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Abstract

The present work introduces the hybrid consensus alternating directionmethod of multipliers (H-CADMM), a novel
framework for optimization over networks which unifies existing distributed optimization approaches, including the
centralized and the decentralized consensus ADMM. H-CADMM provides a flexible tool that leverages the underlying
graph topology in order to achieve a desirable sweet spot between node-to-node communication overhead and rate
of convergence—thereby alleviating known limitations of both C-CADMM and D-CADMM. A rigorous analysis of the
novel method establishes linear convergence rate and also guides the choice of parameters to optimize this rate. The
novel hybrid update rules of H-CADMM lend themselves to “in-network acceleration” that is shown to effect
considerable—and essentially “free-of-charge”—performance boost over the fully decentralized ADMM.
Comprehensive numerical tests validate the analysis and showcase the potential of the method in tackling efficiently,
widely useful learning tasks.
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1 Introduction
Recent advances in machine learning, signal processing,
and data mining have led to important problems that
can be formulated as distributed optimization over net-
works. Such problems entail parallel processing of data
acquired by interconnected nodes and arise frequently
in several applications, including data fusion and pro-
cessing using sensor networks [1–4], vehicle coordination
[5, 6], power state estimation [7], clustering [8], classifica-
tion [9], regression [10], filtering [11], and demodulation
[12, 13], to name a few. Among the candidate solvers
for such problems, the alternating direction method of
multipliers (ADMM) [14, 15] stands out as an efficient
and easily implementable algorithm of choice that has
attracted much interest in recent years [16–19], thanks to
its simplicity, fast convergence, and easily decomposable
structure.
Many distributed optimization problems can be for-

mulated in a consensus form and solved efficiently by
ADMM [15, 20]. The solver involves two basic steps:
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(i) a communication step for exchanging information
with a central processing unit, the so-called fusion cen-
ter (FC), and (ii) an update step for updating the local
variables at each node. By alternating between the two,
local iterates eventually converge to the global solution.
This approach is referred to as centralized consensus
ADMM (C-CADMM), and although it has been success-
fully applied in various settings, it may not always present
the preferable solver. In large-scale systems for instance,
the cost of connecting each node to the FC may become
prohibitive as the overhead of communicating data to
the FC may be overwhelming and the related storage
requirement could surpass the capacity of a single FC. Fur-
thermore, having one dedicated FC can lead to a single
point of failure. In addition, theremight be privacy-related
issues that restrict access to private data.
Decentralized optimization, on the other hand, for-

goes with the FC by exchanging information only among
single-hop neighbors. As long as the network is con-
nected, local iterates can consent to the globally optimal
decision variable, thanks to the aforementioned informa-
tion exchange. This method—referred to as decentralized
consensus ADMM (D-CADMM)—has attracted consid-
erable interest; see e.g., [20] for a review of applications in
communications and networking. In large-scale networks,
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D-CADMM’s convergence slows down as the per-node
information experiences large delays to reach remote des-
tinations throughmultiple neighbor-to-neighbor commu-
nications.

1.1 Our contributions
To address the aforementioned limitations, the present
paper puts forth a novel decentralized framework, that we
term hybrid consensus ADMM (H-CADMM), which uni-
fies and markedly broadens C-CADMM and D-CADMM.
Our contributions are in five directions:

(i) H-CADMM features hybrid updates
accommodating communications with both the FCs
and single-hop neighbors, thus bridging centralized
with fully decentralized updates. This makes
H-CADMM appealing for large-scale networks with
multiple local FCs—a situation none of the existing
approached is designed to handle.

(ii) A novel formulation of D-CADMM without
duplicate constraints (dual variables commonly
adopted by decentralized learning [7, 20, 21])
emerges simply by specializing the hybrid constraints
to coincide with those arising from the purely
neighborhood-based formulation.

(iii) Linear convergence is established, along with a rate
bound and specializes to C- CADMM and
D-CADMM. The parameter setting to achieve the
optimal bound is also provided.

(iv) H-CADMM is flexible to deploy FCs as needed to
maximize performance gains, thus striking a
desirable trade-off between the number of FCs
deployed and convergence gain sought.

(v) The capability of handling hybrid constraints not
only deals with mixed updates but also effects
“in-network acceleration” in decentralized operation
without incurring noticeable increase in the overall
complexity.

1.2 Related work
Distributed optimization over networks has attracted
much attention since the seminal works in [14, 22], where
gradient-based parallel algorithms were developed. Since
then, several alternatives have been advocated, includ-
ing subgradient methods [23–26], stochastic subgradients
[27], dual averaging [28, 29], and gossip algorithms [30].
The decomposability of CADMM makes it particularly

well suited for distributed optimization. Along with its
many variants, including centralized [14], decentralized
[20, 21], weighted [3, 31], and Nesterov accelerated [17],
CADMM has gained wide popularity.
ADMM was introduced in the 1970s [32], and its con-

vergence analysis can be found in, e.g., [33, 34]. Local
linear convergence of ADMM for linear or quadratic

programs is established in [35]; see also [18] where the
cost is a sum of component costs. Global linear conver-
gence of a more general form of ADMM is reported in
[19], and linear convergence for a generalized formulation
of consensus ADMM using the so-called “communication
matrix” in [31].
Though D-CADMM has been applied to various prob-

lems [3, 4, 10, 12, 13, 36], its linear convergence remained
open until recently [21] (see [37] for the weighted coun-
terpart). A successive orthogonal projection approach for
distributed learning over networked nodes is introduced
in [38], where nodes cannot communicate, but each node
can access only limited amounts of data, and agreement
is enforced across nodes sharing the same data. A dis-
tributed ADMM algorithm that deals with node clusters
was proposed, for which linear convergence was also
substantiated [39]. However, it relies on the gossip algo-
rithm for communication within clusters when cluster
head is absent and the explicit rate bound is difficult to
obtains. Moreover, it admits no closed-form representa-
tion for general networks. The present contribution is the
first principled attempt to tackling the hybrid consensus
problem.

1.3 Outline and notation
The rest of the paper is organized as follows. Section 2
states the problem and outlines two existing solvers,
namely C-CADMM and D-CADMM; Section 3 devel-
ops H-CADMM and shows its connections to both C-
CADMM and D-CADMM; Section 4 establishes linear
convergence of H-CADMM and discusses parameter set-
tings that can afford optimal performance; Section 5 intro-
duces the notion of “in-network acceleration;” Section 6
reports the results of numerical tests; and Section 7 con-
cludes this work.
Notation. Vectors are represented by bold lower case,

and matrices by bold upper case letters; IN denotes the
identity matrix of size N ×N , and 1(0) the all ones (zeros)
vector of appropriate size.

