe suppression means flat-
ting the sequence spectrum. Thus, the suppression of fre-
quency stopbands seems more difficult than the sidelobe
suppression, which means that suppressing the stopbands
increases more complexity.
In this paper, we consider the problem of designing

periodic/aperiodic sequences with low autocorrelation
sidelobes and arbitrary frequency stopbands. By using
the relationship between the autocorrelation function and
power spectrum density (PSD), the problem is formu-
lated as an unconstrained minimization problem with

respect to the sequence phase in frequency domain.
To solve this problem, an efficient algorithm named
FFT-based conjugate gradient algorithm (which we call
FCGA) is proposed. Unlike the traditional gradient algo-
rithm, the searching step size of the FCGA which
is hard to calculate directly is deduced via the Tay-
lor series expansion. As the gradient and step size of
the FCGA can be implemented by FFT operations and
Hadamard product, the algorithm is efficient and can
design sequences with large length. Moreover, by select-
ing the number of the FFT points, the proposed algo-
rithm can be easily applied to design periodic or aperiodic
sequences.
The remaining sections of the paper are organized as

follows. In Section 2, the sequence design problem that
incorporates both the correlation and stopband properties
is formulated. In Section 3, the phase gradient and step
size are derived, and then, a modified descent direction
is given to guarantee the monotonicity of the FCGA. To
show the effectiveness of the proposed algorithm, several
numerical experiments are presented in Section 4. Finally,
Section 5 gives the conclusion.
Notation: Boldface upper case letters denote matrices

while boldface lower case letters denote column vectors.
(·)∗, (·)T , and (·)H denote the complex conjugate, trans-
pose, and conjugate transpose, respectively. ‖ · ‖ denotes
the Euclidean norm of vectors. ◦ denotes the Hadamard
product.X (m, n) denotes the (mth,nth) element of matrix
X. Re(·) and Im(·) denote the real and imaginary part,
respectively. Diag (x) is a diagonal matrix formed with x.
FN (·),F−1

N (·) denote the N−point FFT and inverse FFT
(IFFT) operations, respectively.

2 Problem formulation
Asmentioned in Section 1, this paper focuses on the prob-
lem of designing sequences with good correlation and fre-
quency stopband properties. That is to say, the sequences
should satisfy two conditions: one is low autocorrelation
sidelobes (here we minimize the power of the sidelobes,
i.e., ISL metric); the other one is low stopband power. In
the following, two criterions are established to measure
the autocorrelation and the stopband power, and then,
we formulate the design problem as an unconstrained
minimization problem.

2.1 Correlation property
Let {xn}N−1

n=0 denote the complex sequence to be designed.
The vector form of the sequence can be expressed as

x = [x0, ..., xN−1]T . (1)

The periodic and aperiodic autocorrelations of the
sequence are respectively defined as
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r̃k =
N−1∑

n=0
xnx∗

(n−k) mod N = r̃∗−k ,

rk =
N−1∑

n=k
xnx∗

n−k = r∗−k , k = 0, ...,N − 1.

(2)

Then, the corresponding integrated sidelobe levels
(ISLs) which express the goodness of the periodic and
aperiodic correlation properties are given by

Iper=
N−1∑

k=1
|r̃k|2, Iaper=

N−1∑

k=1
|rk|2. (3)

Let

r1=
[
r̃0, r̃1, ..., r̃N−1

]T ,

r2=
[
r0, r1, ..., rN−1, 0, r∗N−1, ..., r∗1

]T .
(4)

denote the periodic and aperiodic autocorrelation vec-
tors, respectively. Then, Iper and Iaper can be written more
compact as

Iper=
N−1∑

k=0
|r̃k|2 − |r̃0|2 = rH1 r1 − N2,

Iaper= 1
2

⎛

⎝
N−1∑

k=1−N
|rk|2 − |r0|2

⎞

⎠ = 1
2
(
rH2 r2 − N2) ,

(5)

where we assume r̃0 = r0 =
N−1∑
n=0

xnx∗
n = N . Let FÑ be the

Ñ × Ñ discrete Fourier transform (DFT) matrix with the
following expression

FÑ (m, n) = e−j 2mnπ

Ñ , 0 ≤ m, n < Ñ . (6)

Then, the Ñ × Ñ inverse discrete Fourier transform
(IDFT) matrix is FHÑ/Ñ . It is well known that the auto-
correlation function is the inverse Fourier transform of
the power spectrum density (PSD); thus, we have the
following relationship [13, 14]:

r1= F−1
N (p1) = 1

N
FHNp1,

r2= F−1
2N (p2) = 1

2N
FH2Np2.

