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Abstract

We consider the problem of distributed representation of signals in sensor networks, where sensors exchange
quantized information with their neighbors. The signals of interest are assumed to have a sparse representation with
spectral graph dictionaries. We further model the spectral dictionaries as polynomials of the graph Laplacian operator.
We first study the impact of the quantization noise in the distributed computation of matrix-vector multiplications,
such as the forward and the adjoint operator, which are used in many classical signal processing tasks. It occurs that
the performance is clearly penalized by the quantization noise, whose impact directly depends on the structure of the
spectral graph dictionary. Next, we focus on the problem of sparse signal representation and propose an algorithm to
learn polynomial graph dictionaries that are both adapted to the graph signals of interest and robust to quantization
noise. Simulation results show that the learned dictionaries are efficient in processing graph signals in sensor networks
where bandwidth constraints impose quantization of the messages exchanged in the network.

Keywords: Distributed processing, Graph signal processing, Quantization, Polynomial dictionaries, Sparse
approximation

1 Introduction
Wireless sensor networks have been widely used for
applications such as surveillance, weather monitoring, or
automatic control, that often involve distributed signal
processing methods. Such methods are typically designed
by assuming local inter-sensor communication, i.e., com-
munication between neighbor sensors, in order to achieve
a global objective over the network. While in theory
the performance depends mainly on the sensor network
topology, it is largely connected to the power or commu-
nication constraints and limited precision operations in
practical systems. In general, the information exchanged
by the sensors has to be quantized prior to transmis-
sion due to limited communication bandwidth and limited
computational power. This quantization process may lead
to significant performance degradation, if the system is
not designed to handle it properly.
In distributed settings, the set of sensors is generally

represented by the vertices of a graph, whose edge weights
capture the pairwise relationships between the vertices.
A graph signal is defined as a function that assigns a real
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value to each vertex, which corresponds to the quantity
measured by the sensor, such as the current tempera-
ture or the road traffic level at a particular time instance.
Graph dictionary representations are certainly powerful
and promising tools for representing graph signals [1]. In
particular, when graph signals mostly capture the effect of
a few processes on a graph topology, the graph signals can
be modeled as the linear combinations of a small number
of constitutive components in a spectral graph dictionary
[2, 3]. Such dictionaries, which can also be seen as a set
of spectral filters on graphs, incorporate the intrinsic geo-
metric structure of the irregular graph domain into the
atoms and are able to capture different processes evolv-
ing on the graph. Moreover, they can exhibit a polynomial
structure [3] or can be approximated by polynomials of
a graph matrix [4, 5] (e.g., spectral graph wavelets). As
such, they can be implemented distributively and there-
fore represent ideal operators for graph signal processing
in sensor networks1.
The distributed processing of graph signals in sensor

networks from a graph signal representation perspec-
tive has received a considerable amount of attention
recently. The works in [4, 5] study how a general class
of linear graph operators can be approximated by shifted
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Chebyshev polynomials and can eventually be applied to
distributed processing tasks such as smoothing, denois-
ing, and semi-supervised classification. A distributed least
square reconstruction algorithm of bandlimited graph sig-
nals has been proposed in [6], and a distributed inpainting
algorithm for smooth graph signals was introduced in
[7]. The finite-time behavior of distributed algorithms
on arbitrary graphs is studied in [8], showing that any
arbitrary initial condition after many distributed linear
iterations can be forced to lie on a specific subspace.
More recently, distributed strategies for adaptive learning
of bandlimited graph signals from a probabilistic sam-
pling point of view were developed in [9]. The works of
[10–12] study the design of graph filters, i.e., distributed
linear operators for in the context of graph signal process-
ing, with [11, 12] focusing specifically on ARMA and IIR
filters, respectively. However, neither of these works takes
into consideration the effect of the quantization noise
that is of significant importance in realistic sensor net-
work scenarios with rate and communication constraints.
Limited attention to the effect of quantization is given in
[13, 14], in the context of linear prediction with graph fil-
ters. However, the focus of those works is the design of
generic graph filters without taking into account the effect
of quantization in the design itself. The effect of quantiza-
tion in the design of distributed representations for graph
signals has been studied in our preliminary work [15], and
more recently in [16]. The latter however focuses on the
approximation of the frequency response of known graph
FIR filters with filters that are robust to quantization noise,
rather than the distributed processing of the graph signals.
In this paper, we build on our previous work [15], and

we study the effect of quantization in distributed graph
signal representations. In particular, we first derive the
quantization error that appears in the distributed com-
putation of different operators defined on graph spectral
dictionaries with polynomial structures. Our analysis is
quite generic and can be applied to every graph spectral
dictionary that can be approximated by polynomials of
the graph Laplacian (e.g., spectral graph wavelets approx-
imated with Chebyshev polynomials) [4, 5]. We then
consider the problem of sparse representation of graph
signals that is implemented in a distributed way with
an iterative soft thresholding algorithm. We analyze the
convergence of the algorithm and show how it depends
on the quantization noise, whose influence is itself gov-
erned by the characteristics of the dictionary. We finally
propose an algorithm for learning polynomial graph dic-
tionaries that permits to control the robustness of dis-
tributed algorithms to quantization noise. Experimental
results illustrate the dictionary design trade-offs between
accurate signal representation and robustness to quanti-
zation errors. They show in particular that it is necessary
to sacrifice on signal approximation performance for

ensuring proper convergence of distributed algorithms
in low-bit rate settings. To the best of our knowledge,
the work done in this paper is definitely one of the first
steps toward designing quantization-aware dictionaries
for distributed signal processing.
The rest of the paper is organized as follows. In

Section 2, we model the sensor network with a graph,
and we recall the use of polynomial graph dictionaries
for distributed processing of graph signals. We study the
quantization error that appears in the distributed compu-
tations with polynomial graph dictionaries in Section 3,
and in Section 4, we analyze the specific case of the sparse
approximation of graph signals. In Section 5, we propose
an algorithm for learning polynomial graph dictionaries
that are robust to quantization noise. Finally, in Section 6,
we evaluate the performance of our algorithm in both
synthetic and real world signals.

2 Polynomial graph dictionaries for distributed
signal representation

For the sake of completeness, we recall some of the
basic concepts of signal representation on graphs, and we
introduce notations that are needed for the rest of this
paper. First, we model the sensor network topology as a
weighted graph, whose connectivity defines the commu-
nication channels. Moreover, we recall briefly the sparse
signal model that is based on polynomial dictionaries of
the graph Laplacian. Such dictionaries lead to efficient
distributed computations, as illustrated in what follows.

2.1 Notation
Throughout the paper, lowercase normal (e.g., a), low-
ercase bold (e.g., x), and uppercase bold (e.g., D) letters
denote scalars, vectors, and matrices, respectively. Unless
otherwise stated, calligraphic capital letters (e.g., V) rep-
resent sets.

2.2 Distributed sensor network topology
We consider a sensor network topology that is modeled
as a weighted, undirected graph G = (V , E ,W), where
V ∈ {1, . . . ,N} represents the set of sensor nodes and
N = |V| denotes the number of nodes. An edge denoted
by an unordered pair {i, j} ∈ E represents a communica-
tion link between two sensor nodes i and j. Moreover, a
positive weightWij > 0 is assigned to each edge {i, j} ∈ E .
D is a diagonal degree matrix that contains as elements
the sum of each row of the matrix W. The set of neigh-
bors for node i is finally denoted asNi = {j|{i, j} ∈ E}. The
normalized graph Laplacian operator is finally defined as
L = I − D− 1

2WD− 1
2 . We denote its eigenvectors by χ =[

χ1,χ2, ...,χN
]
, and the spectrum of the eigenvalues by:

� := {
0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λ(N−1) ≤ 2

}
.