2 Preliminaries
For a network of N nodes, consensus optimization
amounts to solving problems of the form

min
x

N∑

i=1
fi(x) (1)

where fi(·) is the ith cost—only available to node i; and
x ∈ R

l is the common decision variable.
A common approach to solving such problems is to cre-

ate a local copy of the global decision variable for each
node and impose equality constraints among all local
copies; that is,
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min{xi}

N∑

i=1
fi(xi)

s. to x1 = x2 = . . . = xN

(2)

where {xi} is the local copy and equality is enforced to
ensure equivalence of (1) with (2). As a result, the global
decision variable in (1) is successfully decoupled to facili-
tate distributed processing.
Each node optimizes locally its component of cost, and

the equality constraints are effected by exchanging infor-
mation among nodes, subject to restrictions. Indeed, in
the centralized case, nodes communicate with a single
FC, while in the fully decentralized case, nodes can only
communicate with their immediate neighbors.
We model communication constraints in the decentral-

ized setting as an undirected graph G := (V , E), with
each vertex {vi} corresponding to one node, and the pres-
ence of edge (vi, vj) ∈ E denoting that nodes i and j can
communicate. With N(resp. M) denoting the number of
nodes (edges), we will label nodes (edges) using the set
{1, 2, . . . ,N} (resp. {1, 2, . . . ,M}). We will further define
the neighborhood set of node i asNi := {j|(vi, vj) ∈ E}.
The following assumptions will be adopted about the

graph and the local cost functions.

Assumption 1 (Connectivity) Graph G := (V , E) is
connected.

Assumption 2 (Strong convexity) Local cost fi is σi—
strongly convex; that is, for any x, y ∈ R

l ,

fi(y) ≥ fi(x) + ∇f �
i (x)(y − x) + σi

2
‖y − x‖22.

Assumption 3 (Lipschitz continuous gradient) Local fi
is differentiable and has Lipschitz continuous gradient;
that is, for any x, y ∈ R

l ,

‖∇fi(x) − ∇fi(y)‖2 ≤ Li‖x − y‖2.

For brevity, we will henceforth focus on l = 1, but
Appendix A outlines the generalization to l ≥ 2.

2.1 Centralized consensus ADMM
With a centralized global (G)FC, consensus is guaran-
teed when each node forces its local decision variable
to equal that of the GFC. In iterative algorithms, this is
accomplished through the update of each local decision
variable based on information exchanged with the GFC.
As a result, (1) can be formulated as

min{xi}

N∑

i=1
fi(xi)

s. to xi = z

(3)

where z represents the GFC’s decision variable (state).
ADMM solves (3) by (i) forming the augmented

Lagrangian and (ii) performing Gauss-Seidel updates of
primal and dual variables. Attaching Lagrange multipli-
ers {λi}Ni=1 to the equality constraints and augmenting the
Lagrangian with the penalty parameter ρ, we arrive at

L(x, z,λ) = F(x) + λ�(x − z1) + ρ

2
‖x − z1‖22

where x := [x1, x2, . . . , xN ]�, λ :=[ λ1, λ2, . . . , λN ]�,
F(x) := ∑N

i=1 fi(xi), and z = x̄ = N−1 ∑N
i=1 xi. Per entry

(node) i, the ADMM updates are (see, e.g., [15])

xk+1
i = (∇fi + I)−1

(
ρx̄k − λki

)
(4a)

λk+1
i = λki + ρ

(
xk+1
i − x̄k

)
(4b)

where z has been eliminated and the inverse in (4a) is
a shorthand for xk+1

i being the solution of ∇fi
(
xk+1
i

)
+

xk+1
i =

(
ρx̄k − λki

)
. Specialized to (4) C-CADMM boils

down to the following three-step updates.

C1. Node i solves (4a) and xk+1
i to the GFC.

C2. The GFC updates its global decision variable by
averaging local copies and broadcasts the updated
value zk+1 back to all nodes.

C3. Node i updates its Lagrange multiplier as in (4b).

2.2 Decentralized consensus ADMM
In the decentralized setting, no GFC is present and nodes
can only communicate with their one-hop neighbors. If
the underlying graph G is connected, consensus con-
straints effect agreement across nodes.
Consider an auxiliary variable {zij} per edge (vi, vj) ∈ E

and re-write (2) as

min{xi}

N∑

i=1
fi(xi)

s. to xi = zij, xj = zji, (vi, vj) ∈ E .
(5)

For undirected graphs, we have zij = zji. With M edges
in total, (5) includes 4M equality constraints, that can
be written in matrix-vector form, leading to the compact
expression

min{xi}
F(x)

s. to Ax + Bz = 0
(6)

where z is the vector concatenating all {zij} in arbitrary
order, A := [

A�
1 ,A�

2
]� with A1,A2 ∈ R

N×2M defined
such that if the qth element of z is zij, then (A1)qi = 1,
(A2)qj = 1, and all other elements are zeros; while B :=
[−I�2M,−I�2M

]�.
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Formulation (6) is amenable to ADMM. To this end, one
starts with the augmented Lagrangian

L(x, z,λ) = F(x) + λ�(Ax + Bz) + ρ

2
‖Ax + Bz‖22

where Lagrange multiplier vector λ := [
β�, γ �]� is split

in sub-vectors β , γ ∈ R
2M, initialized with β0 = −γ 0.

After simple manipulations, one obtains the simplified
ADMM updates (see [21] for details):

xk+1
i = (∇fi + ρ|Ni|I

)−1

⎡

⎣ρ

2
∑

j∈Ni

(
xki + xkj

)
− yki

⎤

⎦ (7a)

yk+1
i = yki + ρ

2
∑

j∈Ni

(
xk+1
i − xk+1

j

)
(7b)

where y := (A1 − A2)�β , and the inverse in (7a) is
a shorthand for xk+1

i being the solution of ∇fi
(
xk+1
i

)
+

ρ|N |xk+1
i = (ρ/2)

∑
j∈Ni

(
xk+1
i + xk+1

j

)
.

The fact that the per-node updates in (7) involve only
single-hop neighbors justifies the term decentralized con-
sensus ADMM (D-CADMM).
In a nutshell, D-CADMMworks as follows:

D1. Each node sends its local variable to all its single-hop
neighbors.

D2. Upon receiving information from all its neighbors,
node i updates its local variable as in (7a).

D3. Node xi, node i updates its dual variable yi as in (7b).

3 Hybrid consensus ADMM
Rather than a single GFC that is connected to all nodes,
here, we consider optimization over networks withmulti-
ple LFCs. Such a setup can arise in large-scale networks,
where bandwidth, power, and computational limits or
even security concerns may discourage deployment of a
single GFC. These considerations prompt the deployment
of multiple LFCs each of which communicates with a lim-
ited number of nodes. No prior ADMM-based solver can
deal with this setup as none is capable of handling hybrid
constraints that are present when nodes exchange infor-
mation not only with LFCs but also with their single-hop
neighbors. This section introduces H-CADMM that is
particularly designed to handle this situation.

3.1 Problem formulation
In contrast to the simple graph G used in the fully decen-
tralized setting, we will employ hypergrahs to cope with
hybrid constraints. A hypergraph is a tuple H := (V , E),
where V is the vertex set and E := {Ei}Mi=1 denotes the
collection of hyperedges. Each Ei comprises a set of ver-
tices, Ei ⊂ V with cardinality |Ei| ≥ 2, ∀i. If |Ei| = 2,
then it reduces to a simple edge. A vertex vi and an edge

Ej are said to be incident if vi ∈ Ej. Hypergraphs are par-
ticularly suitable for modeling hybrid constraints because
each LFC can be modeled as one hyperedge consisting of
all its connected nodes.
With N nodes, M hyperedges, and their correspond-

ing orderings, we can associate each edge variable zj with
hyperedge j. Then, the hybrid constraints can be readily
reparameterized as xi = zj, ∀i : vi ∈ Ej. Consider now
vectors x ∈ R

N , z ∈ R
M collecting all local {xi, zj}s, and

matrices A ∈ R
T×N , B ∈ R

T×M constructed to have
nonzero entriesAti = 1, Btj = 1 corresponding to tth con-
straint xi − zj = 0. For T equality constraints, the hybrid
form of (1) can thus be written compactly as

min
xi

N∑

i=1
fi(xi)

s.to Ax − Bz = 0.