(7)

where p1,p2 are the PSD of lengths N and 2N , respec-
tively. By substituting (7) into (5), the frequency domain
expressions of Iper and Iaper are given by

Iper= 1
N2 p

H
1 FNF

H
Np1 − N2 = 1

N
(
pH1 p1 − N3) ,

Iaper= 1
2

(
1

4N2 p
H
2 F2NF

H
2Np2 − N2

)
= 1

4N
(
pH2 p2− 2N3) ,

(8)

where FÑF
H
Ñ = ÑIÑ , Ñ = N , 2N , and IÑ denotes the Ñ ×

Ñ identity matrix.
Generally, the problem of designing periodic/aperiodic

sequences with low autocorrelation sidelobes can be
regarded as a minimization problem of the peri-
odic/aperiodic ISL metrics. From (8), it is easy to see that
the metrics of the periodic and aperiodic autocorrela-
tions have the same form. Thus, by ignoring the constant
terms in (8), the periodic/aperiodic ISL metrics can be
equivalent to the following unified criterion:

JACF = 1
2Ñ

pHp, (9)

where p = [ p0, ..., pÑ−1]
T and Ñ is the number of FFT

points. When Ñ = N , (9) is the criterion for the peri-
odic autocorrelation. And when Ñ = 2N , (9) becomes the
criterion for the aperiodic autocorrelation.

2.2 Stopband property
In crowded electromagnetic environment, the signal spec-
trum is often polluted by the interference or the signals
from other users. Thus, designing sequences with fre-
quency stopbands is sometimes quite necessary. Without
loss of generality, we consider the normalized frequencies
here.
Assume the set of frequency stopbands � ⊂ [0, 1] can

be written as

� = Ns∪
k=1

(
fk1, fk2

)
, (10)

where
(
fk1, fk2

)
denotes one stopband and Ns denotes the

number of the stopbands. Considering the Ñ−point FFT
operations, the corresponding point set of the stopband
set can be expressed as

�1 = Ns∪
k=1

[⌊
Ñfk1

⌋
,
⌈
Ñfk2

⌉] ⊂ [0, Ñ] , (11)

where �·	 , 
·� are the floor and ceiling operations. There-
fore, the suppression of the stopband set� is equivalent to
minimizing the PSD in �1, i.e., p(k), k ∈ �1. Let us define
the frequency weight vector as

wf = [w̄0, ..., w̄Ñ−1
]T ,

w̄p =
{
1, p ∈ �1
0, otherwise .

(12)

As the PSD is nonnegative, the criterion for the stop-
band property can be constructed as the square of the
Euclidean norm of the weighted PSD:

JPSD = ∥∥wf ◦ p
∥∥2 = pHDiag

(
wf
)
p. (13)

Actually, the criterion JPSD is the total power in frequency
stopbands. Thus, by minimizing (13), the spectral power
in � can be suppressed.
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2.3 The minimization problem
In order to suppress the autocorrelation sidelobes and
the stopband power, both JACF and JPSD should be min-
imized. Thus, the design problem can be regarded as a
bi-objective optimization (or Pareto optimization) prob-
lem. However, since the frequency stopband leads to high
sidelobes, it is impossible to find a solution that minimizes
both JACF and JPSD. To make a compromise between cor-
relation sidelobes and frequency stopbands, here we apply
the scalarization procedure, i.e., turning the bi-objective
optimization problem into a single-objective optimiza-
tion problem. After scalarizing the problem, the single
objective function that incorporates (9) and (13) can be
expressed as

JT = λJPSD + (1 − λ) JACF

= λpHDiag
(
wf
)
p + 1 − λ

2Ñ
pHp

= pHDiag (w)p.

(14)

where λ ∈ [0, 1] is a weight coefficient by which we can
balance the relative weight between JACF and JPSD, and
w = λwf + 1−λ

2Ñ .
Defining f = [

f0, ..., fÑ−1
]T as the Ñ−point DFT of x,

and

ap =
[
1, ejωp , ..., ejωp(N−1)

]T
,ωp = 2π

Ñ
p, p = 0, ..., Ñ − 1,

(15)

then one can get

f=
[
aH0 x, ..., a

H
Ñ−1x

]T
.

p= f∗ ◦ f =
[
xHa0aH0 x, ..., x

HaÑ−1a
H
Ñ−1x

]T
.

