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Abstract

This paper deals with the joint direction-of-arrival (DOA) and direction-of-departure (DOD) estimation when the
uncorrelated and coherent (i.e., fully correlated) narrowband signals coexist in multiple-input multiple-output (MIMO)
array systems. Two new approaches based on weighted subspace fitting and oblique projection for two-dimensional
direction estimation, i.e., WSFOPDE and improved WSFOPDE, are proposed. In the WSFOPDE approach, the basic
procedure includes three stages. First, the DOA of all signals can be directly acquired by minimizing a reduced-dimensional
weighted subspace fitting function. Then, the DOA information of uncorrelated signals are discerned by a classifying
indicator; and subsequently, their auto-paired transmit steering vectors with respect to DOD information are derived.
Finally, via a new Toeplitz-structured oblique projection, an virtual MIMO array data with only coherent signals
remaining is constructed to assist the corresponding auto-paired DOD estimation. In order to promote the accuracy
of angle estimation, we also design an improved version. It inherits the above basic procedure and, meanwhile,
introduces one-dimensional local DOA spectrum searching to refine the DOA-DOD estimation. Compared with some
existing strategies, WSFOPDE and its improved version perform better from the united perspective of computational
complexity and estimation accuracy. Numerical simulations verify the advantages and also demonstrate that both can
be served as a better alternative to the competitors.

Keywords: Multiple-input multiple-output array, Angle estimation, Uncorrelated and coherent signals, Weighted
subspace fitting, Oblique projection

1 Introduction
The multiple-input multiple-output (MIMO) array sys-
tems have become a major research issue during the
recent decades, especially concentrating on the radar and
sonar target detection and localization [1–6]. It has many
potential merits over the traditional phased-array radar
such as better parameter identifiability, higher accuracy of
parameter estimation, and much flexible transmit beam-
pattern design. Generally speaking, there are two different
categories according to the antennas’ configuration. One
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is the so-called statistical MIMO array system [2] with
separated transmit and/or receive antennas, which is also
known as distributed MIMO array systems. The biggest
advantages are, for target detection and parameter esti-
mation, to capture the spatial diversity of the radar cross
section (RCS) with noncoherent processing; and for tar-
get localization, to provide a resolution far beyond that
supported by the radar’s waveform with coherent pro-
cessing. Oppositely, the other is the co-located MIMO
array systems, which can be further classified into two
types, i.e., monostatic arrays and bistatic arrays. The for-
mer one allows the transmitting and receiving arrays to
be closely located, therefore it views the far-field tar-
get from the same perspective, e.g., direction of arrival
(DOA). The latter one can view the targets from two
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different perspectives, i.e., DOA and direction of depar-
ture (DOD), because the transmitting array and receiving
array locate separately. Such type of array systems usually
aims at creating a virtual aperture with more degrees of
freedom (DOFs) than the real aperture [7–9] to acquire
narrower beamwidth, lower sidelobes and higher accu-
racy of angle estimation. Recently, massive MIMO, by
employing large-scale antenna arrays at base station in
mobile communication systems, can serve a large number
of users, which greatly enhances the spectrum efficiency
and energy efficiency in comparison to the traditional
MIMO systems [10–12]. Actually, large scale configura-
tion of antennas can generate two important benefits: one
is the large number of DOFs, which allows much more
flexible and accurate beamforming and null steering; the
other is the large array aperture, e.g., if “massive” equips
at both transmitting and receiving arrays simultaneously,
then the precision of angle estimation with respect to tar-
get localization will be dramatically improved due to its
high resolution of spatial direction. Based on the above
benefits, the whole system is rewarded with the ability of
ultra long-range detection and super strengthened identi-
fication. However, many potential challenges for enabling
massive MIMO are also inevitable in actual radar and
communication systems. Among them, how to efficiently
utilize such “massive” resource in the aforementioned
angle estimation should be considered carefully.
As a typical problem of two-dimensional harmonic

retrieval with multiple measurement vectors, joint DOA
and DOD estimation in bistatic MIMO array sys-
tems has been paid a great attention. Till now, many
high-resolution algorithms have been developed, such
as ESPRIT-based algorithms [13–16], the parallel fac-
tor analysis (PARAFAC)-based algorithms [17, 18], and
MUSIC-based algorithms [19, 20]. Through the proof
of numerical simulations, the reduced-dimension (RD)
MUSIC algorithm shows very close performance to 2D-
MUSIC algorithm [19]. However, these algorithms essen-
tially depend on the uncorrelation or low-correlation
property of the targets’ reflected signals. In fact, there
always exist highly correlated or even coherent signals in
practical environment, for example, two targets with a
slight difference of Doppler shift or the multipath propa-
gation. For highly correlated signals, one can adopt higher
signal-to-noise ratio or larger number of snapshots to dis-
tinguish them, which is not a intrinsic problem; but more
seriously, the coherence usually invalidates the afore-
mentioned algorithms. Besides, these non-uncorrelated
signals also destroy the virtual synthetic array [9]. There-
fore, dealing with the rank-deficiency problem is upper-
most when the uncorrelated and coherent signals coexist.
Forward-backward spatial smoothing (FBSS) technique
[21] can be directly utilized to de-correlate the coherence,
but it is usually at the cost of array aperture. In [22, 23], a

deflation approach is considered with two steps: spectrum
searching for uncorrelated signals, then oblique project-
ing and spatial smoothing for coherent signals; differently,
spatial difference technique in [24] takes advantage of
the Toeplitz form of auto-variance matrix of uncorrelated
signals to eliminate themselves’ contributions.
Although the spatial-differencing-based algorithms can