(8)

Let now C ∈ R
N×M denote the incidence matrix of

the hypergraph, formed with entries Cij = 1 if node i
and edge j are incident, and Cij = 0 otherwise; di is the
degree of node i (the number of incident edges of node
i), ej is the degree of hyperedge j (the number of incident
nodes of hyperedge j), diagonal matrix D ∈ R

N×N is the
node degree matrix (formed with di as its ith diagonal ele-
ment), and likewise, E ∈ R

M×M is the edge degree matrix
(formed with ej = |Ej| as its jth diagonal element). With
these notational conventions, we prove in the Appendix
the following.

Lemma 1 Matrices A and B in (8) satisfy

A�A = D (9a)
B�B = E (9b)
A�B = C. (9c)

Example Consider the graph in Fig. 1. The underlying
graph has 6 nodes and 5 simple edges. We create one
hyperedge containing nodes 1 to 4, nodes 4 and 5, and
nodes 5 and 6. As a result, the hypergraph has N = 6
nodes andM = 3 hyperedges.
Creating variables xi for nodes i and zj for hyperedge j,

we obtain T = 8 constraints, namely, xi = z1, i = 1, 2, 3, 4,
x4 = z2, x5 = z2, x5 = z3, and x6 = z3. Accordingly, one
can construct matrices A and B as

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Fig. 1 An example demonstrating how hyperedges are created. Both
the underlying graph (simple edges in black straight lines) and the
hypergraph (hyperedges as ellipsoids) are shown for comparison

One can easily verify that each row of Ax − Bz = 0
represents one constraint and Lemma 1 indeed holds.

3.2 Algorithm
The augmented Lagrangian for (8) is

L(x, z,λ) =
N∑

i=1
fi(xi) + λ�(Ax − Bz) + ρ

2
‖Ax − Bz‖22

(10)

where λ ∈ R
T collects all the Lagrange multipliers, and ρ

is a hyper-parameter controlling the effect of the quadratic
regularizer. ADMM updates can be obtained by cyclically
solving x, z and λ from equations

∇f
(
xk+1

)
+ A�λk + ρA� (

Axk+1 − Bzk
)

= 0 (11a)

B�λk + ρB� (
Axk+1 − Bzk+1

)
= 0 (11b)

λk+1 = λk + ρ
(
Axk+1 − Bzk+1

)
. (11c)

Equation (11) can be simplified by left-multiplying (11c)
by B� and adding it to (11b) to obtain

B�λk+1 = 0. (12)

If λ is initialized such that B�λ0 = 0, then B�λk = 0 for
all k ≥ 0. Eliminating B�λk from (11b), one can solve for
z and arrive at the closed form

zk+1 = E−1C�xk+1. (13)

Similarly, by left-multiplying (11c) byA� and letting yk :=
A�λk , one finds

yk+1 − yk = ρ
(
Dxk+1 − Czk+1

)
. (14)

Then, simply plugging (13) into (11a) yields

xk+1 = (∇f + ρDI)−1
(
ρCzk − yk

)
. (15)

Algorithm 1: Hybrid Consensus ADMM
Input: ρ, x0, z0, y0 = 0
while stopping criterion not satisfied do

for i = 1, . . . ,N do
node i updates xk+1

i by solving
∇fi

(
xk+1
i

)
+ ρ|Ni|xk+1

i = ρ
∑

j∈Ni z
k
j − yki ;

send xk+1
i to all incident FCs and neighbors

for j = 1, . . . ,M do
FC j updates zk+1

j = 1
Ejj

∑
i∈Nj x

k+1
i ;

send zk+1
j to all incident nodes

for i = 1, . . . ,N do
node i updates
yk+1
i = yki + ρ

(
Diixk+1

i − ∑
j∈Ni z

k+1
j

)

Recursions (13)–(15) summarize our H-CADMM, and
their per-node forms are listed in Algorithm 1.

Remark 1 Two interesting observations are in order:

(i) Regardless of the number of attached nodes, each
hyperedge serves as an LFC.

(ii) Each LFC performs local averaging. Indeed, the
entry-wise update of (13) shows that each hyperedge
satisfies zi = (1/Eii)

∑
j∈Ni xj. Hence, all hyperedges

are treated equally in the sense that they are updated
by the average value of all incident nodes.

3.3 Key relations
Here, we unveil a relationship satisfied by the iterates
{xk} generated by Algorithm 1, which not only provides
a different view of H-CADMM, but also serves as the
starting point for establishing the convergence results in
Section 4. This relation shows that xk+1 depends solely
on the gradient of the local cost function, as well as the
past

{
xk , xk−1, . . . , x0

}
that is also not dependent on the

variables zk and yk .

Lemma 2 The sequence
{
xk

}
generated by Algorithm 1

satisfies

xk+1 = − 1
ρ
D−1∇F

(
xk+1

)
+ D−1CE−1C�xk (16)

− D−1
(
D − CE−1C�) k∑

t=0
xt .

Proof Substituting (13) into (14), we obtain

yk+1 − yk = ρ
(
D − CE−1C�)

xk (17)



Ma et al. EURASIP Journal on Advances in Signal Processing         (2018) 2018:73 Page 6 of 17

which upon initializing with y0 = 0, leads to

yk = ρ
(
D − CE−1C�) k∑

t=0
xt . (18)

Plugging (13) and (18) into (15), yields

∇F
(
xk+1

)
+ ρDxk+1 = ρCE−1C�xk (19)

−ρ
(
D − CE−1C�) k∑

t=0
xt

from which we can readily solve for xk+1.

Lemma 2 shows that xk+1
i is determined by its past

{xti}kt=0 and the local gradient, namely ∇fi
(
xk+1
i

)
. This

suggests a new update scheme, where each node main-
tains not only its current xki but also

∑k
t=0 xti .

Among the things worth stressing in Lemma 2 is the
appearance of matrices CE−1C� and D − CE−1C�. Since
both play key roles in studying the evolution of (19), it is
important to understand their properties and impact on
the performance of the algorithm.

Lemma 3 Matrices CE−1C� and D − CE−1C� are
positive semidefinite (PSD) and satisfy

(
D − CE−1C�)

1 = 0. (20)

Proof See Appendix.

3.4 H-CADMM links to C-CADMM and D-CADMM
Modeling hybrid communication constraints as a hyper-
graph not only affords the flexibility to accommodate
multiple LFCs, but also provides a unified view of
consensus-based ADMM. Indeed, it is not difficult to
show that by specializing the hypergraph, our proposed
approach subsumes both centralized and decentralized
consensus ADMM.

Proposition 1 H-CADMM reduces to C-CADMM
when there is only one hyperedge capturing all nodes.

Proof When there is a single hyperedge comprising all
network nodes, we have A = IN and B = 1. Using (9), we
thus obtain

D = A�A = IN (21a)
E = B�B = N (21b)
C = A�B = 1. (21c)

Then, the update (13) at the GFC reduces to

zk+1 = E−1C�xk = 1
N

N∑

i=1
xki = x̄k .