(16)

By substituting (16) into (14), the objective function JT
can be reformulated as

JT =
Ñ−1∑

p=0
wp
(
xHapaHp x

)2
, (17)

where wp = λw̄p + 1−λ

2Ñ is the pth element of the weight
vector w.
In general, the transmitter components such as power

amplifier have a maximum amplitude clip [2]. To max-
imize the transmitter power, it is desired for sequence
amplitude to reach this amplitude clip, which means that
the sequence should be unimodular. Therefore, consider-
ing the unimodular constraint, the problem of interest can
be written as

min JT =
Ñ−1∑

p=0
wp
(
xHapaHp x

)2

s.t. |xn| = 1, n = 0, ...,N − 1.

(18)

From (18), we can see that the unimodular constraint
is the constraint related to the sequence amplitude. Thus,
theminimization problem can be solved by optimizing the
sequence phase. Let

φ = [φ0, ...,φN−1]T (19)

denote the phase vector of the sequence x, then we have

x = [ejφ0 , ..., ejφN−1
]T . (20)

Thus, the problem (18) can be seen as an unconstrained
minimization problem on φ:

min JT (φ) =
Ñ−1∑

p=0
wp
(
xHapaHp x

)2
. (21)

3 The FCGA algorithm
A good property of the Accelerated-MISL algorithm in
[10] is the monotone decreasing property. But this algo-
rithm minimizes the majorization function rather than
the original function. To minimize the objective function
(21) directly and guarantee the monotonically decreasing
property of the algorithm, the conjugate gradient algo-
rithm (CGA) is applied here. In this section, we first
deduce the gradient and the step size, which are two
important parts of the CGA, and then summarize the
FCGA algorithm.

3.1 Phase gradient
To deduce the phase gradient ∇φJT , we first work out the
derivative of the function JT (φ) with respect to the phase
φi, i = 0, ...,N − 1:

∂JT
∂φi

= 2
Ñ−1∑

p=0
wp
(
xHapaHp x

) ∂xHapaHp x
∂φi

. (22)

Let

Ap = apaHp , Ap (m+1, n+1) = apmn, 0 ≤ m, n ≤ N − 1.
(23)

Then, the gradient ∇φJT can be written as

∇φJT = 2
Ñ−1∑

p=0
wp
(
xHApx

)∇φ

(
xHApx

)
. (24)

In the following, we derive the explicit expression of
∇φ

(
xHApx

)
. According to (20) and (23), the expansion of

xHApx is given by



Tang et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:57 Page 5 of 13

xHApx =
N−1∑

m=0

N−1∑

n=0
apmnej(φn−φm). (25)

Then, the derivative of xHApx with respect to φi can be
denoted as

∂xHApx
∂φi

= jxi
N−1∑

m=0
apmix

∗
m − jx∗

i

N−1∑

n=0
apinxn. (26)

Since Ap = AH
p , we have apmi = (

apim
)∗. Thus, the

derivative (26) can be rewritten as

∂xHApx
∂φi

= 2Re
(

−jx∗
i

N−1∑

n=0
apinxn

)
. (27)

By stacking (27) in a vector, the gradient ∇φ

(
xHApx

)
is

given by

∇φ

(
xHApx

) = 2Re
(−jx∗ ◦ (Apx

))
. (28)

According to (24) and (28), the explicit expression of
phase gradient is given by (see the Appendix 1)

∇φJT = 4ÑRe
(−jx∗ ◦ y1:N

)
, (29)

where y1:N denotes the first N elements of y, and

y = F−1
Ñ

(
w ◦ ∣∣FÑ (x)

∣∣2 ◦ FÑ (x)
)
. (30)

3.2 Step size calculation via Taylor series expansion
The traditional methods for obtaining the step size are the
linear search methods. As the linear search methods cost
much iteration and computation, the best way to obtain
the step size is direct calculation. In this subsection, we
adopt the Taylor series expansion to deduce the step size.
Assume the present iteration point is xk , and the corre-

sponding iteration direction is dk=
[
dk0, ..., d

k
N−1

]T
. Then,

the next iteration point can be expressed as

φk+1 = φk + μdk , xk+1 = xk ◦
[
ejμd

k
0 , ..., ejμd

k
N−1
]T

,

(31)

whereμ is the step size. Essentially, the linear search prob-
lem is a minimization problem with respect to μ which
can be expressed as follows:

min
μ>0

JT (μ) =
Ñ−1∑

p=0
wp

((
xk+1

)H
Apxk+1

)2
. (32)

Let

zk+1 =
[(

xk+1
)H

A0xk+1, ...,
(
xk+1

)H
AÑ−1x

k+1
]T

,

(33)

then the derivative of JT (μ) with respect to μ can be
written as

∂JT (μ)

∂μ
= ∂

(
wT (zk+1 ◦ zk+1))

∂μ

= 2wT
(
zk+1 ◦ ∂zk+1

∂μ

)
.