deal with more signals than antennas, there still exist
two potential shortcomings. One is that the contributions
from a group of coherent signals may act approximately as
that of a single-point signal, consequently, the false angle
estimation will appear in the scenario of low signal-to-
noise ratio and finite number of snapshots. The other is
that part of the information of coherent signals will also
be subtracted when the differencing operation is utilized
to eliminate the uncorrelated signals, which will directly
incur a restricted estimation performance for coherent
signals. Aiming at the aforementioned problems, litera-
ture [25] designs a relative ratio function and a C-matrix
to decern the possible false DOAs and achieve coherent
DOA estimation, respectively. However, the method can-
not be directly applied into the case of multi-dimensional
angle estimation. The biggest difficulties are two-fold.
First, the uncorrelated and/or partially correlated DOA
estimations are usually by means of spectrum searching,
the same as [22–24], which will produce huge computa-
tional complexity for multi-dimensional case; second, the
non-diagonal covariance matrix caused by those uncorre-
lated or partially correlated signals will directly decrease
the effectiveness of their elimination in the coherent DOA
estimation stage. Although oblique projecting technique
is adopted in [22, 23], it is actually achieved by an alter-
native projector due to one cannot acquire the array
manifold of coherent signals beforehand. Differently, [26]
distinguishes the uncorrelated and coherent signals by
the moduli of the eigenvalues of a auxiliary matrix; and
[27] exploits the sparse signal reconstruction to achieve
angle estimation, which can neglect the different types
of signals. However, both algorithms have to bear extra
computational burden.
In this paper, motivated by simultaneously consider-

ing the reduction of computational complexity and the
promotion of estimational accuracy, we propose two
approaches based on the techniques of weighted sub-
space fitting and oblique projection, i.e., the WSFOPED
and the improved WSFOPED, to achieve joint DOA and
DOD estimation for a mixture of uncorrelated and coher-
ent signals. In the WSFOPED approach, the reduced-
dimensional weighted subspace fitting technique plays a
very important role, the kernel of which is to remodel
the partial noise subspace by a series of parameters;
consequently, the DOA information of mixed signals
can be acquired by rooting a polynomial represented by
those estimated parameters. A new oblique projector is
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designed to isolate the coherent signals from the uncor-
related ones so that a virtual MIMO array observation
can be rebuilt. In the DOD estimation, via Lagrange
multiplier optimization, the auto-paired transmit array
steering vectors of uncorrelated and coherent signals can
be estimated with closed-form expressions. Furthermore,
considering the inherent shortcoming (i.e., error propa-
gation) in previous approach, the improved WSFOPED
strategy is proposed to refine the accuracy of DOA-
DOD estimation, in which one-dimensional spectrum
searching in local angular domain is adopted. As a
result, the proposed approaches have four notable advan-
tages: (1) computational simplicity in DOA estimation of
uncorrelated and coherent signals, where only polyno-
mial rooting or local searching is required; (2) computa-
tional simplicity in DOD estimation of uncorrelated and
coherent signals, where the transmit array steering vec-
tors are estimated in a closed-form expressions; (3) the
automatic pairing of DOA and DOD for the same sig-
nal; and (4) compared with non-spectrum-searching and
spectrum-searching approaches respectively, WSFOPED
and its improved version manifest better performance
of DOA-DOD estimation. In a word, the proposed
approaches can be considered as new alternatives to their
competitors.
The rest of this paper is organized as follows. The prob-

lem formulation is presented in Section 2. The proposed
joint DOA and DOD estimation approaches are intro-
duced detailedly in Section 3 and Section 4. Section 5
gives the systemic discussion of the proposed approaches,
and the simulation results to verify their advantages.
Finally, we conclude the paper in Section 6.
Notation: (·)∗, (·)T, (·)H, and (·)† denote the complex

conjugate, transpose, Hermitian transpose, and Moore-
Penrose inverse, respectively. E{·} represents the statistic
expectation operation; diag{·} is the diagonal operator.
rank{·} gives the matrix rank. Symbol “⊗” denotes Kro-
necker product, and “�” stands for Khatri-Rao product
(column-wise Kronecker product). IM is aM×M identity
matrix and 0 symbolizes zero matrix. B(m) is a submatrix
of B formed by its firstm rows.

2 Problem formulation
Consider a bistatic massive MIMO array systems with
M-element transmitting antenna array and N-element
receiving antenna array, both of which adopt the uni-
form linearly-spaced configuration. The inter-element
displacement d of both arrays is set as half the car-
rier wavelength to avoid the problem of spatial spectrum
ambiguity. The DOD and DOA with respect to a far-field
source signal are defined according to the normal line
of antenna arrays, respectively. We herein concentrate on
uniform linear array at both transmitting and receiving
ends, however, the main results can be readily extended

for other types of massive arrays such as uniform rectan-
gular array (URA) or uniform circular array (UCA). The
exact extension to both cases will be left for the future
work.
At transmit end, all antennas simultaneously emit M

orthogonal coded narrow signals to implement active
detection. Based on the point source model, after reflect-
ing by multiple targets, without loss of generality, we
assume that it generates K signals in total. Among them,
there are K1 uncorrelated signals with widely separated
Doppler frequencies. The DOD-DOA pair of the k-th
signal sk(t) = βkej2π fk t is denoted by {θk ,φk}, k =
1, 2, · · · ,K1, where βk and fk represent the complex atten-
uation coefficient and Doppler frequency, respectively.
Besides, there may also exist Q groups of coherent sig-
nals, e.g., the l-th version in the q-th group is sq(t) with
DOA-DOD pairs {θql,φql} and attenuation coefficient γql,
l = 1, 2, · · · , Lq, q = 1, 2, · · · ,Q, which are either caused
by the same Doppler frequency or the multipath propa-
gation. For convenience, define K2 = ∑Q

q=1 Lq, then we
have K = K1 + K2. Further, we assume that the signals
in different categories are uncorrelated, and the sq(t)’s are
also uncorrelated with each other. It is worthy mentioning
that the number of non-coherent signals K1, the number
of coherent signalsK2, and the number of coherent groups
Q are also assumed to be known, or can be estimated in
advance by the existing number detection technique [28],
which is based on the smoothed rank profile test to the
array covariance matrix.
At the receive end, the output data of the matched

filtering can be expressed as [1, 17, 29],

x(t) =
K1∑

k=1
[b(φk) ⊗ a(θk)]βksk(t)

+
Q∑

q=1

Lq∑

l=1

[
b(φql) ⊗ a(θql)

]
γqlsq(t) + n(t)

= (Bu � Au)su(t) + (Bc � Ac)sc(t) + n(t) (1)
= (B � A)s(t) + n(t).

In the above formula, the k-th columns of the
transmit steering matrix A =[Au,Ac] and the
receive steering matrix B =[Bu,Bc] are denoted

as a(θk) =
[

1, ej
2πd sin θk

λ , · · · , ej 2π(M−1)d sin θk
λ

]T
and

b(φk) =
[

1, ej
2πd sinφk

λ , · · · , ej 2π(N−1)d sinφk
λ

]T
, respectively.