Similarly, (15) and (14) specialize to

xk+1 = (∇f + ρI)−1
(
ρx̄k1 − λk

)
(22a)

λk+1 = λk + ρ
(
xk+1 − x̄k+11

)
(22b)

where we have used that yk = A�λk = λk .
Comparing (22) with (4), it is not difficult to see that (4a)

is just the entry-wise form of (22a) and likewise for (22b)
and (4b). Therefore, C-CADMM can be viewed as a spe-
cial case of H-CADMM with one hyperedge connecting
all nodes.

Proposition 2 H-CADMM reduces to D-CADMM
when every edge is a hyperedge.

Proof When each simple edge is modeled as a hyper-
edge, the resulting hyperedges will end up having degree
2, that is, E = 2I. Thus, (13) becomes

zk+1 = 1
2
C�xk+1. (23)

Using (23) and eliminating z from (15) and (14) yields

xk+1 = (∇f + ρDI)−1(
ρ

2
CC�xk − yk) (24a)

yk+1 = yk + ρ(D − 1
2
CC�)xk+1. (24b)

To relate
∑

j∈N (xi + xj) in (7b) to (24b), notice that
Dii = |Ni| and (CC�x)i = ∑

j∈Ni(xi + xj). Hence, it is
straightforward to see that (7a) and (7b) are just the entry-
wise versions of (24a) and (24b). Therefore, D-CADMM is
also a special case of H-CADMM with each simple edge
viewed as a hyperedge.

Remark 2 In past works of fully decentralized consensus
ADMM [10, 12, 20, 21], one edge is often associated with
two variables zij, zji in order to decouple the equality con-
straint xi = xj and express it as xi = zij, xj = zji. Although
eventually the duplicate variables are shown equal (and
therefore discarded), their sheer presence leads to duplicate
Lagrange multipliers, which can complicate the algorithm.
Proposition 2 suggests a novel derivation of D-CADMM
with only one variable attached to each edge, a property
that can simplify the whole process considerably.

Example 1 Consider the simple graph depicted in Fig. 1
with 6 nodes and 5 edges. All nodes work collectively
to minimize some separable cost. Solid lines denote the
undirected graph connectivity, while ellipsoids represent
hyperedges in the modeling hypergraph of H-CADMM.
Let us consider C-CADMM,D-CADMM, andH-CADMM
solvers on this setting. To gain insight, we examine closely
the update rules at node 4 that we list in Table 1.
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Table 1 Comparison of ADMM update rules at node 4 using C-CADMM, D-CADMM, and H-CADMM to solve the problem in Example 1

Method Update rules

C-CADMM xk+1
4 = argmin

x4

[
f4(x4) + λk4

(
x4 − x̄k

) + ρ
2 ‖x4 − x̄k‖22

]

λk+1
4 = λk4 + ρ

(
xk+1
4 − x̄k+1

)

D-CADMM xk+1
4 = (∇f4 + 2ρI)−1

(
ρxk4 + ρ

2

(
xk2 + xk5

) − yk4
)

yk+1
4 = yk4 + ρ

2

(
2xk+1

4 − xk+1
2 − xk+1

5

)

H-CADMM xk+1
4 = argmin

x4

[
f4(x4) + yk4x4 + ρ

2

(
‖x4 − 1

4

∑4
i=1 x

k
i ‖2 + ‖x4 − 1

2

∑2
i=1 x

k
i ‖2

)]

yk+1
4 = yk4 + ρ

(
2xk+1

4 − 1
4

∑4
i=1 x

k+1
i − 1

2

∑5
i=4 x

k+1
i

)

As C-CADMM relies on a GFC connecting all nodes,
every node receives updates from the GFC. This is demon-
strated in the first row of Table 1.
D-CADMM on the other hand, allows communication

only along edges (solid line). Thus, each node can only
receive updates from its single-hop neighbors. Specifically,
node 4 can only receive information from nodes 2 and 5, as
can be seen in the second row of Table 1.
H-CADMM lies somewhere in between. It allows deploy-

ment of multiple LFCs, each of which is connected to a
subset of nodes. The hypergraph model is shown in Fig. 1
with hyperedges marked by ellipsoids. The union of 3 solid
ellipsoids corresponds to the LFC, while dash and dotted
ones represent the edges between nodes 4, 5, and 6. Speak-
ing of node 4, the information needed to update its local
variables comes from its neighbors, the LFC represented by
∑4

i=1 x
k+1
i /4; and node 5 represented by

(
xk+1
4 + xk+1

5

)
/2.

That is exactly what we see in the third row of Table 1.

Remark 3 For all three consensus ADMM algorithms,
the fusion centers—both global and local—act as averag-
ing operators that compute, store, and broadcast the mean
values of the local estimates from all connected nodes.

Remark 4 The dual update per node acts as an accumu-
lator forming the sum of residuals between the node and
its connected fusion centers. With L := 2

(
D − CE−1C�)

denoting the Laplacian of the hypergraph, the dual update
per node boils down to

yk+1 = yk + ρ

2
Lxk+1, ∀k ≥ 1.

If dual variables are initialized such that y0 = 0, then

yk = ρ

2
L

k∑

t=1
xt .

This observation holds for all three algorithms.

Remark 5 Figure 2 exemplifies that H-CADMM “lies”
somewhere between C-CADMMandD-CADMM. Clearly,

consensus is attainable if and only if the communication
graph is connected.

4 Convergence rate analysis
In this section, we analyze the convergence behavior of
the novel H-CADMM algorithm. In particular, our main
theorem establishes linear convergence and provides a
bound on the rate of convergence, which depends on
properties of both the objective function, as well as the
underlying graph topology.
Apart from the assumptions made in Section 2, here, we

also need an additional one:

Assumption 4 There exists at least one saddle point
(x�, z�, y�) of Algorithm 1 that satisfies the KKT conditions:

∇f (x�) + y� = 0 (25a)
z� − E−1B�Ax� = 0 (25b)

(
I − BE−1B�)

Ax� = 0. (25c)

This assumption is required for the development of
Algorithm 1 as well as for the analysis of its convergence
rate. If (as4) does not hold, either the original problem
is unsolvable or it entails unbounded subproblems or a
diverging sequence of λk [19].
Assumptions 1–4 guarantee the existence of at least one

optimal solution. In fact, we can further prove that any
saddle point is actually the unique solution of the KKT
conditions (25) and hence of Algorithm 1.

Lemma 4 If λ is initialized so thatB�λ0 = 0, and (as1)–
(as4) hold, then (x�, z�, y�) is the unique optimal solution
of (25).

Proof See Appendix.