(34)

To simplify (34), we first expand
(
xk+1)HApxk+1 as

follows:

(
xk+1

)H
Apxk+1 =

N−1∑

m=0

N−1∑

n=0
apmn

(
xkm
)∗
xkne

jμ
(
dkn−dkm

)

,

(35)

where xkn, dkn are respectively the (n + 1)th element
of xk and dk . By using the Taylor series expansion and
then keeping the first three terms, the exponential term

ejμ
(
dkn−dkm

)

in (35) can be approximated as

ejμ
(
dkn−dkm

)

≈ 1+jμ
(
dkn − dkm

)
− μ2

2

(
dkn − dkm

)2
. (36)

By substituting (36) into (35),
(
xk+1)HApxk+1 can be

rewritten as
(
xk+1

)H
Apxk+1

=
(
xk
)H

Apxk − 2μIm
((

xk
)H

Apxk1
)

− μ2
(
Re
((

xk
)H

Apxk2
)

−
(
xk1
)H

Apxk1
)
,

(37)

where xk1 = xk ◦ dk , xk2 = xk ◦ dk ◦ dk . Let us define

fk = FÑ

(
xk
)

=
[
aH0 x

k , ..., aHÑ−1x
k
]T

,

fk1 = FÑ

(
xk1
)

=
[
aH0 x

k
1, ..., a

H
Ñ−1x

k
1

]T
,

fk2 = FÑ

(
xk2
)

=
[
aH0 x

k
2, ..., a

H
Ñ−1x

k
2

]T
.

(38)

Then, according to (33), (37), and (38), we have

zk+1 =
∣∣∣fk
∣∣∣
2 − 2μt2 − μ2t1, (39)

where

t1 = Re
((

fk
)∗ ◦ fk2

)
−
(
fk1
)∗ ◦ fk1,

t2 = Im
((

fk
)∗ ◦ fk1

)
.

(40)
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By substituting (39) into (34), the derivative in (34) can
be written more compactly as

∂JT (μ)

∂μ

= −4wT
((∣∣∣fk

∣∣∣
2 − 2μt2 − μ2t1

)
◦ (t2 + μt1)

)

= −4
(
aμ3 + bμ2 + cμ + d

)
,

(41)

where

a = −wT (t1 ◦ t1) ,
b = −3wT (t1 ◦ t2) ,

c = −2wT (t2 ◦ t2) + wT
(∣∣∣fk

∣∣∣
2 ◦ t1

)
,

d = wT
(∣∣∣fk

∣∣∣
2 ◦ t2

)
.

(42)

Let ∂JT (μ)/∂μ = 0, then we have

aμ3 + bμ2 + cμ + d = 0. (43)

It is well known that there is at least a real root in the
roots of a cubic equation with real coefficients. Thus, the
approximate step size can be calculated directly by solving
(43). Since the searching direction is descendant, problem
(32) has at least one minimum point greater than 0. Then,
we can choose the positive root of (43) which is closest to
zero as the step size.

3.3 Algorithm summary
After deducing the phase gradient and the step size, it is
easy to solve the unconstrained problem (21) by using the
conjugate gradient algorithm (CGA). In order to calculate
the search direction effectively, here we apply the classical
Polak-Ribiere-Polyak-CGA (PRP-CGA) whose direction
can be calculated according to the gradient. The searching
direction of the PRP-CGA can be expressed as

dk+1 = −gk+1 +
(
gk+1 − gk

)Tgk+1
∥∥gk
∥∥2

dk , (44)

where gk and dk are the gradient and searching direc-
tion of the kth iteration, respectively. Since the step size is
an approximate value,

(
gk+1)Tdk may not be zero. Thus,

dk+1 may not be descendant, i.e.,

(
gk+1

)T
dk+1

= −
∥∥∥gk+1

∥∥∥
2 +

(
gk+1 − gk

)Tgk+1
∥∥gk
∥∥2

(
gk+1

)T
dk < 0

(45)

is not always satisfied. For guaranteeing that the searching
direction is descendant, we apply the following modified
direction:

d̃k+1 = −gk+1 +
(
gk+1 − gk

)Tgk+1
∥∥gk
∥∥2

dk ,

dk+1 =
{
d̃k+1,

(
gk+1)T d̃k+1 < 0

−gk+1,
(
gk+1)T d̃k+1 ≥ 0

.