Especially, we use au(θ) and bu(φ) to represent the
steering vectors of uncorrelated signals, and use ac(θ)

and bc(φ) to represent the steering vectors of coher-
ent signals. λ is the carrier wavelength of signals and
d is the spacing of two adjacent antennas. The uncor-
related signals su(t) = βu

[
s1(t), · · · , sK1(t)

]T with
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βu = diag{β1, · · · ,βK1}. For coherent signals, sc(t) =
[
γ T
1 sK1+1(t), · · · , γ T

QsK1+Q(t)
]T

with γ q = [
γq1, · · · ,

γqLq
]T, so we have s(t) = [

su(t)T, sc(t)T
]T. n(t) is the

additive zero-mean Gaussian noise with covariance σ 2
n ,

and is also uncorrelated with the signals.
Based on (1), we can calculate the covariance matrix of

the MIMO array output data by

Rx = E
{
x(t)xH(t)

}
(2)

= (B � A)Rs(B � A)H + σ 2
n IMN

= (Bu � Au)Ru(Bu � Au)
H

+(Bc � Ac)Rc(Bc � Ac)
H + σ 2

n IMN

where Ru = E{su(t)su(t)H} and Rc = E
{
sc(t)sc(t)H

}

are the correlation matrices of su(t) and sc(t), respec-
tively. Rs = diag{Ru,Rc} is a block diagonal matrix. If
the spatial sampling frequency during the snapshot col-
lection is greater than at least twice the largest Doppler
shift, then we have Ru = diag

{
β2
1 , · · · ,β2

K1

}
. In addition,

based on the aforementioned assumptions, Rc is also a
block diagonal matrix with the q-th block being

Rq
c =

⎡

⎢
⎢
⎣

γ 2
q1 · · · γq1γ ∗

qLq
...

. . .
...

γqLqγ
∗
q1 · · · γ 2

qLq

⎤

⎥
⎥
⎦ (3)

and hence

Rc = diag
{
R1
c ,R2

c , · · · ,RQ
c

}
(4)

Besides, Rx also has a equivalent representation from the
perspective of signal subspace and noise subspace, i.e.,

Rx = Us�sUH
s + U0�0UH

0 (5)

In practice, Rx is usually acquired by the finite T array
snapshots. The estimated version and its corresponding
eigenvalue decomposition (EVD) can be represented as
follows,

R̂x = 1
T

T∑

t=1
x(t)xH(t) EVD= Ûs�̂sÛH

s + Û0�̂0ÛH
0 (6)

where the eigenvalues are arranged in decreasing order,
and the estimated signal subspace Ûs is aMN × (K1 + Q)

high matrix consisting of the eigenvectors with respect to
the K1 + Q largest eigenvalues, i.e.,

�̂s = diag
{
λ1, λ2, · · · , λK1+Q

}
(7)

On the other hand, the remnant eigenvectors constitute
the noise subspace Û0.

For convenience, the derivations thereafter will still
adopt non-estimated vectors or matrices. Besides, in the
following sections, we first deal with the uncorrelated sig-
nals and then subtract their influence by a new oblique
projector that can be utilized for assisting the angle esti-
mation of coherent signals.

3 Joint DOA-DOD estimation for mixed signals:
WSFOPDE approach

3.1 Weighted subspace fitting for DOA estimation
It has been shown in [30–32] that an asymptotically (for
large snapshot number or high signal-to-noise ratio) sta-
tistically efficient estimation can be obtained by minimiz-
ing the following weighted subspace fitting problem

F(θ ,φ) = tr
{
P⊥
B�AUsWUH

s

}
(8)

where θ =[ θ1, θ2, · · · , θK ]T and φ =[φ1,φ2, · · · ,φK ]T.
The diagonal weighted matrix

W = (
�s − σ̂ 2

n I
)2

�−1
s (9)

with the estimated noise variance

σ̂ 2
n = 1

MN − K1 − Q

MN∑

i=K1+Q+1
λi (10)

Besides, P⊥
B�A in (8) stands for the orthogonal projector

onto the null space of (B � A)H, the expression of which
is given by,

P⊥
B�A = I − (B � A)

[
(B � A)H (B � A)

]−1
(B � A)H

(11)

Although one can utilize spectrum searching scheme to
minimize the function (8), it is of computational ineffi-
ciency. We herein adopt a MODE 1-like algorithm that
makes use of polynomial rooting. The difficulty relies
on how to parameterize the projector P⊥

B�A because B
and A are coupling. Therefore, we have to introduce an
substitute.
To begin, we first try to parameterize the above pro-

jector by two coefficient vectors a = [a0, a1, · · · , aK ]T
and b = [b0, b1, · · · , bK ]T. The coefficients construct two
polynomials with an identical manner, the specific form of
which is given below,

K∑

i=0
cizK−i = c0

K∏

i=1

(
z − ejπ sinψi

)
, c0 �= 0 (12)
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where ci ∈ {ai, bi} and ψi ∈ {θi,φi} correspondingly. If we
introduce the following set

L =
{

{ci} | C(z) =
K∑

i=0
cizK−i �= 0 for | z |�= 1

}

(13)

it can be seen that the mapping from {ψi} ∈ R to {ci} ∈ L

is one to one providing we eliminate the non-uniqueness
implied by the introduction of c0 �= 1.
Let Ga ∈ C

M×(M−K) and Gb ∈ C
N×(N−K), for a and b,

respectively, be with the following Toeplitz form

GH
c =

⎡

⎢
⎣

cK · · · c1 c0 · · · 0

0
. . . . . . . . . . . . 0

0 · · · cK · · · c1 c0

⎤

⎥
⎦ , c ∈ {a,b} (14)

It is observed that rank{Ga} = M−K , rank{Gb} = N −K ,
and

GH
b B = GH

a A = 0 (15)

Based on the above relation, consequently, we can con-
clude the following theorem that can be utilized to esti-
mate all the DOA information.

Theorem 1 Let the columns of Gb span the null space
of BH, and if defining G = Gb ⊗ IM, then span{G} ⊂
span{U0}.

Proof According to (15), on the one hand, the columns
of G span a column space that satisfies

GH(B � A) = (
GH
b B

) � A = 0.

where we take advantage of the property of Kronecker
product. On the other hand, if considering the rank of
matrix G, it is shown that

rank{G} = rank{Gb} × rank{IM} = (N − K)M (16)

As we know, the rank of noise subspace U0 is rank{U0} =
MN − K . Obviously, ifM ≥ 2,

rank{U0} > rank{G} (17)

Such result manifests that the column space spanned byG
is included in the one spanned by U0. This completes the
proof.

