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Abstract

In the image acquisition process, important information in an image can be lost due to noise, occlusion, or even
faulty image sensors. Therefore, we often have images with missing and/or corrupted pixels. In this work, we address
the problem of image completion using a matrix completion approach that minimizes the nuclear norm to recover
missing pixels in the image. The image matrix has a low rank. The proposed approach uses the nuclear norm function
as a surrogate of the rank function in the aim to resolve the problem of rank minimization that is known as an NP-hard
problem. It is an adaptation of the collaborating filtering approach used for users’ profile construction. The main
advantage of this approach is that it uses a learning process to classify pixels into clusters and exploits them to run a
predictive method in the aim to recover the missing or unknown data. For performance evaluation, the proposed
approach and the existing matrix completion methods are compared for image reconstruction according to the PSNR
measure. These methods are applied on a dataset composed of standard images used for image processing. All the
recovered images obtained during experimentation are also dressed to compare them visually. Simulation results
verify that the proposed approach achieves better performances than the existing matrix completion methods used
for image reconstruction from missing data.

Keywords: Image reconstruction, Bi-clustering, Matrix completion, Unsupervised learning, Prediction, Rank function,
Nuclear norm function, Surrogate model

1 Introduction
The reconstruction of missing pixels from an incomplete
image is a very active research area in image processing. A
simple model for such problem can be defined as follows:
given an image which is incomplete, i.e., it hasmissing pix-
els, the purpose is to fill its missing pixels based on some
observed pixels. In analogy with matrix completion prob-
lem, the problem of recovering missing pixels in an image
can be referred to as image completion problem.
In this work, we are interested in recoveringmissing pix-

els from an incomplete image using a matrix completion
method based on the minimization of the nuclear norm of
a matrix. The nuclear norm minimization is a category of
low-rank matrix approximation methods. Mathematically
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speaking, given an incomplete image X, missing values are
estimated given observed pixels: {Dij/i, j ∈ �} where �

denotes the set of observed entries. The common assump-
tion is that the matrix should be low-rank (most images
have low rank). Then, a direct approach is to minimize
the rank of the matrix with certain constraints. This prob-
lem is NP-hard; a convex relaxation is often used to make
the minimization tractable. As the rank function is sim-
ply the number of nonvanishing singular values, the most
appropriate choice is to replace the rank function with the
nuclear norm. Therefore, the proposed approach is based
on the nuclear norm minimization that is the surrogate
model of the rank minimization.
The approach used in this work is proposed in [1] for

users’ profile construction. It uses a matrix completion
method based on nuclear norm optimization of thematrix
to predict users’ preferences about items. A bi-clustering
process is adopted to detect users’ clusters and items’
clusters in the aim to promote the personal relevancy
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concept [2]. It applies the prediction process on the ratings
given by users that share almost the same preferences.
The main problem with recovering missing data in

images is the sparcity of the matrix that modelize them.
With the same principle, we adapt the users’ profile
construction method to recover the missing pixels. The
obtained experimental results proved the efficiency of the
proposed prediction process. The proposed approach is
applied on a benchmark that contains standard images for
image processing. They are gray-level images that have
different histograms. The obtained results are compared
visually to those obtained by applying different nuclear
norm optimization algorithms. The peak signal-to-noise
ratio (PSNR)measure is also calculated for each recovered
image.
The remaining of this article is organized as the follows.

Section 2 presents the role of nuclear norm minimiza-
tion in the optimization of low-rank matrices. It exposes
then the problem statement and explains the proposed
approach. It also reviews the related works. Section 3
addresses the experimental protocol and discusses the
obtained results. The conclusion closes the paper.