(46)

From (46), we can see that when the approximate step
size can guarantee the direction d̃k+1 of the PRP-CGA is
descendant (i.e.,

(
gk+1)T d̃k+1 < 0), the d̃k+1 is selected

as the searching direction. But when the step size makes
d̃k+1 no longer a descent direction (i.e.,

(
gk+1)T d̃k+1 ≥ 0),

we choose the negative gradient direction as the search-
ing direction. By doing so, the descent direction is always
guaranteed. On the basis of the above derivation, the
FCGA algorithm can be summarized in Algorithm 1.

Algorithm 1 FCGA
Initialization: k = 0, λ,wf ,N , Ñ , x0, f0 = FÑ

(
x0
)
,

g0 = ∇φJT
(
x0
)
,d0 = −g0.

Repeat
1: fk1 = FÑ

(
xk ◦ dk

)
, fk2 = FÑ

(
xk ◦ dk ◦ dk

)
.

2: t1 = Re
((
fk
)∗ ◦ fk2

)
−
(
fk1
)∗ ◦ fk1, t2 = Im

((
fk
)∗ ◦ fk1

)
.

3: Compute the coefficients a, b, c, d according to (42).
4: Solving the cubic equation (43), and then choose the
positive root which is closest to zero as the step size μk .
5: xk+1 = xk ◦ ejμkdk , fk+1 = FÑ

(
xk+1) .

6: y = F−1
Ñ

(
w ◦ ∣∣fk+1∣∣2 ◦ fk+1

)
.

7: gk+1 = 4ÑRe
(
−j
(
xk+1)∗ ◦ y1:N

)
.

8: Compute the searching direction dk+1 according
to (46).
9: k = k + 1.
Until convergence

From Algorithm 1, we can see that the proposed algo-
rithm can be easily implemented by the FFT operations
and the Hadamard product. In order to analyze the per
iteration computation of the algorithm, we calculate the
numbers of additions and multiplications for each step in
Algorithm 1, and the result is shown in Table 1. As shown
in this table, the total number of the additions and multi-
plications is 21Ñ + 12N + 8Ñ log Ñ ≤ 33Ñ + 8Ñ log Ñ .
With the increase of Ñ , the total number approaches
8Ñ log Ñ , i.e., the computation of four FFT operations.
Thus, the computation complexity of each iteration is
about O(Ñ log Ñ). Like the other FFT-based algorithms
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Table 1 The numbers of additions and multiplications for each
step in Algorithm 1

Step Addition Multiplication

1 3N + 2Ñ log Ñ 2Ñ log Ñ

2 3Ñ Ñ

3 10Ñ 5Ñ

4 0 0

5 N + Ñ log Ñ Ñ log Ñ

6 2Ñ + Ñ log Ñ Ñ log Ñ

7 N 0

8 4N 3N

Total 15Ñ + 9N + 4Ñ log Ñ 6Ñ + 3N + 4Ñ log Ñ

(such as the CAN algorithm and the Accelerated-MISL
algorithm), the FCGA is also computationally efficient.
In fact, the per iteration computation is not the

only factor that affects the computational efficiency of
the algorithm. Another factor is the iteration num-
ber. For example, the per iteration computation of the
CAN (needs two FFT operations at each iteration)
and Accelerated-MISL (needs four FFT operations at each
iteration) algorithms are 15Ñ + 8Ñ log Ñ and 4Ñ log Ñ
[9, 10], respectively. Although the per iteration compu-
tation of the Accelerated-MISL is larger than that of the
CAN, the Accelerated-MISL is more efficient than the
CAN [10]. Compared to these two algorithms, the per iter-
ation computation of the FCGA is a little larger. But it
does not mean that the FCGA is slower than the CAN and
Accelerated-MISL algorithms. In the next section, we will
provide several experiments to validate the effectiveness
of the proposed algorithm. Actually, in our test, the FCGA
is more efficient due to fewer iterations.
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Fig. 1 Autocorrelation level of the sequences generated by PeCAN
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Fig. 2 Autocorrelation level of the sequences generated by ADMM