Therefore, we can construct a projection matrix,

PG = G
(
GHG

)−1GH = PGb ⊗ IM (18)

where PGb = Gb(GH
b Gb)

−1GH
b ; then we substitute PG

for P⊥
B�A in (8), and correspondingly, a new objective

function that needs to be minimized is reformulated as

F(b) = tr
{
(PGb ⊗ IM)UsWUH

s
}

(19)

If comparing functionF(θ ,φ) with functionF(b), we can
see that the original two-dimensional optimization prob-
lem is transformed into a one-dimensional problem, that
is to say, it greatly decreases the complexity.
In order to implement the minimization more conve-

niently, defining

Ū = UsWUH
s =

⎡

⎢
⎣

Ū11 · · · Ū1N
...

. . .
...

ŪN1 · · · ŪNN

⎤

⎥
⎦ (20)

where Ūuv is aM×Mmatrix, u, v = 1, · · · ,N . Further, we
can get

b̂ = argmin tr

⎧
⎪⎨

⎪⎩
PGb

⎡

⎢
⎣

tr(Ū11) · · · tr(Ū1N )
...

. . .
...

tr(ŪN1) · · · tr(ŪNN )

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
.

(21)

In addition, we also exert constraints on the unknown
parameters {bi}Ni=1, i.e., bi = b∗

N−i. The detailed discussion
with respect to the above constraints and procedures for
minimizing the above quadratic function can be found in
[30, 33], therefore we skip it for avoiding redundance.
Once we get b̂, the angular phase of the roots of the esti-

mated polynomial in (12) will give the DOA information
of all types of signals, i.e.,

{
φ̄k

}K
k=1.

3.2 Classifying and uncorrelated DOD estimation
Although all DOAs are acquired, unfortunately, we do
not know which one group of DOAs belongs to the type
of uncorrelated signals. Hence, in the second stage, we
introduce an indicator to classify.
As shown in [19], the two-dimensional MUSIC algo-

rithm can be divided into two optimization problems

max
φ

eTE−1(φ)e (22)

min
θ

a(θ)HE(φ)a(θ), s.t. eTa(θ) = 1 (23)

where

E(φ) =[b(φ) ⊗ IM]HU0UH
0 [b(φ) ⊗ IM] (24)

and e =[1, 0, · · · , 0]T.
It is known that the coherent signals result in the rank-

deficient in Rx, which is equivalent to a leakage of par-
tial signal subspace into the noise subspace, hence, the
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orthogonality between them cannot be fulfilled perfectly.
Based on that, for each DOA estimation φ̄k , one can
calculate the following indicator

Ek = eTE−1 (
φ̄k

)
e, k = 1, · · · ,K (25)

and assemble them in set

E = {E1, E2, · · · , EK } (26)

Then the uncorrelated signals can be discerned by the
DOA with respect to the K1 largest values in E .
After that, we can further utilize (23) to obtain the esti-

mated auto-paired transmit steering vectors from which
the uncorrelated DOD information can be extracted. Con-
structing a Lagrange cost function

P(θ , η) = a(θ)HE(φ)a(θ) + η
[
1 − eTa(θ)

]
(27)

where η is Lagrange multiplier. If we let the gradient of
(27) with respect to a(θ) be equal to zero, we can obtain
the estimated uncorrelated steering vectors to this cost
function with nonsingular E(φ), which can be represented
as, for each φ̄k ,

āu(θk) = E(φ)−1e
eTE(φ)−1e

∣
∣
∣
∣
φ=φ̄k

, k = 1, 2, · · · ,K1. (28)

The estimated auto-paired DOD information can be
drawn from the above steering vectors by means of least
squares (LS) principle. Defining

α
uwp
k = 1

π
angle [āu(θk)]= [0, cos θk , · · · , (M − 1)cos θk]T

(29)

Note that the unwrapped phase α
uwp
k (m), m =

1, 2, · · · ,M, are given by

α
uwp
k (1) = α

wp
k (1) (30)

α
uwp
k (m + 1) = α

uwp
k (m) + �k(m) (31)

where α
wp
k is the wrapped phase and the �k(m) is given

by (32).

�k(m) =

⎧
⎪⎪⎨

⎪⎪⎩

α
uwp
k (m + 1) − α

uwp
k (m) if |αuwp

k (m + 1) − α
uwp
k (m)| ≤ 1

2 − α
uwp
k (m + 1) + α

uwp
k (m) if α

uwp
k (m + 1) − α

uwp
k (m) > 1

α
uwp
k (m + 1) − α

uwp
k (m) + 2 if α

uwp
k (m + 1) − α

uwp
k (m) < −1

(32)

The LS fitting problem is shown as follows

min
vk

∣
∣
∣
∣�vk − α

uwp
k

∣
∣
∣
∣2
F (33)

where vk ∈ R
2×1, and

� =
[
0 1 · · · M − 1
1 1 · · · 1

]
T

The least square estimation of cos θk is given by the first
element of v̂k = �†α

uwp
k , that is to say,

θ̄k = arccos v̂k(1)

Till now, the joint DOA and DOD estimation of uncorre-
lated signals has already been achieved.Wewill in the next
stage take advantage of the coherent DOA information, φ̄k
with k = K1 + 1,K1 + 2, · · · ,K , to acquire the auto-paired
coherent DOD information.

3.3 Oblique projecting for coherent DOD estimation
In order to implement DOD estimation of coherent sig-
nals, the elimination of the uncorrelated signals’ contribu-
tion in Rx is necessary. It can be achieved by the so-called
oblique projection (OP) technique.
An oblique projection [34] is a kind of nonorthogonal

projection, e.g., PD1D2 , whose range is spanned by D1 and
null space is spanned by D2,

PD1D2 = D1
(
DH

1 P
⊥
D2D1

)−1
DH

1 P
⊥
D2 (34)

so that PD1D2D1 = D1 and PD1D2D2 = 0. In our dis-
cussed scenario, if let D1 = Bu � Au and D2 = Bc � Ac,
we can construct a virtual observation matrix Y with only
coherent signals retaining, i.e.,

Y �(IMN − PD1D2)(Rx − σ̂ 2
n IMN )(IMN − PD1D2)

H

(35)
=(Bc � Ac)Rc(Bc � Ac)

H

=(Bc � Ac)Sc

where σ̂ 2
n is given by (10).