4.1 Linear rate of convergence
Alternating direction methods, including ADMM,
have been thoroughly investigated in [19]. Similar to
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Fig. 2 Communication graphs of C-CADMM, D-CADMM, and H-CADMM for example 1. Circles represent nodes, while squares represent
hyperedges. Solid lines between nodes and hyperedges indicate nodes belonging to hyperedges

D-CADMM [21], conditions for establishing linear con-
vergence rate in [19] are not necessarily satisfied by the
H-CADMM setup1. Therefore, we cannot establish linear
convergence rate simply by reformulating it as a special
case of existing ADMM approaches.
One way to overcome this obstacle is to adopt a tech-

nique similar to [21], as we did in [40], to obtain a relatively
loose bound on convergence, in the sense that it could not
capture significant accelerations observed in practice by
varying the topology of the underlying graph. For strongly
convex costs, a tighter bound has been reported recently
[31]. However, H-CADMM is not amenable to the analy-
sis in [31] since the linear constraint coefficients A and B
cannot be recovered from the communication matrix.
We establish convergence by measuring the progress

in terms of the G-norm, i.e., the semi-norm defined by
‖x‖2G := x�Gx, where G is the PSD matrix,

G =
[
I 0
0 CE−1C�

]
. (26)

The G-norm is properly defined since both CE−1C�
and D − CE−1C� are PSD (see Lemma 3). Consider now
the square root, Q := (

D − CE−1C�)1/2, and define two
auxiliary sequences

rk :=
k∑

t=0
Qxt , qk :=

[
rk
xk

]
. (27)

These two sequences play an important role in estab-
lishing linear convergence of the proposed algorithm.
Before we establish such a convergence result, we first
need to bound the gradient of F(·).

Lemma5 If (as1)–(as4) hold, then for any k ≥ 0, we have

CE−1C� (
xk+1 − xk

)
= −Q

(
rk+1 − r�

)
(28)

− 1
ρ

(
∇F

(
xk+1

)
− ∇F(x�)

)
.

Proof See Appendix.

Let � := λN
(
CE−1C�)

denote the largest eigenvalue of
CE−1C� and λ := λ2

(
D − CE−1C�)

the second smallest
eigenvalue of D − CE−1C�.

Theorem 1 Under (as1)–(as4) for any ρ > 0, β ∈ (0, 1),
and k > 0, H-CADMM iterates in (8) satisfy

‖xk − x�‖2G ≤
(

1
1 + δ

)k
‖q0 − q�‖2G (29)

where G and q as in (26) and (27), and δ satisfies

δ ≤ min
{

2βσ

ρ
(
� + 2�

λ

) ,
(1 − β)ρλ

L

}
. (30)

Proof See Appendix.

Theorem 1 asserts that xk converges linearly to the opti-
mal solution x� at a rate bounded by 1/(1 + δ). Larger δ

implies faster convergence.
Note that while Theorem 1 is proved for l = 1, it can be

generalized to l ≥ 2 (see (40) in Appendix A).

Remark 6 Assumptions 2 and 3 are sufficient conditions
for establishing linear convergence rate of H-CADMM.

4.2 Fine-tuning the parameters
Theorem 1 characterizes the convergence of iterates gen-
erated by H-CADMM. Parameter δ is determined by
the local costs, the underlying communication graph
topology, and the scalar ρ. By tuning these parameters,
one can maximize the convergence bound to speed up
convergence in practice too. With local costs and the
graph fixed, one can maximize δ by tuning ρ. When
possible to choose the number and locations of LFCs,
we can effectively alter the topology of the commu-
nication graph—hence modify � and λ—to improve
convergence.
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Theorem 2 Under assumptions 1–4 the optimal conver-
gence rate bound

δ ≤ 1
√

L
σ

�
λ

(
1 + 2�

λ

) (31)

is achieved by setting

ρ =
√

2σL
�λ

(
1 + �

λ

) . (32)

Proof The optimal β� ∈ (0, 1) maximizing δ in
Theorem 1 is

β� = ρ2�λ
(
1 + 2�

λ

)

2σL + ρ2�λ
(
1 + 2�

λ

) (33)

and is obtained by equating the two terms in (30)
2βσ

ρ
(
� + 2�

λ

) = (1 − β)ρλ

L
. (34)

Substituting (23) into (34), one arrives at

δ = 2σρλ

2σL + ρ2�λ
(
1 + 2�

λ

) . (35)

Maximizing δ by varying ρ eventually leads to (31), with
the optimal

ρ� =
√

2σL
�λ

(
1 + 2�

λ

) . (36)

Upon defining the cost condition number as

κF := max
i

Li
σi

and the graph condition number as

κG := λN
(
CE−1C�)

λ2
(
D − CE−1C�) , (37)

the optimal convergence rate can be bounded as

δ ≤ 1√
κFκG(1 + 2κG)

. (38)

Clearly, the bound in (38) is a decreasing function of κF
and κG. Therefore, decreasing both will drive the bound
larger, possibly resulting in a faster rate of convergence.
On the one hand, smaller cost condition number makes
the cost easier to optimize; on the other hand, smaller
graph condition number implies improved connectivity.
Indeed, when the communication hypergraph is just a
simple graph—a case for which H-CADMM reduces to
D-CADMM with D − CE−1C� = L/2, then λ is the
smallest nonzero eigenvalue of the Laplacian, which is
related to bottlenecks in the underlying graph [41].

Remark 7 Theorem 2 shows that the number of iter-
ations it takes to achieve an ε-accurate solution is
O

(√
κF log

( 1
ε

))
. The dependence on 1/√κF improves over

[21], which had established a dependence of 1/κ2
F .

5 Graph-aware acceleration
Distributed optimization over networks using a central
GFCs is not feasible for several reasons including commu-
nication constraints and privacy concerns. At the other
end of the spectrum, decentralized schemes relying on
single-hop communications may suffer from slow conver-
gence, especially when the network has a large diameter
or bottlenecks. H-CADMM fills the gap by compromising
between the two aforementioned extremes. By carefully
deploying multiple LFCs, it becomes possible to achieve
significant performance gains while abiding by cost and
privacy constraints.
In certain cases, leveraging the topology of the LFCs

deployed could bring sufficient gains. Instead of or com-
plementing gains from these actual LFCs, this section
advocates that gains in H-CADMM convergence are pos-
sible through virtual FCs on judiciously selected nodes.
We refer to the benefit brought by virtual FCs as in-
network acceleration (see Fig. 3 for a simple illustration);
it will be confirmed by numerical tests, virtual FCs can
afford a boost in performance “almost for free”; simply by
exploiting the actual network topology.
The merits of in-network acceleration through virtual

FCs at a subset of selected nodes (hosts) can be recognized
in the following four aspects.

• Hardware. Relying on virtual LFCs, in-network
acceleration requires no modifications in the actual
topology and hardware.

• Interface. The other nodes “see” exactly the same
number of neighbors, so there is no change in the
communication interface. However, the information
exchanged is indeed different.

• Computational complexity. Except for the host nodes,
the update rules for both primal and dual variables
remain the same. Each host however, serves a dual
role: as an FC as well as an ordinary node. We know
from Algorithm 1 that the computations performed
per LFC involve averaging information from all
connected nodes, which is simple compared to
updating the local variables. Thus, the computational
complexity remains of the same order, while the total
computational cost decreases as less iterations are
necessary to reach a target level of accuracy.

• Communication cost. Since there is no change of the
communication interface, the communication cost
remains invariant. Once again, the total
communication cost can further drop, since
H-CADMM enjoys faster convergence.
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Fig. 3 A demonstration of in-network acceleration applied to the
problem of example 1. The shaded dashed circle in (b) is equivalent to
node 2 in (a), except that a virtual FC (square LFC) is created logically,
making it amenable to the application of H-CADMM. The interface to
other nodes remains the same. The information exchanged through
the edges changes. For example, the message sent from nodes 2 to 4
changes from xk2, which describes only the state of node 2, to
xk1−4 = 1/N

∑4
n=1 x

k
n which contains information about 4 nodes

Given that the interface does not change, nor extra
communication/computation cost is incurred, one can
think of in-network acceleration as a sort of “free lunch”
approach, with particularly attractive practical implica-
tions.