4 Simulation results and discussion
To illustrate the effectiveness of the proposed FCGA and
compare the performance with the existing ones, sev-
eral numerical experiments are presented in this section.
In the first two experiments, we carry out the design
of periodic and aperiodic sequences with low autocor-
relation sidelobes, respectively. Then, we consider the
problem of designing sequences with stopband prop-
erty in the third experiment. All the experiments are
performed on a PC with a 3.60-GHz i7-4790 CPU
and 8-GB RAM. The software environment is Mat-
lab 2012b. In the following experiments, if there is no
special declaration, all the algorithms are initialized by
the unimodular sequence x0 = {

ej2πφn
}N−1
n=0 , where

{φn}N−1
n=0 are independent random variables uniformly

distributed in [ 0, 1].
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Fig. 3 Autocorrelation level of the sequences generated by FCGA
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4.1 Periodic sequence design with low autocorrelation
sidelobes

First, we apply the proposed algorithm to generate
periodic sequences of length N = 128 with impulse-like
autocorrelation function (i.e., the case of λ = 0, Ñ = N)
and compare the performance with the classical PeCAN
[14] and the state-of-the-art ADMM [27] algorithms. Both
algorithms are efficient at generating periodic sequence
with impulse-like autocorrelation. The Matlab code of the
PeCANwas downloaded from the website [28] of the book
[2]. The stopping criterions of PeCAN and ADMM algo-
rithms are the same as the ones applied in [2] and [27],
and the FCGA is stopped when

∥∥xk+1 − xk
∥∥ ≤ 10−14.

In this experiment, we initialize the three algorithms by
1000 random unimodular sequences and then generate
1000 sequences for each algorithm. The normalized auto-
correlation level (NAL) of the sequences designed by the

PeCAN, ADMM, and FCGA are shown in Figs. 1, 2, and 3,
respectively, where the NAL is defined as

rnorm(k) = 20log10

∣∣∣∣
rk
r0

∣∣∣∣ , k = 1 − N , ...,N − 1, k �= 0.

(47)

It can be observed that in all these figures, there exist
two distinct ranges for the sidelobe distribution. This is
because that for all algorithms, the optimal sequence is a
local optimal solution.When the algorithms are initialized
by random sequences, the generated sequence may reach
global optimal (sequence with sidelobes that are less than
− 300 dB) or not. Comparing Figs. 1, 2, and 3, we can see
that the FCGA can generate the best sequence whose peak
sidelobe level (PSL) is about − 318 dB.
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Fig. 5 a–c The performance metrics of different algorithms initialized by random sequences
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Fig. 6 a–c The performance metrics of different algorithms initialized by Frank sequence

To fully compare the sidelobe performance, we calculate
the ISLs and PSLs of all 1000 sequences for each algorithm
and record the running time of each trial. The cumula-
tive distribution functions (CDF) of the ISLs, PSLs, and
running time are presented in Fig. 4. Since both ISL and
PSL are the criterions related to the autocorrelation, the
CDF of the ISLs and PSLs are similar as can be seen from
Fig. 4a, b. In Fig. 4b, we can see that about 55.7% of the PSL
of the FCGA sequences is less than − 285 dB, while the
PeCAN and ADMM algorithms are difficult to produce
sequences with such PSL. Compared with the PeCAN, the
overall sidelobe performance of the FCGA is better. The
only drawback of the proposed algorithm is that about
41.8% of the PSLs of the FCGA sequences are located in
[−100,−50] dB, while the ADMM has the proportion of
only 10.3%. However, as shown in Fig. 4c, the running

time of the FCGA is about an order of magnitude smaller
than that of the PeCAN and ADMM algorithms, which
indicates the former is more computationally efficient. It
is worth noting that since the ADMM is stopped after
2× 105 iterations, the running time of ADMM is basically
unchanged.