Hence, the kernel problem is how to design a pragmatic
oblique projection. As we know, the calculation of P⊥

D2
in (34) is impractical due to Bc � Ac is unknown. Litera-
ture [35] suggests that if we substitute R† for P⊥

D2
, where

R† = Us�
−1
s UH

s , i.e., PD1D2 = D1
(
DH

1 R†D1
)−1DH

1 R†,
then it works [22, 23]. However, such approximation usu-
ally makes a confusion because the power and information
of coherent signals contributing to Us are subtracted in
Y. In [36], the QR factorization to the cross-covariance
matrix of two parallel ULA is utilized to construct oblique
projector, which can avoid the above confusion, however
it is not appropriate for our case. We herein design a
new oblique projector based on the pre-estimated angle
information of uncorrelated signals.
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3.3.1 New oblique projector
The kernel of this new oblique projector is the esti-
mated DOA information of coherent signals from (21),
i.e.,

{
φ̄i

}K
i=K1+1.

Based on them, we can reconstruct a K2-order poly-

nomial with roots
{
ejπ sin φ̄i

}K

i=K1+1
and K2 = K − K1,

the coefficients of which, for convenience, are defined by
vector

h =[h0, h1, · · · , hK2 ]T (36)

Similar to (14), a Toeplitz matrix Gh ∈ C
N×(N−K2) can be

utilized to assist in constructing oblique projector because
it satisfies GH

h Bc = 0. If defining Ḡ = Gh ⊗ IM, then we
have

ḠHD2 = ḠH(Bc � Ac) = (GH
h Bc) � Ac = 0. (37)

That is to say, it can allow us to substitute PḠ for P⊥
D2

in
(34), so that an alternative choice of oblique projector is
generated, i.e.,

P̄D1D2 = D1
(
DH

1 PḠD1
)−1DH

1 PḠ (38)

where PḠ = Ḡ(ḠHḠ)−1ḠH. One can easily examine the
properties that P̄D1D2D1 = D1 and P̄D1D2D2 = 0.

3.3.2 Forward-backward spatial smoothing
Taking (38) into (35), we can get that virtual observation
Y. Given that rank{Sc} = rank{Rc} if Bc � Ac is a full col-
umn rank matrix and Rc is a rank-deficient matrix due
to the coherent signals, therefore, we have to adopt two-
dimensional spatial smoothing technique. Define a series
of selection matrices, n = 1, 2, · · · ,N − Z1 + 1, m =
1, 2, · · · ,M − Z2 + 1,

�n,m = [
0Z1×(n−1) IZ1 0Z1×(N−Z1−n+1)

]

⊗ [
0Z2×(m−1) IZ2 0Z2×(M−Z2−m+1)

] (39)

where Z1 < N and Z2 < M denote the length of receive
and transmit subarrays, respectively.
After stacking �n,mY as the following style

[
�1,1Y · · · �1,M−Z2+1Y �2,1Y · · ·

�2,M−Z2+1Y · · · �N−Z1+1,M−Z2+1Y
]

it holds

Ȳ �
[
B(Z1)
c � A(Z2)

c

]
S̄c. (40)

Note that S̄c ∈ C
K2×(N−Z1+1)(M−Z2+1)MN is a ran-

dom phase modulated signal matrix which in turn de-
correlated the rank-deficient Sc, so it is a full row rank
matrix. In addition, similar to the conventional smoothing

technique, the choices of Z1 and Z2 depend mainly on the
number of coherent signals.
Utilizing the noise subspace of Ȳ, i.e., Ū0, we can obtain

the estimated auto-paired transmit steering vectors for
the coherent signals,

āc(θk) = Ē(φ̄k)
−1ē

ēTĒ(φ̄k)−1ē
, k = K1 + 1, · · · ,K (41)

where Ē =
[
b̄(φ) ⊗ IZ2

]H
Ū0ŪH

0

[
b̄(φ) ⊗ IZ2

]
with

b̄(φ) = b(Z1)(φ), and ē = e(Z1).
We have introduced the complete descriptions of the

proposed WSFOPDE approach. For convenience, it is
summarized in Table 1.

4 The improvedWSFOPDE approach
As we can see, the aforementioned approach estimates the
DOD information on the premise that the DOA informa-
tion are successfully obtained, seeing (28) and (41). That
is to say, it is a successive manner. The accuracy of DOA
estimation has a direct influence on that of DOD estima-
tion. Therefore, in order to avoid the error propagation
and make a further effort to improve the accuracy of DOA
estimation, we then design an improved version.
Actually, the local spectrum searching can improve the

estimation accuracy of uncorrelated DOA and coher-
ent DOA. With the initial uncorrelated DOA estimation
φ̄i, k = 1, · · · ,K1, we can further refine them by

φ̂k = arg max
φ∈[φ̄k−�φ,φ̄k+�φ]

eTE−1(φ)e, (42)

Table 1 Summary of the proposed WSFOPDE approach

Require The received MIMO array data {x(t)}Tt=1.

Ensure Estimation of {θk ,φk}, k = 1, 2, · · · , K .
Step 1. R̂x ← (1/T)

∑T
t=1 x(t)x

H(t);

Step 2. Us ,W ← Perform EVD on R̂x in (6);

Step 3. b̂ ← Minimize (21) by MODE algorithm;

Step 4.
{
φ̄i

}K
i=1 ← Root polynomial (12)

constructed by b̂;

Step 5.
{
φ̄i

}K1
i=1 ,

{
φ̄i

}K
i=K1+1 ← Discern uncorrelated

and coherent DOA via (25);

P̄D1D2 ← Construct oblique projector by
(38);

Step 6. {θ̄k}K1k=1 ← Perform LS fitting to the
auto-paired āu(θk) by (28) and (33);

Step 7. Ȳ, Ū0 ← Construct virtual MIMO array
matrix by (38) and (39), and perform EVD;

Step 8.
{
θ̄k

}K
k=K1+1 ← Extract auto-paired āc(θk) by

(41) and repeat LS fitting.
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where �φ is a small positive value, and φ̂k represent the
final DOA estimation of k-th uncorrelated signal. Simi-
larly, with the initial coherent DOA estimation φ̄i, k =
K1 + 1, · · · ,K , we can also refine them by

φ̂k = arg max
φ∈[φ̄k−�φ,φ̄k+�φ]

ēTĒ−1(φ)ē (43)

where �φ is a small positive value, and φ̂k represent the
final DOA estimation of k-th coherent signal. Accordingly,
the estimated auto-paired steering vectors for uncorre-
lated and coherent signals in Table 1, i.e., āu(θk) and
āc(θk), are replaced by âu(θk) and âc(θk). Based on that,
we can further rebuild an improved WSFOPDE approach
that is shown in Table 2.