Remark 8 The communication cost per iteration refers
to the total number of transmission needed for updating
each variable once, hence the total communication cost. In
the graph of Fig. 3, the nodes need to transmit 2 × 5 times
to finish one iteration (each node must send and receive
once to update its variables and there are 5 edges), so the
communication cost per iteration is 10 transmissions.

5.1 Strategies for selecting the local FCs
A reasonable question to ask at this point is: “How
should one select the nodes to host the virtual FCs?”

Unfortunately, there is no simple answer. The question
would have been easier if we could choose as many LFCs
as necessary to achieve the maximum possible accelera-
tion. In practice, however, we do not always have the lux-
ury to place as many virtual LFCs as we want, for reasons
that include lack of control over some nodes and difficulty
to modify internal updating rules. And even if we could,
picking the right nodes to host the LFCs under a general
network architecture might not be straightforward.
A reasonable way forth would be to maximize the con-

vergence rate bound, δ, subject to a maximum number of
LFCs, hoping that the optimal solution would yield the
best rate of convergence in practice. However, this turns
out to involve optimizing the ratio of eigenvalues, which
is typically difficult to solve. For this reason, we will resort
to heuristic methods.
Intuitively, one may choose the nodes with highest

degree so as to maximize the effect of virtual LFCs. How-
ever, one should be careful when applying this simple
approach to clustered graphs. For example, consider the
graph consisting of two cliques (connected by a short
path), comprising n1 and n2 nodes, respectively. Each
node in the larger clique has higher degree than every
node in the smaller one. As a result, always assigning the
role of LFC to the largest degree nodes would disregard
the nodes of the smaller clique (when our budget is less
than n1), while one could apparently take care of both
cliques with as few as two LFCs. Taking this into account,
we advocate a greedy LFC selection (Algorithm 2), which
prohibits placing virtual LFCs within the neighborhood of
other FCs.

Remark 9 For simplicity, Algorithm 2 relies on degree
information to select LFCs. More elaborate strategies
would involve richer structural properties of the underlying
topology to identify more promising nodes at the expense of
possibly computationally heavier LFC selection. In general,
LFC selection strategies offer the potential of substantially
increasing the convergence rate over random assignment.
Note however, that regardless of the choice of virtual LFCs,
H-CADMM remains operational.

5.2 On H-CADMM’s “free lunch”
In-network acceleration has several advantages, allow-
ing for faster convergence essentially “without paying any
price.” At first glance, this appears to be a “free lunch”
type of benefit and deservedly makes one skeptical. Actu-
ally, the benefit comes from leveraging information that is
completely overlooked by fully decentralized methods. To
see this, recall that in D-CADMM, each node communi-
cates with only one neighbor each time, without account-
ing for the entire neighborhood. Instead, H-CADMM
manages to exploit network topology by creating vir-
tual LFCs that gather and share information with the
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Algorithm 2: Greedy Selection of LFCs
Input: LFC budget B, graph G := (V , E)

H ← empty set;
c ← 0;
while V not empty do

mark v ∈ V with largest node degree as a LFC;
add hyperedge {v} ∪ Nv toH;
delete {v} ∪ Nv from V ;
delete {(v1, v2)|v1, v2 ∈ {v} ∪ Nv} from E ;
c ← c + 1;
if c ≥ B then

break

H ← H ∪ E ;
generate C fromH;
Output: incidence matrix C

whole neighborhood. It is this additional information that
enables faster flow of data and hence faster convergence.
Therefore, it is not a “free lunch” for H-CADMM, but a
lunch “not even tasted” by D-CADMM.

6 Numerical tests
In this section, we test numerically the performance of H-
CADMM and also validate our analytical findings.

6.1 Experimental settings
Throughout this section, we consider several intercon-
nected nodes trying to estimate one value, x0, based on
local observations oi = x0+εi, where εi ∼ N (0, 0.1) is the
measurement noise. This can be solved by minimizing the
least-squares (LS) error F(x) = 1

2
∑N

i=1 ‖oi − xi‖22. Differ-
ent from centralized LS, here, the observation oi is avail-
able only to node i, and all nodes collaborate to obtain the
final solution. In D-CADMM, each node can only talk to
its neighbors, while in H-CADMM nodes can potentially
communicate with the LFC and their neighbors.
We test D-CADMM and H-CADMM solvers with var-

ious parameter settings. We assess convergence using the
relative accuracy metric defined as ‖xk − x�‖2/‖x�‖2 and
report the number of iterations as well as the commu-
nication cost involved in reaching a target level of per-
formance. The communication cost measures how many
times local, and global decision variables are transferred
across the network. Originally, we set ρ according to
Theorem 2, but this choice did not work well our tests. For
this reason, we tuned it manually to reach the best possible
performance.

6.2 Acceleration of dedicated FCs
In this test, we compare the performance of H-CADMM
with dedicated FCs against that of D-CADMM. In partic-
ular, we choose only one dedicated LFC connected to 20

and 50% of the nodes drawn randomly from (i) a lollipop
graph, (ii) a caveman graph, and (iii) two Erdős Rényi ran-
dom graphs (see Fig. 4). All the graphs haveN = 50 nodes.
Specifically, in the lollipop graph, 50% of nodes comprise
a clique and the rest form a line graph attached to this
clique. The caveman graph consists of a cycle formed
by 10 small cliques, each forming a complete graph of 5
nodes. The Erdős Rényi graphs are randomly generated
with edge probability r = 0.05 and r = 0.1, respectively.
Figure 5 compares the performance of H-CADMMwith

one dedicated FC connected to 20 and 50% of the nodes
against D-CADMM, in terms of number of iterations
needed to achieve certain accuracy, as well as, communi-
cation cost. Lines with the same color markers denote the
same graph; dashed lines correspond to D-CADMM, and
solid lines to H-CADMM. From these two figures, one can
draw several interesting observations:

• H-CADMMwith mixed updates works well in
practice. Solutions are obtained in fewer iterations
and at lower communication cost.

• The tests verify the linear convergence properties of
both D-CADMM and H-CADMM, as can be seen in
all four graphs.

• The performance gap between dashed lines and solid
lines of the same marker confirms the acceleration
ability of H-CADMM. The gap is larger for “badly
connected” graphs, such as the lollipop graph and
relatively small for “well-connected” graphs, such as
the Erdős Rényi graphs. In fact, this observation holds
even when comparing the Erdős Rényi graphs.
Indeed, for the ER(r = 0.05) graph which is not as
well connected as the ER(r = 0.1), the performance
gap is smaller.

• Figure 5 suggests that the more nodes are connected
to the FC, the larger the acceleration gains for
H-CADMM, which is intuitively reasonable since
extra connections pay off. In view of this
connections-versus-acceleration trade-off,
H-CADMM can reach desirable sweet spots between
performance gains and deployment cost.