Thanou and Frossard EURASIP Journal on Advances in Signal Processing         (2018) 2018:67 Page 3 of 17

The eigenvalues of the graph Laplacian provide a notion
of frequency on the graph and the corresponding eigen-
vectors define the graph Fourier transform [1]. In par-
ticular, for any function y defined on the vertices of the
graph, the graph Fourier transform ŷ at frequency λ� is
defined as:

ŷ (λ�) = 〈y,χ�〉 =
N∑

n=1
y(n)χ∗

�(n),

while the inverse graph Fourier transform is obtained by
projecting back in the (orthonormal) graph Fourier basis.
We note that the underlying assumption of this work is

that the structure of the signal is captured by the com-
munication graph. This assumption is generally true in
sensor network applications, where the communication
is restricted to neighboring sensors. As an example, the
transportation graph is expected to have a strong influ-
ence on the traffic sensor measurements. The communi-
cation graph in that case can be considered as a proxy for
the transportation graph.

2.3 Sparse graph signal model
We model the sensor signals as sparse linear combina-
tions of (overlapping) graph patterns ĝ(·), positioned at
different vertices [3]. Each pattern defined in the graph
spectral domain captures the form of the graph signal in
the neighborhood of a vertex, and it can be considered as
a function whose values depend on the local connectivity
around that vertex. We represent the translation of such
a pattern to different vertices of the graph [17] through a
graph operator defined as:

ĝ(L) = χ ĝ(�)χT . (1)

The generating kernel ĝ(·), which is a function of the
eigenvalues of the Laplacian, characterizes the graph pat-
tern in the spectral domain. One can design graph oper-
ators consisting of localized atoms in the vertex domain
by taking the kernel ĝ(·) in (1) to be a smooth polynomial
function of degree K [3, 17]:

ĝ(λ�) =
K∑

k=0
αkλ

k
� , � = 0, ...,N − 1. (2)

A graph dictionary is then defined as a concatenation of
subdictionaries in the form D = [

ĝ1(L), ĝ2(L), ..., ĝS(L)
]
,

where each subdictionary s is defined as:

ĝs(L) = χ

( K∑

k=0
αsk�

k
)

χT =
K∑

k=0
αskLk . (3)

A subdictionary ĝ(L) corresponds to a matrix, each col-
umn of which is an atom positioned at a different vertex
of the graph. For the sake of simplicity, we assume that

all the subdictionaries are of the same order K. How-
ever, all the results presented in the manuscript hold for
subdictionaries with different polynomial degrees.
Finally, a graph signal y can be expressed as a linear com-

bination of a set of atoms generated from different graph
kernels

{
ĝs(·)

}
s=1,2,...,S,

y =
S∑

s=1
ĝs(L)xs =

S∑

s=1
Dsxs,

where we have set Ds = ĝs(L) ∈ R
N×N , and xs ∈ R

N

are the coefficients in the linear combination. One can
then learn the polynomial coefficients numerically from
a set of training signals that live on the graph as shown
in [3] in order to adapt the dictionary to specific classes
of signals. Another example of the dictionary D is the
spectral graph wavelet dictionary [17] with pre-defined
spline coefficients, or more generally the union of graph
Fourier multipliers that can be efficiently approximated
with Chebyshev polynomials [5].

2.4 Distributed computation of the graph operators
An important benefit of polynomial graph dictionaries
described above is the fact that they can be efficiently
stored and implemented in distributed signal process-
ing tasks. Each polynomial dictionary can be constructed
locally, i.e., by exchanging only information between
nodes that are connected by an edge on the graph. For the
sake of completeness, we recall here the distributed com-
putation of some of these operators. More details can be
found in [4].
The distributed computation of DTy requires first the

computation of the different powers of the Laplacian
matrix, i.e.,

{
L0y,L1y,L2y, ...,LKy

}
, in a distributed way.

The latter can be done efficiently by successive multipli-
cations of the matrix L with the signal y over K iterations.
We introduce a new variable zk ∈ R

N in the computation
of DTy, which represents the value transmitted during
the kth iteration, with z0 = y. Initially, each node trans-
mits its component of z0 only to its one-hop neighbors on
the graph. After receiving the values from its neighbors, it
updates its component as a linear combination of its own
value in z0 and the values received from its neighbors as
follows:

z1 = Lz0. (4)

At the next iteration, the values of z1 are exchanged
locally in the network. The procedure is repeated over
K iterations, and the exchanged messages are computed
based on the previous recursive update relationship. After
knowing {z0(n), z1(n), ..., zK (n)}, each node n can com-
pute the nth component of Dsy by a simple linear com-
bination with the polynomial coefficients i.e., (Dsy)(n) =
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Fig. 1 Distributed computation ofDsy in a sensor network. Sensor n exchanges messages with its one-hop neighbors for K iterations. After each
iteration, the received messages are filtered with weights defined by the graph Laplacian, i.e., zk(n) = (Lzk−1)(n), and are transmitted locally in the
network. (Dsy)(n) is computed as a linear combination of the messages exchanged during the K iterations

∑K
k=1 αskzk(n). The same can be done for the differ-

ent subdictionaries and their polynomial coefficients. An
illustration of the process is shown in Fig. 1. The main
steps are given in Algorithm 1.

Algorithm 1 Distributed computation ofDTy
1: Input at node n: y(n),Ln,:, α =[α1; ...;αS]
2: Output at node n: (DTy)

(
(s − 1)N + n

)
for all s =

{1, ..., S}
3: Transmit z0(n) = y(n) to all neighbors inNn
4: Receive z0(m) = y(m) from all neighbors inNn
5: for k = 2, ...,K do:
6: Transmit zk−1(n) = (LTzk−2)(n) to all the
neighbors

7: Receive zk−1(m) = (LTzk−2)(m) from all the
neighborsm ∈ Nn.

8: end for
9: Compute zK (n) = (LzK−1)(n)

10: for s = {1, ..., S} do
11: Compute (DTy)

(
(s − 1)N + n

) = ∑K
k=0 αkszk(n)

12: end for

Following the same reasoning, the forward operatorDx
can be computed in a distributed way. We recall that
Dx = ∑S

s=1Dsxs, where x = (x1, x2, ... , xs) ∈ R
SN is a

vector with the sparse codes xs corresponding to subdic-
tionary Ds. Each of the components in the summation is
computed by sending iteratively the powers of the Lapla-
cian as follows. For each of the subdictionaries, we define
a new variable zs,0 = xs. The transmitted value of this
variable by sensor n at iteration k is:

zs,k(n) = (Lzs,k−1)(n).

Each sensor can then compute its component in Dx,
which can be expressed as follows in a vector form:

Dx =
S∑

s=1
Dsxs =

S∑

s=1

K∑

k=0
αskzs,k .

The main steps of the distributed algorithm for the com-
putation of Dx are shown in Algorithm 2. Finally, the
operator DTDx can be implemented in distributed set-
tings by first computingDx and thenDTDx by following
Algorithms 2 and 1, respectively.

Algorithm 2 Distributed computation ofDx
1: Input at node n: x

(
(s − 1)N + n

)
, for all s =

{1, ..., S},Ln,:, α =[α1; ...;αS]
2: Output at node n: (Dx)(n)

3: Set zs,0(n) = x
(
(s − 1)N + m

)
for all s = {1, .., S}.

4: for k = 2, ...,K do:
5: Transmit zs,k−1(n) = (Lzs,k−2)(n) to all the neigh-
bors, for all s = {1, 2, ..., S}.