5 Results and discussion
5.1 Qualitative discussion
Although the proposed approaches make a aperture loss
of transmit array for assisting coherent DOD estimation,
seeing the reduced MIMO array in (40), they are still
superior to some other approaches such as the 2D spa-
tial smoothing + PARAFAC or 2D spatial smoothing +
2D-MUSIC/RD-MUSIC, because the latter ones sacrifice
the array aperture on both receive and transmit ends to
compensate the rank deficiency while the WSFOPDE and
improvedWSFOPDE approaches utilize the whole receive
array to achieve DOA estimation.

Table 2 Summary of the improved WSFOPDE approach

Require The received MIMO array data {x(t)}Tt=1.

Ensure Estimation of {θk ,φk}, k = 1, 2, · · · , K .
Step 1. R̂x ← (1/T)

∑T
t=1 x(t)x

H(t);

Step 2. Us ,W ← Perform EVD on R̂x in (6);

Step 3. b̂ ← Minimize (21) by MODE algorithm;

Step 4.
{
φ̄i

}K
i=1 ← Root polynomial (12)

constructed by b̂;

Step 5.
{
φ̄i

}K1
i=1 ,

{
φ̄i

}K
i=K1+1 ← Discern uncorrelated

and coherent DOA via (25);

Step 6.
{
φ̂i

}K1

i=1
← Refine the uncorrelated DOA by

(42);

P̄D1D2 ← Construct oblique projector by
(38);

Step 7.
{
θ̂k

}K1

k=1
← Perform LS fitting to the

auto-paired âu(θk) by (28) and (33);

Step 8. Ȳ, Ū0 ← Construct virtual MIMO array
matrix by (38) and (39), and perform EVD;

Step 9.
{
φ̂i

}K

i=K1+1
← Refine the coherent DOA by

(43);

Step 10.
{
θ̂k

}K

k=K1+1
← Extract auto-paired âc(θk) by

(41) and repeat LS fitting.

For the improved WSFOPDE approach, the weighted
subspace fitting technique not only provides initial DOA
estimation for uncorrelated signals, but also gives a much
accuracy DOA estimation for coherent signals. To do so,
we avoid using Ȳ to perform joint DOA and DOD estima-
tion of coherent signals. On the other hand, if borrowing
the idea as introduced in [23], one also can use maxi-
mum likelihood, 2D-MUSIC or RD-MUSIC approaches to
directly estimate the uncorrelated signals and then con-
struct Toeplize matrix or oblique projection matrix to
estimate coherent signals. Obviously, such scheme will
cost much larger computation flops in spectrum search-
ing. But the proposed one preserves the estimation accu-
racy of uncorrelated signals as done in [19, 20] and also
can implement joint DOD and DOA estimation for coher-
ent signals in a lower computational complexity, which is
more attractable.
In addition, there are some differences between the

proposed approaches and the ones in [13, 14]. First,
although the researches in both references have made a
detailed discussion on the estimation of DOA and delay
in massive MIMO/FD-MIMO systems, they did not pay
attention to the scenario of uncorrelated and coherent
signals coexisting. Second, although the adopted ESPRIT-
type algorithms in [13, 14] are also low-complexity, they
were not based on weighted subspace fitting. Third, if
such ESPRIT-type algorithm is utilized for mixed sig-
nals, it cannot isolate the coherent signals. Therefore, the
proposed approaches maintain their own advantages.

5.1.1 Computational complexity
We now make a detailed analysis for the computa-
tional complexity of the proposed approaches. It is
shown in Table 3. One flop is defined as one-time
complex multiplication according to [37]. In WSFOPDE
approach, the computational complexity during the min-
imization of (21) in Step 3 is based on [38]. The Step
5 contains the discerning operation and oblique pro-
jector construction. Besides, the improved WSFOPDE
approach adds two extra steps to refine the DOA esti-
mation, seeing the Table 2. Among them, Step 6 adds
O

{
K1n̄1

[(
M2N + M2) (MN − K1 − Q) + M3]} and Step

9 costs O
{
K2n̄2

[
Z2
2(Z1 + 1)(Z1Z2 − K2) + Z3

2
]}
, where

n̄1 and n̄2 are the total searching number in each local
angle domain, respectively.
For easy to compare, we herein consider the RD-

MUSIC + oblique projection + SS + RD-MUSIC
algorithm, in which the discerning of uncorrelated
signals is easily achieved by the angles with respect
to K1 largest spectrum peak or by calculating (25).
The computational complexity is analyzed as follows:
the uncorrelated DOA and DOD estimation require
O

{ 1
2TM

2N2+M3N3+(K1+K+ñ1)
[(
M2N+ M2) (MN−

K1 − Q) + M3]}, where ñ1 is the total searching
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Table 3 Analysis of the computational complexity

Approaches Operation Required flopsO{·}
WSFOPDE Step 1 1

2 TM
2N2

Step 2 M3N3

Step 3 (K1 + Q)(N −
K)

[
7 (K + 1)2 + 3K2 + 5

2 K + 3
2

]

Step 4 (K + 1)3

Step 5 K
[(
M2N + M2

)
(MN − K1 − Q) + M3

]

M3(N −
K2)

[
N2 + 2N(N − K2) + (N − K2)2

] +
M3N3 + 2K1M2N2 + 2K21MN + K31

Step 6 K1
[(
M2N + M2

)
(MN − K1 − Q) + M3

]

Step 7 2M3N3

1
2 (N − Z1 + 1)(M − Z2 + 1)MNZ21Z

2
2 + Z31Z

3
2

Step 8 K2
[
Z22 (Z1 + 1)(Z1Z2 − K2) + Z32

]