6.3 In-network acceleration
In this test, we demonstrate the performance gain effected
by in-network acceleration. By creating virtual FCs among
nodes, this technique does not require dedicated FCs and
new links. As detailed in Section 5, in-network accelerated
H-CADMM exchanges information along existing edges,
essentially leading to a communication cost that follows
the same pattern with iteration complexity. Therefore, in
this experiment, we report both metrics in one figure.
We first apply H-CADMMwith in-network acceleration

to several fixed-topology graphs, namely the line graph,
the cycle graph, and the star graph, and we report the
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Plots of graphs used in numerical tests. For clarity, we keep the number of nodes limited, and in case of random graphs, we show typical
realizations. (a) Caveman graph. (b) Lollipop graph. (c) Cycle graph. d) Erdős Rényi graph. (e) Line graph. (f) Star graph

Fig. 5 Performance comparison of D-CADMM and H-CADMM in terms of iteration number as well as communication cost. H-CADMM is configured
with one dedicated FC connecting 50% of the nodes (top row figures) and 20% of the nodes, respectively (bottom row figures)
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Fig. 6 Effects of in-network acceleration on the line graph, the cycle
graph, and the star graph

results in Fig. 6. Then, we carry out the same tests on
the lollipop graph, the caveman graph and the two Erdos-
Renyi graphs with parameters r = 0.05 and r = 0.10, and
we present the results in Fig. 7. In each test, we select the
hosts using Algorithm 2.
All the results illustrate that H-CADMM with in-

network acceleration offers a significant boost in conver-
gence rate over D-CADMM, especially for graphs with
relatively large diameters (or graphs that are not well con-
nected), such as the line graph, the cycle graph, or the
lollipop graph. On the other hand, the performance gain is
minimal for the star graph, whose diameter is 2 regardless
of the number of nodes, as well as the Erdős Rényi random

Fig. 7 Effects of in-network acceleration on the lollipop graph, the
caveman graph, and two Erdős Rényi random graphs

graph with high edge probability (see Fig. 7). Note that
these performance gains over D-CADMM are achieved
without paying a substantial computational cost (just one
averaging step), which speaks for the practical merits of
H-CADMM.

6.4 Trade-off between FCs and performance gain
Finally, we explore the trade-off between the number of
LFCs and the corresponding convergence rate. We per-
form tests on several graphs with different properties
and using only H-CADMM with in-network accelera-
tion. In this test, we measure performance by the num-
ber of iterations needed to achieve a target accuracy
of 10−8, given a varying number of LFCs ranging from
1 to 25.
Figure 8 depicts the results. In general, as the num-

ber of LFCs increases, the number of iterations decreases.
Besides this general trend, one can alsomake the following
observations.

• For Erdős Rényi graphs with a relatively high-edge
probability, there is a small initial gain arising from
the introduction of virtual LFCs, which diminishes
fast as their number increases. This is not surprising
since such graphs are “well connected,” and therefore,
adding more virtual LFCs does not help much. On the
other hand, for “badly connected” graphs, such as the
line graph or the lollipop graph, there is a significant
convergence boost as the number of LFCs increases.

• For the line and the cycle graph, a significant change
in convergence rate happens only after an initial
threshold has been surpassed (in our case 5–6 LFCs).
For the lollipop graph, there seems to exist a cutoff
point above which adding more nodes does not lead
to significant change in convergence rate.

Fig. 8 The impact of adding LFCs in H-CADMM with in-network
acceleration. The performance is measured in terms of number of
iterations needed to achieve certain accuracy
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7 Conclusion and future work
This paper introduces the novel H-CADMM algorithm
that generalizes the centralized and the decentralized
CADMM, while also accelerating D-CADMM with mod-
ified updates.
We establish linear convergence of H-CADMM, and

we also conduct a comprehensive set of numerical tests
that validate our analytical findings and demonstrate the
effectiveness of the proposed approach in practice.
A very promising direction we are currently pursuing

involves the development of techniques leveraging the
intrinsic hierarchical organization that is commonly
found in distributed system architectures (see, e.g.,
[42, 43]) as well as real-world large-scale network topolo-
gies (see, e.g., [44, 45]).

Endnote
1 This should be expected since H-CADMM reduces

to D-CADMM upon modeling each simple edge as an
hyperedge.

Appendix A: Algorithm 1 for l > 2
For l ≥ 2, we have x ∈ R

Nl, z ∈ R
Ml, λ ∈ R

Tl, and y ∈ R
Nl.

Let Ã ∈ R
Tl×Nl and B̃ ∈ R

Tl×Ml denote the coefficient
matrices for l ≥ 2, obtained by replacing 1’s of A and B
with the identity matrix Il and 0’s with all-zeromatrix 0l×l.
Consequently, node degree, edge degree, and incidence
matrices are D̃ = Ã�Ã ∈ R

Nl×Nl, Ẽ = B̃�B̃ ∈ R
Ml×Ml,

and C̃ = Ã�B̃ ∈ R
Nl×Ml. Meanwhile, H-CADMM boils

down to

xk+1 = (∇f + ρD̃I)−1
(
cC̃zk − yk

)
(39a)

zk+1 = Ẽ−1C̃�xk+1 (39b)

yk+1 = yk + ρ
(
D̃xk+1 − C̃zk+1

)
. (39c)

Relative to (13)–(15), the computational complexity
of (39) is clearly higher. To see this, consider the per-
step complexity for l = 1. Given that E is a diagonal
matrix, naive matrix-vector multiplication incurs com-
plexity O(MN), which can be reduced to O(MEmax) by
exploiting the sparsity of C, where Emax is the largest edge
degree. When l ≥ 2 however, per-step complexity grows
toO(l2MEmax) which—being quadratic in l—would make
it difficult for the method to handle high-dimensional
data. Thankfully, a compact form of (39) made possible by
Proposition 3 reduces the complexity from quadratic to
linear in l.

Proposition 3 Let X ∈ R
N×l denote the matrix formed

with ith row x�
i and likewise for Z ∈ R

M×l and Y ∈ R
N×l .

Then, (39) is equivalent to

Xk+1 = (∇f + ρDI)−1
(
ρCZk − Yk

)
(40a)

Zk+1 = E−1C�Xk+1 (40b)

Yk+1 = Yk + ρ
(
DXk+1 − CZk+1

)
. (40c)

Proof The block structure suggests the following com-
pact representation using Kronecker products

C̃ = C ⊗ Id, D̃ = D ⊗ Id, Ẽ = E ⊗ Id.

Exploiting properties of Kronecker products ([46], §2.8)
matrices P, Q, R, and S with compatible dimensions
satisfy

(
P ⊗ Q�)

x = vec(PXQ)

where x is obtained by concatenating all rows of X that
we denote as x = vec

(
X�)

. Thus, by setting P = C and
Q = Id, one arrives at

C̃z = (C ⊗ Id)z = vec(CZId) = vec(CZ)

D̃x = (D ⊗ Id)x = vec(DXId) = vec(DX)

from which one readily obtains (40a) and (40c). To see the
equivalence of (39b) and (40b), we use another property of
Kronecker products, namely

(P ⊗ Q)(R ⊗ S) = (PR) ⊗ (QS).

Since Ẽ is block diagonal, so is Ẽ−1 = E−1 ⊗ Id. Therefore,
(39b) is equivalent to

Ẽ−1C̃�x = (E−1 ⊗ Id)
(
C� ⊗ Id

)
vec(X)

=
((

E−1C�)
⊗ Id

)
vec(X) = vec

(
E−1C�X

)

which concludes the proof.