4.2 Aperiodic sequences design with low autocorrelation
sidelobes

In this subsection, we investigate the performance of
the proposed algorithm by designing aperiodic sequences
(i.e., the case of λ = 0, Ñ = 2N). To show the advan-
tage of the proposed algorithm, we compare the perfor-
mance with several algorithms, including the CAN [9],
the Accelerated-MISL [10], and the gradient descent (GD)
algorithm in [23]. Among the three contrast algorithms,
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Fig. 8 Autocorrelation level of the sequences generated by five
different algorithms

the CAN is the classical algorithm for this design problem,
and the other two algorithms are proposed recently. All
these algorithms are good at designing aperiodic sequence
with low sidelobes and also have high computational effi-
ciency. Since the ADMM is inferior to the CAN and
Accelerated-MISL algorithms in terms of the aperiodic
autocorrelation sidelobes [27], here we do not take the
ADMM into account. The stopping criterion is set to be∥∥xk+1 − xk

∥∥ ≤ 10−3 for all algorithms.
In this experiment, we compare the quality of the

designed sequences and the running times of these algo-
rithms. Generally, the sequence quality can be measured
by the merit factor (MF) (the large the better) which is
defined as
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Fig. 9 Spectral power of sequences generated by five different
algorithms

MF = |r0|2

2
N−1∑
k=1

|rk|2
= N2

2ISL
. (48)

First of all, we use the random sequences to initialize the
algorithms. To obtain the average values of the MF and
running time, we repeat the four algorithms 300 times for
each of the following lengths: N = 25, 26, ..., 213. Figure 5
shows the performance metrics (average merit factor,
average running time, and average iteration number) of
different algorithms. As we can see in Fig. 5a, the aver-
age merit factors of the sequences designed by the FCGA,
GD, and Accelerated-MISL are basically the same. This is
because that these three algorithms are all gradient-based
algorithms which are different from the CAN. Actually,
the MF of the sequences designed by the FCGA is a lit-
tle larger than that of the GD and Accelerated-MISL.
From Fig. 5b, it can be easily observed that the FCGA is
faster than the other three algorithms, especially when the
sequence length is very large. Although the FCGA costs a
little more computations than the CAN and Accelerated-
MISL algorithms at each iteration, the superiority of the
FCGA comes from the reduction of the iteration num-
ber. Figure 5c shows the average iteration numbers of the
four algorithms. From this figure, we can see that the
average iteration number of the FCGA is the least. This
may be because that (i) the FCGAminimizes the objective
function (ISL) directly, rather than a more loose objective
function which the Accelerated-MISL applied, and (ii) in
our test, the step size of the FCGA seems more accurate
than that of the GD in [23], which means that the FCGA
has faster convergence speed. Taking the merit factor and
the running time into account, the proposed FCGA is
better than the other three algorithms.
Next, we use the Frank sequence and Golomb sequence

to initialize the four algorithms, and the results are shown
in Figs. 6 and 7, respectively. It is well known that
both the Frank sequence and the Golomb sequence have
good autocorrelation property. Thus, after initializing by
these two kinds of sequences, the algorithms can produce
sequence with better sidelobe performance. In Figs. 6a
and 7a, theMF of different algorithms are almost the same
and far greater than the result in Fig. 5a. This indicates
that the Frank sequence and Golomb sequence can lead
to higher MF than the random sequence. Moreover, from
Figs. 6b and 7b, we can see that the FCGA is still an effi-
cient and competitive algorithm when initialized by the
Frank sequence or the Golomb sequence.

4.3 Sequence design with stopband property
To further verify the effectiveness of the FCGA, here we
consider the problem of designing aperiodic sequence
with low autocorrelation sidelobes and stopband property.
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Fig. 10 The cumulative distribution functions of the PSL, PSP, iteration number, and running time

The contrast algorithms are the SCAN [20], Spectral-
MISL [10], ADMM, and GD [23] respectively, where
the ADMM is the modified version for the synthe-
sis of aperiodic unimodular sequences. Assume that
the sequence length is N = 128, and the normal-
ized frequency stopband considered here is [ 0.04, 0.21] ∪
[ 0.23, 0.25]∪[ 0.28, 0.37]∪[ 0.39, 0.49]∪[ 0.52, 0.56]. In this
experiment, we choose

∥∥xk+1 − xk
∥∥ ≤ 10−3 as the stop-

ping criterion of the SCAN, Spectral-MISL, and FCGA
algorithms. And the weight coefficient λ in these three
algorithms are set to be 0.9, 104, 0.9, respectively. The
parameters of the ADMM are the same as those in [27].
For the GD algorithm, we set the maximum iteration
number T = 3000, αacf = 0.1, and αspec = 0.9.
Figures 8 and 9 give an example of the autocorrelation

level and spectrum power of the sequences designed by
the five algorithms. The PSL of the sequences designed
by the SCAN, Spectral-MISL, ADMM, GD, and FCGA
algorithms are − 14.01 dB, − 14.09 dB, − 15.64 dB,
− 13.80 dB, and − 15.81 dB, respectively. And the
corresponding peak stopband power (PSP) are− 16.12 dB,
− 15.71 dB, − 20.13 dB, − 17.77 dB, and − 20.73 dB.
Like the other four algorithms, the proposed algorithm
can suppress the autocorrelation sidelobes and the
spectral power in frequency stopbands simultaneously.