6: Receive zs,k−1(m) from all m ∈ Nn, for all s =
{1, 2, ..., S}.

7: end for
8: Compute zs,K (n) = (Lzs,K−1)(n), for all s = {1, ..., S}.
9: Compute and output (Dx)(n)=∑S

s=1
∑K

k=0 αkszs,k(n).

Such operators are particularly useful in the distributed
implementation of signal processing tasks related to learn-
ing or regularization on graphs, such as denoising [4],
semi-supervised learning [18], signal reconstruction [3],
interpolation and reconstruction of bandlimited graph
signals [19]. These types of applications typically require
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the computation of quantities such as the forward applica-
tion of the dictionary and its adjoint to be performed only
by local exchange of information.

3 Distributed processing with quantization
We now study the effect of quantization in distributed sig-
nal processing with polynomial dictionaries by modeling
the propagation of the quantization error in the different
dictionary-based operators.
Given a graph signal y , and the representation of the

signal in a polynomial graph dictionary D, i.e., y = Dx,
we study the computation of three basic operators, i.e.,
the forward operator Dx, the adjoint operator DTy, and
the operatorDTDx in distributed settings when the sen-
sors exchange quantized messages. Although our main
focus is on graph dictionaries that are given directly in a
polynomial form of the graph Laplacian operator, we note
that the following results hold for every graph dictionary
that can be approximated by a polynomial of any graph
connectivity matrix (e.g., graph shift operator, adjacency
matrix). In what follows, we assume that at every iteration,
each sensor measurement is quantized with a uniform
quantizer whose parameters are defined by the initial sen-
sors states. In particular, we define a finite interval of size
�S = S(max)

0 − S(min)
0 . The parameters S(min)

0 and S(max)
0

represent the minimum and the maximum values of the
interval, respectively, that are defined a priori. In the case
of a q-bit uniform quantizer, the parameter � = �S/2q
is the quantization step-size, which drives the error of the
quantizer.

3.1 Distributed computation ofDTywith quantization
As we already saw in Section 2.4, the distributed
computation of DTy requires first the computation
of the different powers of the Laplacian matrix, i.e.,
{L0y,L1y,L2y, ...,LKy}, in a distributed way. The latter can
be done efficiently by successive multiplications of the
matrix L with the signal y over K iterations, which as we
will see next contains some noise that is accumulated over
the iterations when the messages are quantized. Recall
that the variable zk in the computation of DTy captures
the sensors’ values at the kth iteration, with z0 = y. Before
the sensors exchange information, the value of this vari-
able at sensor n and iteration k, i.e., zk(n), is now quantized
such that:

z̃k(n) = zk(n) + εk(n), (5)

where εk(n) is the quantization error in k, and z̃k(n) is the
quantized value that the sensor n sends to its neighbors.
In particular, in the case of a q-bit uniform quantizer, the
quantized values can be written as:

z̃k(n) =
⌊
zk(n)−z(min)

0
�

⌋
· � + �

2 + z(min)
0 .

Then, each node updates the local value of the vari-
able zk as a linear combination of its own quantized value
and the quantized values received from its neighbors z̃k(i)
with i ∈ Nn, based on the recursive update relationship in
a vectorized form:

zk+1 = L(zk + εk). (6)

By taking into consideration the quantization error from
the previous iterations, Eq. (6) can be re-written as:

zk+1 = Lk+1z0 +
k∑

l=0
Lk+1−lεl. (7)

We observe that the quantization process involved in
the transmission of the different powers of the Laplacian
induces some quantization noise that is accumulated over
the K iterations and is represented by the second term of
Eq. (7).
We now compute D̃T

s y, the quantized vector corre-
sponding toDT

s y, by applying the polynomial coefficients
on the values generated by the sequence {z0, z1, ..., zK }
given by Eq. (7). It reads as:

D̃T
s y =

K∑

k=0
αskzk =

K∑

k=0
αskLky +

K∑

l=1

⎡

⎣
l−1∑

j=1
αslLl−jεj

⎤

⎦

=
K∑

k=0
αskLky +

K−1∑

l=0

⎡

⎣
K−l∑

j=1
αs(l+j)Lj

⎤

⎦ εl (8)

= DT
s y + E

(
DT

s y
)
,

where

E
(
DT

s y
)

=
K−1∑

l=0

⎡

⎣
K−l∑

j=1
αs(l+j)Lj

⎤

⎦ εl,

is the overall accumulated quantization noise that occurs
in the distributed computation ofDT

s y. Finally, the global

operation D̃Ty =
{
D̃T

s y
}S

s=1
in the presence of quantiza-

tion can be written as:

D̃Ty = DTy + E
(
DTy

)
,

where E
(
DTy

)
=

{
E
(
DT

s y
)}S

s=1
is an error vector in

R
SN that contains as entries the error obtained by applying

the S different sets of polynomial coefficients to the accu-
mulated quantization noise. The distributed algorithm for
computing D̃Ty is summarized in Algorithm 3.

3.2 Distributed computation ofDxwith quantization
We recall that Dx = ∑S

s=1Dsxs, where x =
(x1, x2, ... , xs) ∈ R

SN is a vector containing as entries
the sparse codes xs corresponding to subdictionary Ds.
Each of the components in the summation is computed
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Algorithm 3 Distributed computation ofDTy with
quantization
1: Input at node n: y(n),Ln,:, α =[α1; ...;αS], quantiza-
tion stepsize �

2: Output at node n:
(
D̃Ty

) (
(s − 1)N + n

)
for all s =

{1, ..., S}
3: Quantize and transmit ỹ(n) = y(n) + ε0(n) to all m ∈
Nn.

4: Receive ỹ(m) from neighbors inNn.
5: Set z0(n) = y(n), z̃0(n) = ỹ(n).
6: for k = 2, ...,K do:
7: Compute zk−1(n) = (

LT z̃k−2
)
(n).

8: Quantize and transmit z̃k−1(n) = zk−1(n)+εk−1(n)

to all the neighbors.
9: Receive z̃k−1(m) from all the neighborsm ∈ Nn.
10: end for
11: Compute zK (n) = (Lz̃k−1)(n).
12: for s = {1, ..., S} do
13: Compute (D̃Ty)

(
(s − 1)N + n

) = ∑K
k=0 αkszk(n).

14: end for

by sending iteratively the powers of the Laplacian as
described in Section 2.4. The quantization effect through
the iterative process is significant. To elaborate on that,
for each of the subdictionaries, we define a new variable
zs,0 = xs. The quantized value of this variable at sensor n
and iteration k that sensor n sends to its neighbors reads:

z̃s,k(n) = zs,k(n) + ζ s,k(n), (9)

where ζ s,k(n) is the quantization error, and zs,k(n) is
the value of the sensor before quantization that is
computed as:

zs,k(n) = (
Lz̃s,k−1

)
(n).

By taking into consideration the quantization error com-
ponents from the previous iterations, the values of the
sensors at iteration k + 1 are defined as:

zs,k+1 = Lk+1zs,0 +
k∑

l=0
Lk+1−lζ s,l. (10)

Using Eq. (10), we obtain the operator Dx with
quantization:

D̃x =
S∑

s=1
Dsxs =

S∑

s=1

K∑

k=0
αskzs,k

=
S∑

s=1

⎧
⎨

⎩

K∑

k=0
αskLkxs +

K−1∑

l=0

⎡

⎣
K−l∑

j=1
αs(l+j)Lj

⎤

⎦ ζ s,l

⎫
⎬

⎭

=
S∑

s=1
[Dsxs + E (Dsxs)] ,

(11)

where the accumulated quantization noise corresponding
to subdictionaryDs is defined as:

E (Dsxs) =
K−1∑

l=0

⎡

⎣
K−l∑

j=1
αs(l+j)Lj

⎤

⎦ ζ s,l.