Proposition 3 establishes that H-CADMM can run
using much smaller matrices, effectively reducing its
computational complexity. To see this, consider the per-
step complexity of (40). The difference with (39) is
dominated by
C�X, which leads to complexity O(lMN). This can be

further reduced to O(lMEmax) by exploiting the sparsity
ofC, thus improving the complexity of (39) by a factor of l.

Proof of Lemma 1
Let ai denote the ith column of A, and bj the jth column
of B. By construction, the ith column of A indicates in
which constraint xi is present; hence, a�

i ai = di equals the
degree of node i. Similarly, it follows that b�

j bj = ej, and

a�
i aj = 0, ∀i �= j, b�

i bj = 0, ∀i �= j

from which we obtain A�A = D and B�B = E.
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Consider now the dot product a�
i bj. When the tth con-

straint reads xi = zj, it holds by construction that (ai)t =
1, and (bj)t = 1. Therefore, if node i and edge j are inci-
dent, we have a�

i bj = 1; otherwise, a�
i bj = 0. Thus, the

incidence matrix definition implies that A�B = C.

Proof of Lemma 3
Let emax (emin) denote the maximum (minimum) degree
of all edges, and cij the number of common edges between
nodes i and j. Clearly, we have di = ∑N

j=1 cij, with cii = 0;
and since E � emaxI, we obtain

CE−1C� � 1
emax

CC� � 0

where the last inequality holds because C has linearly
independent columns, and hence CC� is PSD. The latter
implies that CE−1C� is PSD too.
The definition of C leads to

CC� =

⎡

⎢⎢⎢⎣

d1 c12 . . . c1N
c21 d2 . . . c2N
...

...
. . .

...
cN1 cN2 . . . dN

⎤

⎥⎥⎥⎦ .

And since E � emin I, it holds that

D − CE−1C� � D − 1
emin

CC� � D − 1
2
CC�

= 1
2

⎡

⎢⎢⎢⎣

d1 −c12 . . . − c1N
−c21 d2 . . . − c2N
...

...
. . .

...
−cN1 −cN2 . . . dN

⎤

⎥⎥⎥⎦

where the last matrix is a valid Laplacian (di = ∑N
j=1 cij),

which in turn implies that it is PSD.
Finally, by definition C1 = d, C�1 = e, where d :=

[ d1, . . . , dN ]�, e :=[ e1, . . . , eN ]�; and hence we have

(D − CE−1C�)1 = d − C1 = 0.

Proof of Lemma 4
Feasibility of (25c) guarantees the existence of at least one
solution, and therefore, there exists at least one optimal
solution. The uniqueness of x� and z� follows from the
strong convexity of F(·) and the dual feasibility (25c).
To see the uniqueness of y, we first show that if λ̃ is opti-

mal, then λ�, the projection of λ̃ to the column space of
A, is also optimal. Using the orthogonality principle, we
arrive at

A�(λ̃ − λ�) = 0

which implies that λ� also satisfies (25a). Thus, projec-
tion of any solution λ̃ to the column space of A is also an
optimal solution.

If there are two optimal solutions, λ1 �= λ2 in the
column space of A, we have

A�λ1 = A�λ2. (41)

Furthermore, there exist x1 �= x2 such that λ1 = Ax1 and
λ2 = Ax2. Subtracting A�λ2 from A�λ1 yields

A�λ1 − A�λ2 = A�A(x1 − x2) = 0 (42)

from which we find that x1 = x2, which is a contradiction.
Therefore, λ1 = λ2, and thus, y = A�λ is also unique.

Proof of Lemma 5
To simplify the notation, let S := CE−1C�. Using
Lemma 2, we arrive at

Dxk+1 = − 1
ρ

∇F
(
xk+1

)
+ Sxk − (D − S)

k∑

t=0
xt .

Subtracting (D − S)xk+1 from both sides yields

S
(
xk+1 − xk

)
= − 1

ρ
∇F

(
xk+1

)
− (D − S)

k+1∑

t=0
xt .

Noticing that Q = (D − S)1/2 and rk = ∑k
t=0Qxt , we

obtain

S
(
xk+1 − xk

)
= − 1

ρ
∇F

(
xk+1

)
− Qrk+1. (43)

The proof of Lemma 2 shows that if y0 = 0, then yk =
ρQrk , which leads to y� = ρQr� as k → ∞. Using (25),
we arrive at

∇F(x�) = −ρQr�.

Combining this with (43) completes the proof.

Proof of Theorem 1
It suffices to prove that

‖qk+1 − q�‖2G ≤ 1
1 + δ

‖qk − q�‖2G. (44)

Lemma 5 and the strong convexity of F(·) lead to

2
ρ

σ‖xk+1 − x�‖22

≤ 2
ρ

(
xk+1 − x�

)� (
∇F

(
xk+1

)
− ∇F

(
x�

))

= −2
(
rk+1 − r�

)�
Q

(
rk+1 − r�

)

= − 2
(
xk+1 − xk

)�
CE−1C� (

xk+1 − x�
)

= 2
(
qk+1 − qk

)�
G

(
rk+1 − r�

)

= ‖qk−q�‖2G−‖qk+1 − q�‖2G − ‖qk − qk+1‖2G.
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Similarly, Lemma 5 and strong convexity imply that

2
ρ

1
L

‖∇F(xk+1)−∇F(x�)‖22
≤‖qk−q�‖2G−‖qk+1−q�‖2G−‖qk−qk+1‖2G.

For any β ∈ (0, 1), we have

β
2
ρ

σ‖xk+1 − x�‖22 + (1 − β)
2
ρ

1
L

‖∇F(xk+1) − ∇F(x�)‖22
≤ ‖qk−q�‖2G−‖qk+1−q�‖2G − ‖qk − qk+1‖2G.

To prove (44), it suffices to show that

‖qk − qk+1‖2G + β
2
ρ

σ‖xk+1 − x�‖22

+ (1 − β)
2
ρ

1
L

∥∥∥∇F(xk+1) − ∇F(x�)

∥∥∥
2

2

≥δ‖qk+1 − q�‖2G
which is equivalent to

(1 − β)
2
ρ

1
L

‖∇F(xk+1) − ∇F(x�)‖22 + ‖qk − qk+1‖2G (45)

+ ‖xk+1 − x�‖2M ≥ δ‖rk+1 − r�‖22
where M := 2σβ

ρ
I − δCE−1C�. Observing the left hand

side of (45), it suffices to show that

‖xk+1 − x�‖2M+(1 − β)
2
ρL

‖∇F(xk+1) − ∇F(x�)‖22 (46)

≥ δ‖rk+1 − r�‖22.
Since rk+1 and r� are orthogonal to 1 and the null space

of Q is span{1}, both vectors belong to the column space
ofQ. Using Lemma 4, we obtain

δ‖rk+1 − r�‖22 ≤ δ

λ
‖Q

(
rk+1 − r�

)
‖22 (47)

≤ δ

λ
‖M

(
xk+1−x�

)
− 1

ρ

(
∇F

(
xk+1

)
−∇F(x�)

)
‖22

≤ 2δ�
λ

‖xk+1−x�‖2M + 2δ
ρλ

‖∇F
(
xk+1

)
−∇F(x�)‖22.

Comparing (47) with (46) suggests that it is sufficient to
have

δ ≤ min
{

2βσ

ρ
(
� + 2�

λ

) ,
(1 − β)ρλ

L

}
. (48)
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