Next, to eliminate the randomness, we repeat the algo-
rithms 100 times and then record the PSL, PSP, itera-
tion number NI , and running time t. Figure 10 shows
the cumulative distribution functions of the four per-
formance parameters (PSL, PSP,NI , t). And the average
values of the parameters are provided in Table 2. From
Fig. 10 and Table 2, we can see that the PSL of these
algorithms are basically the same, while the PSP of the
ADMM and proposed algorithm (which have compara-
ble performance) are lower than that of the other three
algorithms. Moreover, the running time in Fig. 10 indi-
cates that the proposed algorithm is more computation-
ally efficient than the other four algorithms owing to the
fewer iterations.

Table 2 Comparison of the performance parameters between
the five algorithms

PSL (dB) PSP (dB) NI t(s)

SCAN − 14.20 − 14.96 1887 0.071

Spectral-MISL − 14.07 − 16.55 3953 0.084

ADMM − 14.14 − 20.14 50000 7.097

GD − 14.09 − 17.21 3000 0.646

FCGA − 14.13 − 20.78 269 0.028
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5 Conclusions
In this paper, we have proposed an efficient algorithm
named FCGA for designing periodic/aperiodic sequences
with low autocorrelation sidelobes and low frequency
stopband power. The FCGA algorithm is derived based
on the conjugate gradient algorithm which can guarantee
the monotonicity of the objective function. By changing
the number of FFT points, the design of periodic and
aperiodic sequences can be easily achieved. Since themain
step of the FCGA can be implemented by FFT operations
and Hadamard product, the proposed algorithm is com-
putationally efficient and can be used to design sequences
of large length. Several numerical experiments have been
provided to demonstrate the superiority of the proposed
algorithm.

Appendix 1: Derivation of phase gradient
By substituting (23) and (28) into (24), the gradient ∇φJT
can be rewritten as

∇φJT= 2
Ñ−1∑

p=0
wp
(
xHApx

)
2Re

(−jx∗ ◦ (Apx
))

= 4Re

⎛

⎝−jx∗ ◦
⎛

⎝
Ñ−1∑

p=0
apwp

(
xHapaHp x

)
aHp x

⎞

⎠

⎞

⎠

= 4Re

⎛

⎜⎜⎜⎝−jx∗ ◦

⎛

⎜⎜⎜⎝
[
a0, ..., aÑ−1

]

⎡

⎢⎢⎢⎣

w0
∣∣aH0 x

∣∣2aH0 x
...

wÑ−1

∣∣∣aHÑ−1x
∣∣∣
2
aHÑ−1x

⎤

⎥⎥⎥⎦

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎠ .

(49)

Defining A = [a0, ..., aÑ−1
]
, then we have

⎡

⎢⎢⎢⎢⎣

w0
∣∣∣aH0 x

∣∣∣
2
aH0 x

...

wÑ−1

∣∣∣aHÑ−1
x
∣∣∣
2
aH
Ñ−1

x

⎤

⎥⎥⎥⎥⎦
=

⎡
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(
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(50)

where function | · |2 is applied element-wise to the vector.
According to (49) and (50), ∇φJT can be expressed as

∇φJT = 4Re
(
−jx∗ ◦

(
A
(
w ◦ ∣∣AHx

∣∣2 ◦ (AHx
))))

.

(51)

From the expression of A, we can see that the Ñ × N
matrix AH is composed of the first N columns of Ñ × Ñ
DFT matrix FÑ , i.e., A

H = F:,1:N (to facilitate the deriva-
tion, here we ignore the subscript of FÑ ). By substituting
F for A, (51) can be rewritten as

∇φJT =4ÑRe
(
−jx∗◦

(
1
Ñ
FH:,1:N

(
w ◦|F:,1:Nx|2 ◦(F:,1:Nx)

)))
.

(52)

Therefore, the phase gradient (52) can be implemented
by FFT operations. Let

y = F−1
Ñ

(
w ◦ ∣∣FÑ (x)

∣∣2 ◦ FÑ (x)
)
, (53)

then the phase gradient can be further simplified as

∇φJT = 4ÑRe
(−jx∗ ◦ y1:N

)
, (54)

where y1:N denotes the first N elements of y.
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