The main steps of the distributed algorithm for the com-
putation of Dx with quantized messages are shown in
Algorithm 4.

Algorithm 4 Distributed computation ofDx with
quantization
1: Input at node n: x

(
(s − 1)N + n

)
for all s =

{1, ..., S},Ln,:, α =[α1; ...;αS], quantization stepsize �

2: Output at node n: (D̃x)(n)

3: Quantize and transmit x̃
(
(s − 1)N + n

) =
x
(
(s − 1)N + n

) + ζ s,l(n), for s = {1, ..., S}, to all
m ∈ Nn.

4: Receive x̃
(
(s − 1)N + n

)
, for all s = {1, ..., S}, fromm ∈

Nn.
5: Set zs,0(n) = x̃

(
(s − 1)N + n

)
, for all s = {1, ..., S}.

6: for k = 2, ...,K do:
7: Compute zs,k−1(n) = (LT z̃s,k−2)(n), for all s =

{1, 2, ..., S}.
8: Quantize and transmit z̃s,k−1(n) = zs,k−1(n) +

ζ s,k−1(n) to all the neighbors, for all
s = {1, 2, ..., S}.

9: Receive z̃s,k−1(m) from all m ∈ Nn, for all s =
{1, 2, ..., S}.

10: end for
11: Compute zs,K (n) = (Lz̃s,K−1)(n), for all s = {1, ..., S}.
12: Compute and output (D̃x)(n)=∑S

s=1
∑K

k=0 αkszs,k(n).

3.3 Distributed computation ofDTDxwith quantization
Finally, we illustrate the distributed computation of
DTDx when sensor messages are quantized. It follows
the same reasoning as the one of the previous two oper-
ators. In particular, we assume that the operator Dx has
already been sent and the corresponding entries of D̃x are
known to the sensors. Thus, the new variable in this case
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is defined as z0 = D̃x. The sensors’ values at iteration k+1
are:

zk+1 = Lk+1z0 +
k∑

l=0
Lk+1−lξ l, (12)

where ξ l is the quantization error vector ξ l =
(ξ l(1), ξ l(2), ..., ξ l(N)) that occurs after transmitting z̃l. By
combining Eqs. (8), (11), and (12), for each subdictionary
Ds, we can computeDT

s Dx with quantization as follows:

˜DT
s Dx =

K∑

k=0
αskLkzk

=
K∑

k=0
αskLkz0 +

K∑

l=1

⎡

⎣
l−1∑

j=1
αslLl−jξ j

⎤

⎦

=
K∑

k=0
αskLkD̃x +

K−1∑

l=0

⎡

⎣
K−l∑

j=1
αs(l+j)Lj

⎤

⎦ ξ l

=
K∑

k=0
αskLk

S∑

s′=1

{ K∑

k′=0
αs′k′Lk

′
xs′

+
K−1∑

l′=0

⎡

⎣
K−l′∑

j′=1
αs′(l′+j′)Lj

′
⎤

⎦ ζ s′,l′

⎫
⎬

⎭

+
K−1∑

l=0

[ K−l∑

j=1
αs(l+j)Lj

]
ξ l

= DT
s Dx +

K∑

k=0
αskLkE(Dx) + E

(
DT

s Dx
)
,

(13)

where we have set

E(Dx) =
S∑

s′=1

K−1∑

l′=0

⎡

⎣
K−l′∑

j′=1
αs′(l′+j′)Lj

′
⎤

⎦ ζ s′,l′ ,

E
(
DT

s Dx
)

=
K−1∑

l=0

⎡

⎣
K−l∑

j=1
αs(l+j)Lj

⎤

⎦ ξ l.

Finally, the operation ˜DTDx =
{
˜DT
1 Dx

}S

s=1
can be

written as:
˜DTDx = DTDx + DTE(Dx) + E

(
DTDx

)
,

where E
(
DTDx

)
=

{
E
(
DT

s Dx
)}S

s=1
. Again, we

observe that there is an error accumulated from the com-
putation of both steps Dx and DTDx that depends on
the quantization noise and the structure of the dictionary
through the coefficients {αsk}S,Ks=1,k=0. The main steps of
the algorithm are shown in Algorithm 5.

Algorithm 5 Distributed computation of DTDx with
quantization
1: Input at node n: (D̃x)(n),Ln,:, α =[α1; ...;αS], quanti-
zation stepsize �

2: Output at node n: ( ˜DTDx)
(
(s − 1)N + n

)
for all s =

{1, .., S}
3: Set z0(n) = D̃x(n).
4: Quantize and transmit z̃0(n) = z0(n) + ξ0(n) to all
m ∈ Nn.

5: Receive z̃0(m) from neighbors inNn.
6: for k = 2, ...,K do:
7: Compute zk−1(n) = (

LT z̃k−2
)
(n).

8: Quantize and transmit z̃k−1(n) = zk−1(n)+ξ k−1(n)

to all the neighbors.
9: Receive z̃k−1(m) from all the neighborsm ∈ Nn.
10: end for
11: Compute zK (n) = (

Lz̃k−1
)
(n).

12: for s = {1, .., S} do
13: Compute (

˜DTDx)
(
(s−1)N+n

) = ∑K
k=0 αkszk(n).

14: end for

Finally, we note that while the above analysis of the
quantization noise is based on the normalized graph
Laplacian matrix, it holds for any other graph matrix
that captures the communication pattern of the network,
such as the combinatorial Laplacian, and the adjacency
matrix. In the next section, we give an illustrative exam-
ple of the use of such operators in the distributed sparse
representation of graph signals.

4 Distributed sparse graph signal regularization
with quantization

In the following, we use the above operators for the dis-
tributed computation of a sparse representation of a signal
y with respect to a dictionary D, under communication
constraints. The sparse representation in a dictionary D
can be found by solving a LASSO minimization problem
[20] as shown next.

4.1 Illustrative application of distributed graph signal
processing

We consider the distributed processing scenario where
each node n of the graph computes the sparse decom-
position in a polynomial dictionary by solving a sparse
regularization problem of the form:

x∗ = argmin
x

||y − Dx||22 + κ‖x‖1, (14)

where κ is a parameter that controls the sparsity level.
The above problem is also called LASSO [21] or basis pur-
suit denoising [22] and is used to perform denoising with
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sparse prior. We thus start with the underlying assump-
tion that the signal y is sparse in a polynomial graph
dictionary, whose coefficients are known to all the sen-
sors. Moreover, node n knows its own component of a
signal y ∈ R

N (i.e., y(n)) and the nth row of the corre-
sponding Laplacianmatrix Ln,:. The above problem can be
solved by an iterative soft thresholding algorithm (ISTA)
[23], in which the update of the estimated coefficients is
given by:

x(t) = Sκτ

(
x(t−1) + 2τDT

(
y − Dx(t−1)

))
, t = 1, 2, ...