Improved
WSFOPDE

Step 1 1
2 TM

2N2

Step 2 M3N3

Step 3 (K1 + Q)(N −
K)

[
7 (K + 1)2 + 3K2 + 5

2 K + 3
2

]

Step 4 (K + 1)3

Step 5 K1
[(
M2N + M2

)
(MN − K1 − Q) + M3

]

Step 6 K1n̄1
[(
M2N + M2

)
(MN − K1 − Q) + M3

]

M3(N −
K2)

[
N2 + 2N(N − K2) + (N − K2)2

] +
M3N3 + 2K1M2N2 + 2K21MN + K31

Step 7 K1
[(
M2N + M2

)
(MN − K1 − Q) + M3

]

Step 8 2M3N3

1
2 (N − Z1 + 1)(M − Z2 + 1)MNZ21Z

2
2 + Z31Z

3
2

Step 9 K2n̄2
[
Z22 (Z1 + 1)(Z1Z2 − K2) + Z32

]

Step 10 K2
[
Z22 (Z1 + 1)(Z1Z2 − K2) + Z32

]

number in the whole angle domain; the same as the
proposed one, oblique projection and SS require
O

{
M3(N−K2)

[
N2+2N(N−K2)+(N − K2)

2] + 3M3N3

+2K1M2N2 + 2K2
1MN + K3

1
}
; the coherent DOA and

DOD estimation requireO
{ 1
2 (N − Z1 + 1)(M − Z2 + 1)M

NZ2
1Z

2
2+Z3

1Z
3
2+(K2+ñ2)

[
Z2
2(Z1+1)(Z1Z2 − K2)+Z3

2
]}
,

where ñ2 is the total searching number in the whole angle
domain.
If taking some typical values of parameters into account,

e.g.,M = N = 9,T = 500, K = 6,K1 = 2,Q = 1,K2 = 4,
ñ1 = ñ2 = 180◦/0.01◦, Z1 = Z2 = 6. The local search-
ing range in the improved WSEOPDE approach is set as
�φ = 2◦ so that n̄1 = n̄2 = 2◦/0.01◦. By some tedious
calculations, we can see that the proposed WSFOPDE
approach has a computational complexity ofO{6.50×106}
and its improved version has a computational complex-
ity of O

{
3.87 × 107

}
, whereas the compared one is of

O
{
1.31 × 109

}
. That is to say, our proposed approaches

are computationally efficient.We also evaluate the average
running time of executing one-time algorithm, one can
refer to the simulation Example 1.

5.1.2 Parameter identifiability
Given that the parameterization in (14) and the rank of G
in (16), it is necessary for the proposed approaches that
K + 1 < N . Different from the theoretical analysis in
[22–24] that the number of identifiable signals, including
the uncorrelated and coherent signals, is beyond the num-
ber of actual antennas, the proposed approaches are of
inferiority.
Actually, based on the aforementioned analysis, we can

conclude that (1) the proposed approaches make a trade-
off between the array aperture and the computational
complexity in comparison to its competitors and (2) the
proposed approaches are very suitable for the case of mas-
sive arrays. It is the peculiarity of “massive” that allows the
proposed ones to manifest a great alleviation in compu-
tational burden, i.e., the DOA estimation is achieved by
polynomial rooting rather than the global searching [23].
Therefore, the proposed approaches can be viewed as two
typical alternatives for providing a relatively higher accu-
racy of angle estimation but simultaneously consuming a
lower computational complexity.

5.2 Quantitative results
In this section, we present some numerical simulations to
demonstrate the effectiveness and advantages of the pro-
posed approaches. The antenna spacing in both transmit-
ting and receiving arrays is half the carrier wavelength, i.e.,
d = λ/2. The average root mean squared error (RMSE) is
used to assess the performance of angle estimation, which
is defined as

1
K

K∑

k=1

√

E
[
(θ̂k − θk)2 + (φ̂k − φk)2

]
.

where K = K1 for uncorrelated signals and K = K2 for
coherent signals. The total number of Monte Carlo simu-
lations is set to be 200. The signal-to-noise ratio (SNR) is
defined by (1), i.e.,

SNR = 10 log10

∑
t ‖(B � A)s(t)‖2

MNσ 2
n

For performance comparison, some typical algorithms
such as PARAFAC algorithm [17] and ESPRIT algorithm
are calculated after performing spatial smoothing. In addi-
tion, we also consider the deflation method [23], which
is a typical algorithm of utilizing the MUSIC and oblique
projector (it is abbreviated to ‘MUSIC+OP’ in the follow-
ing content for convenience). In this deflation method,
we purposely confine the angle searching range to four
degrees for avoiding the huge calculation burden. All the
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results shown below are based on 200 independent trials,
and the search procedure runs with a step size of 0.01◦.

Example 1 Firstly, we examine the estimation perfor-
mance with respect to SNR. Considering a scenario that
contains two uncorrelated signals with β1 = β2 = 1
and (θ ,φ) ∈ {(30◦, 35◦), (40◦, 45◦)}, one group of four
coherent signals with γ11 = ejπ/8, γ12 = 0.8ej5π/9,
γ13 = 0.7ejπ/18, γ14 = 0.5ej8π/9 and (θ ,φ) ∈
{(−25◦,−20◦), (−15◦,−10◦), (10◦, 5◦), (15◦, 25◦)}. We
adoptM = N = 9 and the total number of array snapshots
T = 500. The sub-array length that is used for dealing
with the coherent signals is set as Z1 = Z2 = 8. From
Figs. 1 and 2, we can observe that, the proposedWSFOPDE
approach overmatches the other two non-searching algo-
rithms, i.e., FBSS+ESPRIT and FBSS+PARAFAC (it is
conducted by periodogram-based algorithm with 1024-
point FFT after getting the auto-paired array steering
vectors through tensor decomposition); and the proposed
improved WSFOPDE approach performs nearly the same
as the MUSIC+OP. In addition, the local searching indeed
improves the accuracy of angle estimation with at least
5 dB leading than the proposed WSFOPDE approach for
both uncorrelated and coherent signals.