(15)

where τ is the gradient stepsize, and Sκτ is the soft
thresholding operator:

Sκτ (z) =
{
0, if |z| ≤ κτ

z − sgn(z)κτ , otherwise,

which corresponds to the proximal operator of the
κ‖x‖1 function. Thus, the whole algorithm is a particular
instance of the general family of proximal gradient meth-
ods [24]. By combining the distributed computation of the
operationsDTy,DTDx, andDx, as described in the pre-
vious subsection, each iteration of ISTA can be solved in
a distributed way [4]. In particular, in the first iteration,
each node n must compute (Dsy)(n) for all the subdic-
tionaries, via Algorithm 1. In each iteration (t+1), it must
compute first (Dx(t))(n), and sequentially applyDTDx(t)

via Algorithms 2 and 1, respectively. The solution of (14)
is found after a stopping criteria is satisfied (e.g., a fixed
number of iterations is executed). The estimate of the sig-
nal at each node is then given by computing ŷ = Dx∗ via
Algorithm 2.
The computational complexity for each iteration of

ISTA depends mainly on the matrix operations that are
involved in the process, i.e., the dictionary forward and
adjoint operators. We briefly discuss these steps here. We
recall thatDTy = ∑S

s=1
∑K

k=0 αskLky. The computational
cost of the iterative sparse matrix-vector multiplication
required to compute

{
Lky

}
k=0,2,...,K is O(K |E |), where |E |

is the cardinality of the edge set of the graph. There-
fore, the total computational cost to compute DTy is
O(K |E | +NSK). We further note that, by following a pro-
cedure similar to the one in [17], the term DDTy can
also be computed in a fast way by exploiting the fact that
DDTy = ∑S

s=1 ĝs
2(L)y. This leads to a polynomial of

degree K ′ = 2K that can be efficiently computed. Simi-
lar reasoning can be followed to compute the complexity
of the other operations involved in the process. Since S,K
are relatively small, the complexity of ISTA at each itera-
tion is mainly dominated by the size of the graph, and the
number of edges.

4.2 Performance of ISTA under quantization constraints
The first step of ISTA requires the computation of the gra-
dient of the fitting term of Eq. (14), i.e., ‖y − Dx‖2, which
implies the computation of the operations DTy, DTDx
in each iteration of the algorithm. When the messages
exchanged by the sensors are quantized, the quantization
noise induced by each of these operations introduces an
error in the gradient, such that:

x̃(t) = Sκτ

(
x(t−1) + 2τ

(
DTy − DTDx(t−1) + e(t−1)

))
,

(16)

where e(t−1) is the total gradient error, which according to
Eqs. (8), (11), and (13) can be expressed as:

e(t−1) =E(t−1)
(
DTy

)
−DTE(t−1)(Dx)−E(t−1)

(
DTDx

)
.

The convergence of the sparse graph signal representa-
tion by the ISTA algorithm then depends on the sequence
of errors over the iterations. It can be characterized by the
following result from [25] that applies to the general family
of proximal gradient methods such as ISTA.

Theorem 1 ([25]) Let f be a differentiable with Lipschitz
continuous gradient function on some compact set with
Lipschitz constant L, g a lower semi-continuous and con-
vex function, and {τt} a sequence of gradient stepsizes that
satisfy the conditions:

0 < β ≤ τt ≤ min(1, 2/L − β),with 0 < β <
1
L
.

Then, the sequence generated by the iterates

x(t) = proxτt−1g

(
x(t−1) − τt−1∇f

(
x(t−1)

)
+ τt−1e(t−1)

)

(17)

converges to a stationary point x∗ if, given a fixed τ̄ , the
following condition on the gradient error holds:

∀τ ∈ (0, τ̄ ] , τ‖e‖ ≤ ε̄, for some ε̄ ≥ 0.

The above result indicates that the proximal gradient
method converges to an approximate stationary point if
the norm of the gradient error is uniformly bounded.
Furthermore, if the number of perturbed gradient com-
putations is finite, or if the gradient error norm converges
toward 0, then the sequence limit point is the exact solu-
tion of the initial problem. Therefore, we have to make
sure that the error in the gradient is bounded so that the
distributed sparse graph signal representation algorithm
converges.
Assume that we use a uniform quantizer in our dis-

tributed signal processing algorithm which is widely used
and simple to implement. Let us further assume that our
quantizer has a quantization stepsize � for the magnitude
and one bit for the sign. With such a quantizer, an upper
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bound on the norm of the error is given by the following
lemma.

Lemma 1 Let e(t−1) be the error vector due to quan-
tization in the computation of the gradient at iteration
t − 1 as defined in Eq. (16) and � the quantization step-
size of a uniform quantizer. Then, the quantization error is
bounded as:

∥
∥
∥e(t−1)

∥
∥
∥ ≤ √

N
�

2

S∑

s=1

⎧
⎨

⎩
2
K−1∑

l=0

∥
∥∥
∥
∥
∥

K−l∑

j=1
αs(l+j)Lj

∥
∥∥
∥
∥
∥

+c
S∑

s′=1

K−1∑

l′=0

∥
∥
∥∥
∥
∥

K−l′∑

j′=1
αs′(l′+j′)Lj

′
∥
∥
∥∥
∥
∥

⎫
⎬

⎭
.

(18)

The proof of Lemma 1 is provided in the
“Appendix” section.
The above inequality shows that the error at each

iteration of the gradient is upper bounded by the
quantization stepsize, multiplied by a matrix polyno-
mial of the graph Laplacian L. The quantization errors
depend on the number of bits, i.e., the rate con-
straints on data exchanged in the sensor network. For
a uniform quantizer, the magnitude of the quantization
error is upper bounded by the quantization stepsize.
In particular, if the norm

∥∥
∥
∑K−l

j=1 αs(l+j)Lj
∥∥
∥ is bounded

by a constant η > 0, i.e.,
∥
∥
∥
∑K−l

j=1 αs(l+j)Lj
∥
∥
∥ ≤ η

for l ∈ {1, ...,K − 1}, s ∈ {1, ..., S}, Eq. (18) becomes:

∥
∥
∥e(t−1)

∥
∥
∥ ≤ √

N
�

2
SK(2 + c)η. (19)

Thus, the error of the gradient at each iteration is
bounded, which implies that ISTA converges to a station-
ary point of the iteration (17) according to Theorem 1.
When � → 0, i.e., the bit rate tends to infinity, and the
quantization noise tends to zero, ‖e(t−1)‖ → 0, inde-
pendently of η. However, when the number of bits is
limited and fixed, the quantization noise depends on the
characteristics of the dictionary. When the norm of the
polynomial of the Laplacian matrix goes to zero (i.e.,
η → 0), the error also tends to 0 (i.e.,

∥
∥e(t−1)∥∥ → 0).

Finally, the upper bound on the error due to quanti-
zation in Eq. (19) indicates that the higher the degree
K of the polynomial, the more the error tends to be
accumulated over the iterations. This is quite intuitive
as higher polynomial degree requires more informa-
tion to be exchanged between the sensors, at the cost
of more propagation of the quantization noise. A large
value of K at the same time guarantees that the poly-
nomial functions can better approximate the underlying
spectral kernels and thus the graph signals. It indicates
that there is a trade-off in the design of the dictionary,

between the representation performance of the polyno-
mial dictionary and the propagation of the quantization
noise.

5 Polynomial dictionary learning with
quantization

We use the study of the previous section to include
the quantization parameter in the dictionary design,
and we introduce an algorithm to learn polynomial dic-
tionaries that are robust to quantization noise. Our
approach consists in controlling the norm of the total
error in each step of the gradient computation when solv-
ing ISTA-based algorithms in a distributed way. When
the quantization step size and the graph are given,
the total error due to quantized communication can
be controlled by choosing the proper values for the
polynomial coefficients {αsk}S,Ks=1,k=0 such that the gra-
dient error stays bounded. From Eq. (18), the poly-
nomial coefficients need to be computed in such a
way that the spectral norm

∥
∥
∥
∑K−l

j=1 αs(l+j)Lj
∥
∥
∥ , for l ∈

{1, ...,K − 1}, is bounded for a fixed �. We recall that
the spectral norm is defined as

∥
∥∥
∑K−l

j=1 αs(l+j)Lj
∥
∥∥ =

λmax
(∑K−l

j=1 αs(l+j)Lj
)
. Since the matrix

∑K−l
j=1 αs(l+j)Lj is

symmetric, the spectral norm is simply its largest eigen-
value. Therefore, constraining the spectral norm becomes
equivalent to constraining the eigenvalues of the corre-
sponding matrix.