We also consider the time efficiency of different algo-
rithms. Table 4 gives the average running time for exe-
cuting one-time algorithm, where the MATLAB codes
are executed in a PC with Intel(R) Core(TM) i5-6400
CPU@2.6GHz and 8GBRAM. From the statistical results,
we can see that, among the non-searching schemes,
the WSFOPDE approach manifests a moderate time-
consuming; whereas for the searching schemes, the
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Fig. 1 The performance comparison of DOA-DOD estimation
between several typical algorithms: uncorrelated signals
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Fig. 2 The performance comparison of DOA-DOD estimation
between several typical algorithms: coherent signals

improved WSFOPDE approach shows a great decrease in
total computational complexity.
Therefore, from a joint perspective of computational

complexity and angle estimation accuracy, both proposed
approaches can serve as better alternatives as compared
to the existing competitors.

Example 2 Then, we evaluate the estimation perfor-
mance versus the number of snapshots. The simulation
conditions are similar to those in the previous example,
except that the number of snapshots is set from 500 to 3000
and the SNR is fixed at 0 dB. We herein do not consider
the FBSS+PARAFAC algorithm because of its unsatisfac-
tory performance. The simulation results, as shown in
Figs. 3 and 4, illustrate again that the average RMSE of
the improved WSFOPDE approach is very close to the
MUSIC+OP algorithm.

Besides, it is shown that the FBSS+ESPRIT has a lower
average RMSE for the coherent signals when the num-
ber of snapshot is less than 103, but when comparing
the extent of improvement with the increasing number
of snapshots, i.e., the slope of the average RMSE curves,
the WSFOPDE approach exhibits much better promotion
than the FBSS+ESPRIT.

Table 4 The average time of executing one-time algorithm

Algorithm types Ave. running time

FBSS + ESPRIT 0.0084 s

The WSFOPDE 0.0220 s

FBSS + PARAFAC 0.0760 s

The improved WSFOPDE 0.4127 s

MUSIC + OP 115.2540 s
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Fig. 3 The DOA-DOD estimation performance versus the number of
snapshots: uncorrelated signals

In order to assess the proposed approaches more com-
prehensively, in the following simulations, we focuss on
two factors, i.e., the angular separation and the number of
antennas.

Example 3 We also test the estimation performance in
terms of the angular separation between the DOA of uncor-
related and coherent signals. Herein, one uncorrelated
signal comes from (50◦, η1), and one group of two coherent
signals come from {(15◦, 20◦), (30◦, η2)} with the attenu-
ation coefficient vector

[
1, ejπ/3]T , where η1 = η2 + �η,

η2 = 40◦, and �η is varied from 2◦ to 16◦ with 2◦ step.
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Fig. 4 The DOA-DOD estimation performance versus the number of
snapshots: coherent signals

Other related parameters are set as the number of anten-
nas M = N = 7, the subarray size Z1 = Z2 = 5, the
number of snapshots T = 500, and the SNR is fixed at 5 dB.

The simulation curves in Figs. 5 and 6 illustrate that
the angle distinguishing ability of both approaches are
restricted due to the closely spaced uncorrelated signal
s1(t) and coherent signal s3(t); therefore, they all show
unsatisfactory performance with larger average RMSE,
especially for the angle estimation of coherent signals.
With the angular separation becoming wider and wider,
the performance is getting better; and basically, although
the improvedWSFOPDE approach requires more calcula-
tions, it is superior to its predecessor in all level of angular
separation.

Example 4 Besides the angular separation, the behav-
ior of coherent signals will affect the performance of angle
estimation. Herein, we mainly focuss on the sub-signals
number of one group of coherent signals. In this example,
there exist one uncorrelated signals and one group of coher-
ent signals. The case 1 includes 4 sub-signals, and the case
2 includes 2 sub-signals. We restrict the DOA and DOD
of coherent signals to the uniform-linear distribution in a
fixed angular range [ 5◦, 35◦] and [ 0◦, 30◦], respectively.
The uncorrelated signal is fixed at (θ ,φ) = (40◦, 45◦) in
both cases. Other related parameters are set as: the num-
ber of antennas M = N = 12 and T = 500. Figures 7
and 8 illustrate the performance variation. As we can see,
the increase of sub-signals number in one group of coher-
ent signals will cause RMSE performance deterioration in
angle estimation. Such deterioration in the RMSE of coher-
ent signals is greater that the one of uncorrelated signals. In
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Fig. 5 The performance variation with angular separation between
the DOA of mixed signals: uncorrelated signals
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Fig. 6 The performance variation with angular separation between
the DOA of mixed signals: coherent signals

this sense, for ultra-high identifiability, the massive arrays
are necessary.

Example 5 Finally, we examine the average RMSE per-
formance with different number of M and N. Herein we
arrange M = N. In this example, the considered scenario
includes one uncorrelated signal with β1 = 1 and (θ ,φ) =
(10◦, 45◦), two group of four coherent signals with γ11 = 1,
γ12 = 0.5ejπ/16, γ21 = 1, γ22 = 0.75ejπ/7 and (θ ,φ) ∈
{(30◦, 35◦), (−20◦, 15◦), (50◦,−15◦), (10◦,−50◦)}. In ad-
dition, the number of snapshots is set as T = 500 and the
SNR is fixed at 5dB.
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Fig. 7 The RMSE performance variation under different sub-signals
number in one group of coherent signals: uncorrelated signals
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Fig. 8 The RMSE performance variation under different sub-signals
number in one group of coherent signals: coherent signals

It clearly manifests in Figs. 9 and 10 that the accuracy
of DOA-DOD estimation is gradually improved with the
increase of antenna number for both uncorrelated and
coherent signals.

6 Conclusions
In this paper, two computationally efficient approaches
based on weighted subspace fitting and oblique projec-
tion, called WSFOPED and improved WSFOPED, were
proposed for the joint DOA and DOD estimation of a
mixture of uncorrelated and coherent narrowband sig-
nals in MIMO array systems, where the estimated DOA
and DOD information is pair-matched automatically. The
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Fig. 9 The RMSE performance with different configuration ofM and
N: uncorrelated signals
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Fig. 10 The RMSE performance with different configuration ofM and
N: coherent signals

whole procedure includes three stages: polynomial root-
ing, uncorrelated DOA discerning and transmit steering
vectors estimating, and virtual MIMO array data con-
structing via oblique projection. By systematical analysis
of the computational complexity and sufficient simulation
examples, the effectiveness of the proposed approaches
were verified and they can be considered as better alter-
natives in two-dimensional spectrum estimation.

Endnote
1 The method of direction estimation (MODE) is first

proposed by P. Stoica and K. C. Sharman in [33]
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