5.1 Dictionary learning algorithm
Based on the above analysis, we propose here to con-
trol the maximum eigenvalue of the matrix

∑K−l
j=1 αs(l+j)Lj

for constructing dictionaries that are robust to the quan-
tization noise. Namely, we choose the polynomial coef-
ficients such that the spectral norm of

∑K−l
j=1 αs(l+j)Lj

is bounded and small. We design the learning algo-
rithm to have explicit control on the propagation
of the quantization error. In details, given a set of
training signals Y = [

y1, y2, ..., yM
] ∈ R

N×M,
all living on the weighted graph G, our objective
is to learn a polynomial graph dictionary D ∈
R
N×NS, which can efficiently represent all of the sig-

nals in y as linear combinations of only a few of
its atoms and at the same time be robust to the
quantization error, when applied to distributed set-
ting with rate constraints. Since D has the form (3),
our problem is equivalent to learning the parameters
{αsk}s=1,2,...,S; k=1,2,...,K that characterize the set of gener-
ating kernels,

{
ĝs(·)

}
s=1,2,...,S. We denote these parameters

in vector form as α =[α1; ...;αS], where αs is a col-
umn vector with (K + 1) entries. In order to take into
account the effect of the quantization noise, we impose
an additional constraint which bounds the eigenvalues
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of the matrix
∑K−l

j=1 αs(l+j)Lj for l ∈ {1, ...,K − 1}
and s ∈ {1, ..., S}.
Formally, the dictionary learning problem can be cast as

the following optimization problem:

argmin
α∈R(K+1)S , X∈RSN×M

{||Y − DX||2F + μ‖α‖22
}

subject to ‖xm‖0 ≤ T0, ∀m ∈ {1, ...,M},

Ds =
K∑

k=0
αskLk ,∀s ∈ {1, 2, ..., S}

(20)
0I � Ds � cI, ∀s ∈ {1, 2, ..., S}

(c − ε1)I �
S∑

s=1
Ds � (c + ε2)I,

− ηI �
K−l∑

j=1
αs(l+j)Lj � ηI,

∀l ∈ {1, ...,K − 1},

whereD = [D1,D2, . . . ,DS], xm corresponds to column
m of the coefficient matrix X, T0 is the sparsity level of
the coefficients of each signal, and I is the identity matrix.
The above dictionary learning formulation is inspired by
[3], including some additional constraints that take into
account the quantization noise. The spectral constraints
provide some control over the spectral representation of
the atoms and the stability of signal reconstruction with
the learned dictionary as discussed in [3]. In particu-
lar, they guarantee that the learned kernels are positive,
and the obtained dictionary is a frame. The optimization
problem (20) is not convex, but it can be approximately
solved in a computationally efficient manner by alter-
nating between the sparse coding and dictionary update
steps. In the first step, we fix the parameters α (and
accordingly fix the dictionaryD) and solve the sparse cod-
ing step using orthogonal matching pursuit (OMP) [26].
In the second step, we fix the coefficients X and update
the dictionary by finding the vector of parameters, α,
that solves the polynomial coefficient update step using
interior point methods [27].
We notice that the parameter η is a design parame-

ter that intuitively should decrease when the quantization
stepsize increases (See Eq. (19) for a fixed accumulated
quantization error

∥
∥e(t−1)∥∥). In particular, a large quanti-

zation stepsize implies that the accumulated quantization
error tends to be large. In that case, a small value of η

penalizes the propagation of the quantization noise by
learning a dictionary that is more robust in distributed
settings, at the cost of a reduced flexibility in the search
space of the polynomial coefficients. The latter implies a
loss in the accurate recovery of the underlying spectral

kernels that generate the true dictionary atoms. A large
value of η gives more flexibility for a solution of (20) to
learn a set of polynomial coefficients that are good for
approximating the kernels in ideal communication set-
tings, without restricting the accumulated quantization
noise however. As a result, if the quantization stepsize is
small (i.e., the quantization is fine enough), η can be cho-
sen relatively big, so that it does not affect the solution of
the optimization problem (20).
As mentioned in the introduction, the problem of

quantization-aware graph signal representations has been
recently studied in [16], from the viewpoint of designing
robust FIR filters. In particular, a zero-meanGaussian i.i.d.
initial signal is filtered by a graph filter which is built on a
graph shift operator, and it results on an output graph sig-
nal. Contrary to our work, the desired frequency response
of the filter is known, and the main objective is to find an
approximation of that response with a robust graph filter
that (i) approximates sufficiently well the desired response
and (ii) reduces the amount of quantization noise at the
output graph signal. In our formulation of (20), our signals
are generated from a sparse signal model, whose repre-
sentation matrix, i.e., dictionary, consists of a set of graph
filters, whose frequency response is not known. Thus, the
goal is to find a set of desired filters that can approximate a
set of graph signals, given some predefined constrains that
penalize the propagation of the quantization noise. Thus,
the focus is more on the representation and processing of
the signal rather than on the approximation of a desired
frequency response of a filter.
Finally, we note that all the above developments are

based on the ISTA iterations. Since ISTA is in general
slow, it implies more data exchange between sensors that
goes in contradiction with the initial aim of transmitting
fewer data. However, the results of Section 3 could be used
to compute the accumulated approximation error for any
other algorithm that contains these simple matrix-vector
multiplications. ISTA is an example of such algorithm that
is widely used. A similar philosophy could be used for fast
iterative shrinkage-thresholding algorithm (FISTA) [23]
for example. It is straighforward to derive the quantization
error bounds in this case. In other words, depending on
the target sparsity algorithm, we can derive the required
constraints that could be applied in the polynomial dic-
tionary learning phase. Of course, the exact constraints
might end up being different than those derived in the
paper for the specific case of ISTA. Still, constraining
the polynomial coefficients based on the accumulated
quantization error is something that will improve the per-
formance at low bit rate. Our objective in this paper is
to propose a dictionary learning algorithm that specifi-
cally include constraints imposed by quantization in dis-
tributed processing on graphs and to illustrate one specific
case, i.e., ISTA.
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5.2 Analysis of the learned dictionary
To quantify the effect of the quantization constraints on
the polynomial coefficients, we derive a few representative
bounds. In particular, using the fact that the constraints
affect the spectrum of the matrix, for l = K − 1, we
obtain that:

− ηI �
1∑

j=1
αs(K−1+j)Lj � ηI,

=⇒ −η ≤ αsKλ ≤ η, ∀λ ∈ �

λ=λmax=⇒ − η

λmax
≤ αsK ≤ η

λmax
.

(21)

We note that since 0 ≤ λ ≤ λmax = 2, the magnitude
of the coefficient αsK is defined by the largest eigenvalue
λmax.
Following a similar reasoning, for l = K − 2, we obtain

that:

− ηI �
2∑

j=1
αs(K−2+j)Lj � ηI,

=⇒ −η ≤ αs(K−1)λ + αsKλ2 ≤ η, ∀λ ∈ �

(22)
λ=λmax=⇒ − η

λmax
≤ αs(K−1) + αsKλmax ≤ η

λmax
(21)=⇒ − η

λmax
− η ≤ αs(K−1) ≤ η

λmax
+ η

=⇒ −η

(
1 + λmax

λmax

)
≤ αs(K−1) ≤η

(
1 + λmax

λmax

)
.

(23)

Similarly, for l = K − 3, we obtain that:

− ηI �
3∑

j=1
αs(K−3+j)Lj � ηI,

=⇒ − η ≤ αs(K−2)λ+αs(K−1)λ
2+αsKλ3 ≤η, ∀λ∈�

λ=λmax=⇒ − η

λmax
≤ αs(K−2)+αs(K−1)λmax+αsKλ2max ≤ η

λmax
(22)=⇒ − η

λmax
− η ≤ αs(K−2) ≤ η

λmax
+ η

=⇒ − η

(
1 + λmax

λmax

)
≤ αs(K−2) ≤ η

(
1 + λmax

λmax

)
.

(24)

Finally, using the above developments, we can recur-
sively bound αs(K−3). Following similar reasoning, it can
be easily derived that:

−η

(
1 + λmax

λmax

)
≤ αs(K−j) ≤ η

(
1 + λmax

λmax

)
, ∀j ∈ 1, 2, ...,K .

(25)

We note that the above bounds are quite conservative
as they are based on the largest eigenvalue of the graph
Laplacian. These types of inequalities however show that

by adding the quantization constraints, we restrict the
magnitude of the coefficients. The effect of this trade-off
is studied numerically in the next section.

6 Results and discussion
We first study the performance of our dictionary learning
algorithm for the distributed approximation of synthetic
signals. Then, we study the application of the proposed
framework in the denoising of real world signals.

6.1 Synthetic signals
6.1.1 Settings
We generate a graph by randomly placing N = 500 ver-
tices in the unit square. We set the edge weights based
on a thresholded Gaussian kernel function so that W ij =
e−

[dist (i,j)]2

2θ2 if the physical distance dist(i, j) between ver-
tices i and j is less than or equal to δ, and zero otherwise.
We fix θ = 0.04 and δ = 0.09 in our experiments and
ensure that the graph is connected. In our first set of
experiments, we construct a set of synthetic training sig-
nals consisting of localized patterns on the graph, drawn
from a dictionary that is a concatenation of S = 3 sub-
dictionaries. Each subdictionary is a polynomial of the
graph Laplacian of degree K = 15 and captures one of
the three constitutive components of our synthetic signal
class. We generate the graph signals by linearly combining
T0 ≤ 10 random atoms from the dictionary with random
coefficients. We then learn a dictionary from a set of
1000 training signals for different values of the parame-
ter η that controls the robustness to quantization error in
distributed signal processing.

6.1.2 Learned kernels
First, we look in more details on the effect of η on the
dictionary learning outcome and study the effect of this
parameter in the learned kernels. In Fig. 2a, we illustrate
the original kernels of the underlying dictionary, and in
Fig. 2b–d, we plot the ones recovered by solving the dictio-
nary learning algorithm of Eq. (20) for different values of
η. As expected, we observe that, as we increase the value of
η, the recovered kernels become more similar to the orig-
inal ones. The effect of the parameter η is more obvious
in Fig. 3, where we plot the values of the polynomial coef-
ficients. We observe that, when η is small, the polynomial
coefficients become small in magnitude. These results are
consistent with the bounds on the polynomial coefficients
derived in Section 5. In summary, the dictionary learn-
ing algorithm is not able to capture relatively complicated
kernels, which seems to be the price to pay for improved
robustness to quantization.

6.1.3 Approximation performance
In the next set of experiments, we quantify the loss in the
approximation performance by focusing on centralized
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Fig. 2 Illustration of the kernels recovered for different values of η in the dictionary learning problem. (a) Original kernels. (b) η=0.1. c η= 1. (d) η = 10

settings without rate constraints. We approximate 1000
testing signals, generated in the same way as the train-
ing signals, by computing the sparse approximation
in the learned dictionaries with OMP, for different
sparsity levels. For the sake of comparison, we also
compute the approximation performance achieved by
applying OMP on the spectral graph wavelet dictionary

[17]. The obtained results are illustrated in Fig. 4. Each
point in the curve corresponds to the signal to approxima-
tion noise ratio (SNR in dB) for different sparsity levels,
and it is computed as the average value over all the test-
ing signals. As we reduce the values of the parameter
η in the dictionary learning algorithm, the approxima-
tion performance in the ideal scenario of infinite bit rate

Fig. 3 Polynomial coefficient values, for each of the dictionary kernels, for different values of η in solving the optimization problem (20). (a) η = 1.
(b) η = 10
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deteriorates significantly. It can become even worse than
the one achieved with the spectral graph wavelet dic-
tionary, which is not learned to efficiently represent the
training signals. This behavior is consistent with the con-
clusion drawn from Figs. 2 and 3. The more we reduce the
search space (i.e., the smaller the value of η), the worse is
the approximation performance of the graph signals from
the learned dictionary.

6.1.4 Distributed approximation performance
Next, we move to the settings with communication con-
straints, and we study the distributed approximation of
testing signals using the iterative soft thresholding algo-
rithm with iterations defined by Eq. (16). The testing
signals are generated in the same way as the training ones.
We assume that the messages exchanged by the sensors
are uniformly quantized before transmission. In partic-
ular, for each message, we send 1 bit for the sign and
quantize the magnitude of the data to be transmitted to
neighbor sensors. For each signal y, the quantization range
of the transmitted messages is defined to be [ 0, ‖y‖∞],
and it is known by all the sensors. We fix the bit rate
to 6 bits per message, and we run ISTA for 300 itera-
tions and different values of the sparsity parameter κ in
Eq. (16). We learn different polynomial dictionaries by
solving the optimization problem (20) for different val-
ues of η. For the sake of comparison, we show also the
approximation performance obtained with the spectral
graph wavelet dictionary approximated by a Chebyshev
polynomial of order K = 30. In Fig. 5, we illustrate the
approximation performance in terms of SNR obtained for
different numbers of atoms in the representation. The
number of atoms is measured by counting the number

Fig. 4 Approximation performance (SNR) versus sparsity level,
achieved with the polynomial graph dictionary for different values of
η in centralized settings

Fig. 5 Distributed approximation performance (SNR) versus sparsity
level, achieved with different polynomial graph dictionary learned
with different values of η in distributed settings, with a bit rate of
6 bits per message

of non-zero elements in the sparse codes for a partic-
ular value of κ . Interestingly, we observe that the best
representation performance is obtained when η is very
small. As we increase the η, the effect of the quanti-
zation noise becomes significantly high, which leads to
a dramatically low SNR in the distributed approxima-
tion algorithm. The worst performance is obtained when
η = ∞, which is equivalent to ignoring the robustness
constraint in the dictionary learning algorithm. This con-
firms that the robustness constraint can indeed reduce the
effect of the quantization noise. However, comparing to
the performance obtained in the case of infinite bit rate
(red curve in Fig. 5), we observe a saturation in the maxi-
mum SNR that is significantly lower than the one in ideal
communication conditions. This is the price to pay for
introducing the quantization constraint and reducing the
search space in the dictionary learning problem of (20).

6.1.5 Distributed denoising of graph signals
In another set of experiments, we apply our dictionar-
ies in distributed denoising applications. We add some
Gaussian noise to the testing signals such that their ini-
tial SNR is 10 dB. We then use the dictionaries learned
with the different parameters η to denoise the signals by
imposing a sparse prior. Denoising is performed by apply-
ing the iterative soft thresholding algorithm of Eq. (16)
for different values of the parameter κ . In Fig. 6, we illus-
trate the SNR obtained after distributed denoising with
different numbers of bits per messages, for each of the
learned dictionaries. For each bit rate, we keep the value
of κ that corresponds to the highest SNR. The obtained
results indicate that a small η at low bit rate can bring sig-
nificant gain in terms of denoising performance. When



Thanou and Frossard EURASIP Journal on Advances in Signal Processing         (2018) 2018:67 Page 14 of 17

Fig. 6 Denoising performance (in dB) versus bits per message using
dictionaries learned with different values of η. The SNR of the input
signals is 10 dB

the bit rate is high, the denoising performance obtained
with the dictionary corresponding to a small η (η = 0.1)
saturates to a low SNR value. Due to the quantization con-
straints, the solution of the optimization problem (20) is
not necessarily the optimal one, and the representation
performance of the dictionary is reduced. These results
are consistent with the ones obtained in the previous
experiments.

6.2 Application: denoising of sensor network signals
We now consider two real-world datasets, the one con-
taining measurements of the evapotranspiration level
and the second containing the daily bottlenecks in San
Francisco county. The average monthly evapotranspira-
tion (ETo) data are recorded at 121 measuring stations
in California between January 2012 and December 20142.
We define a geographical graph, where the nodes of the
graph consist of the sensors. Two nodes are connected if
the distance between the sensors is smaller than 140 km.
The weights of the graph are defined to be inversely
proportional to the distance. We compute the average
record per month for each station which results in 36
graph signals (i.e., one per month), each of dimension
121. The traffic data are part of the Caltrans Performance
Measurement System (PeMS) dataset that provides traf-
fic information throughout all major metropolitan areas
of California [28]3. It contains signals between January
2007 and August 2014 measured in 75 detector stations.
The graph is designed by connecting stations when the
distance between them is smaller than a threshold of
θ = 0.04. For two stations A and B, the distance dAB is
set to be the Euclidean distance of the GPS coordinates of
the stations and the edge weights are computed using the
exponential kernels such that WAB = e−dAB . The signal

on the graph is the duration in minutes of bottlenecks for
each specific day. We remove the signal instances where
no daily bottleneck was identified, and for computational
issues, we normalize each signal to a unit norm.
For each of the two datasets, we use the clean signals to

learn a polynomial dictionary with S = 3 and maximum
polynomial degree of K = 15. In particular, for the evap-
otranspiration data, since the number of available signals
is quite limited, we use all the 36 signals for training. The
sparsity level is chosen to be T0 = 30. Regarding the traf-
fic data, we use one fourth of the signals for training and
the rest for testing. Since these data are in general more
sparse, we set the sparsity level to T0 = 5. We run the
learning algorithm for different values of the parameter

Fig. 7 Denoising performance (in dB) versus bit rate per message for
l1 regularization using dictionaries learned with different values of η.
The SNR of the noisy signals is 10 dB. (a) Evapotranspiration data (b)
Traffic bottlenecks
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Fig. 8 Illustration of the atoms learned with different values of η, placed at node 10 of the cimis graph. The more we penalize the quantization error,
the more localized are the atoms. a η = 0.1; S = 1. b η = 0.1; S = 2. c η = 0.1; S = 3. d η = 10; S = 1. e η = 10; S = 2. f η = 10; S = 3. g η = ∞; S = 1. h
η = ∞; S = 2. i η = ∞; S = 3
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η =[ 0.1, 1, 10, ∞]. The obtained dictionaries are then
used for denoising a set of testing signals in distributed
settings, at different bit rates. In the case of the ETo data,
the testing signals are generated by adding Gaussian noise
of zero mean and variance that depends on the desired
SNR to the training signals. For the traffic data, we add
Gaussian noise to the testing signals that were not used in
the training. The results are illustrated in Figs. 7a, b.
First, we observe that under ideal communication, the

denoising performance of the evapotranspiration signals
is quite poor and the total gain is less than 1 dB. The
reason for that is that these data are smoother on the
graph, and our polynomial dictionary needs more atoms
to approximate them. As a result, a sparse prior in the
signals does not necessarily lead to big gains in terms of
SNR. On the other hand, the gain observed in the traffic
data is higher as such data follows our signal model and
consists indeed of localized patterns on the graph. Sim-
ilarly to the synthetic data, in both datasets, we observe
that we achieve a significant gain when the parameter η

is small at low bit rate. On the other hand, as we increase
the bit budget, the performance obtained by the uncon-
strained dictionary (η = ∞) tends to approximate the one
obtained at infinite bit rate.
Finally, we study the effect of the parameter η on

the learned atoms. For simplicity, we focus only on one
dataset. However, similar conclusions can be drawn from
the second dataset as well. In Fig. 8, we plot the atoms
that are obtained from the traffic dataset and placed at
node 10 of the graph. We observe that the smaller the
parameter η, i.e., the more we penalize the quantization
error, the more localized are the learned atoms. In par-
ticular, we observe that all three subdictionaries tend to
become similar, which means that the algorithm is learn-
ing a dictionary that can be well represented by only one
subdictionary. On the other hand, the bigger the parame-
ter η, i.e., the less we penalize the quantization error, the
more the obtained atoms tend to approximate the ones
with η = ∞. Thus, they are more spread on the graph.
Moreover, each of the subdictionaries tends to capture
distinct kernels. These results are quite intuitive and indi-
cate that if we want to penalize the quantization noise,
we should limit the communication between the nodes
of the graph. The latter can be achieved by restricting
both the maximum polynomial degree K, i.e., designing
simpler and smoother graph kernels, and the number of
distinct subdictionaries S, i.e., designing compact dictio-
naries with small S. This, however, comes at the cost of
reduced sparsity or worse approximation performance.
Since the atoms have a very local support, the number of
atoms that is needed to approximate the signal is quite big.
As a result, the signals are not very sparse in the obtained
dictionary. This may also be a reason for a relatively poor
denoising performance of the given dataset.

7 Conclusions
In this paper, we have studied the effect of quantization
in distributed graph signal processing with polynomial
dictionary operators. We have shown analytically that
the overall quantization error depends on the commu-
nication pattern of the network captured by the graph
Laplacian matrix and the graph structured dictionary.
Following this observation, we have then proposed an
algorithm that learns polynomial graph dictionaries to
sparsely approximate graph signals while staying robust
to quantization noise. We have shown that the quantiza-
tion constraints penalize the magnitude of the polynomial
coefficients, sacrificing on the recovery of the true dic-
tionary atoms. Experimental results have illustrated the
trade-offs between effective distributed signal representa-
tion in low bit rate communication settings and accuracy
of the signal approximation in ideal settings.

Endnotes
1 The main assumption of this paper is that the com-

munication graph coincides with the representation graph
that captures that structure of the signals.

2 The data are publicly available at www.cimis.water.ca.gov.
3 The data are publicly available at http://pems.dot.ca.gov.

Appendix
Proof For ease of notation, we ignore the iteration index

and we bound the error norm as follows:
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where we have used the standard Cauchy-Schwarz
inequality. For the sake of simplicity, we work with each
term of the summation separately. After some basic oper-
ations with matrix norms, we can write the first term as
follows:
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www.cimis.water.ca.gov
http://pems.dot.ca.gov
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Similarly, the second and the third terms can be
written as:
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(29)

where the last inequality comes from the assumption that
0I � Ds � cI, which is a necessary assumption (see
the optimization problem 20) for the class of spectral
graph dictionaries that we are considering. Combining
Eqs. (26)–(29), and using the assumption that the quan-
tization noise is uniformly distributed with magnitude
smaller than �/2, we obtain the upper bound of (18).
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