2 Methods
2.1 Minimization of low-rank matrices using nuclear

normminimization
In the area of engineering and applied science such as
machine learning and computer vision, a wide range of
problems can be or have been represented under low-rank
minimization framework, since the low-rank formulation
seems to be able to capture the low-order structure of the
underlying problems.
In many practical problems, one would like to guess

the missing entries of an n1 × n2 matrix from a sam-
pling � of its entries. This problem is known as the
matrix completion problem. It comes up in a great num-
ber of applications including those of collaborating filter-
ing. The collaborating filtering is the task of automatic
predicting of the entries in an unknown data matrix.
A popular example is the movie recommendation case
where the task is to make automatic predictions about
the interests of a user by collecting taste information
from its formal interests or by collecting them from
other users.
In mathematical terms, this problem is posed as follows:
A data matrix X ∈ R

n1×n2 is the matrix to be known
as much as possible. The only information available
about it is a sampling set of entries Mij, (i, j) ∈ �,
where � is a subset of the complete set of entries
{1, .., n1} × {1, .., n2}.
Very few factors contribute to an individual’s tastes.

Therefore, the problem of matrix completion is an
optimization problem of a low-rank r matrix from
a sample of its entries. The matrix rank satisfies

r ≤ min(n1, n2). Such a matrix is represented by counting
n1 × n2 numbers but has only r × (n1 × n2 − r) degrees of
freedom.When the matrix rank is small and its dimension
is large, then the data matrix carries much less informa-
tion than its ambient dimension suggests. In the case of
collaborative prediction movie recommendation system,
users—rows of the matrix—are given the opportunity to
rate items—columns of the data matrix. However, they
usually rate very few ones so there are very few scat-
tered observed entries of this data matrix. In this case, the
users-ratings matrix is approximately low-rank, because
as mentioned, it is commonly believed that only very
few factors contribute to an individual’s tastes or prefer-
ences. These preferences are stored in a user profile [1].
In the same analogy, matrix completion can be used to
restore images with missing data. From limited informa-
tion, we aim to recover the image, i.e., infer the many
missing pixels.

2.2 Problem statement
Given � ⊂[ n1]×[ n2] a set of elements of an unknown
rank-r matrix, X ∈ R

n1×n2 . The values of elements
Mij, (i, j) ∈ � are known. The task is to recover incom-
plete matrix X. Formally, the low-rank matrix completion
problem is given by:{

minimize rank(X)

subject to P�(X) = P�(M)
(1)

where P� : R
n1×n2 −→ R

n1×n2 is the orthogonal pro-
jection onto the subspace of matrices that vanish outside
of �, (i, j) ∈ � if and only if Mij is observed. P�(X) is
defined by:

P�(X) =
{
Xij if (i, j) ∈ �

0 otherwise (2)

The data known in M is given by P�(M). The matrix X
is recovered then from P�(X) if it is the unique matrix of
rank less or equal to r and consistent with the data.
In a practical point of view, the rank minimization prob-

lem is an NP-hard problem. Algorithms are not capable
to resolve it in time once the matrices have an impor-
tant dimension. They require time doubly exponential in
the dimension of the matrix to find the exact solution.
Authors in [3] proposed the nuclear norm minimization
method. Replacing the rank of a matrix by its nuclear
norm can be justified as a convex relaxation (the nuclear
norm ‖X‖∗ = ∑

i σi(X) is the largest convex lower bound
of rank(X) on the ball {X/‖X‖∗ = σ(X) ≤ 1} [3]).
Consequently, the problem (2) is then replaced by the
following:{

minimize v ‖X‖∗
subject to P�(X) = P�(M)

(3)
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where the nuclear norm ‖X‖∗ is defined as the sum of its
singular values: ‖X‖∗ = ∑

i σi(X) .
Since the nuclear norm ball {X : ‖X‖∗ ≤ 1} is the

convex hull of the set of rank-one matrices with spectral
norm bounded by one, authors in [4] interpret that under
suitable conditions, the rank minimization program (2)
and the convex program (3) are formally equivalent in the
sense that they have exactly the same unique solution.
Matrix completion problem is not as ill posed as

thought. It is possible to resolve it by convex programming.
The rank function counts the number of nonvanishing
singular values when the nuclear norm sums their ampli-
tude. The nuclear norm is a convex function. It can be
optimized efficiently via semidefinite programming.
The following theorem is demonstrated by authors in [4].

Theorem 1 Let M be an n1 × n2 matrix of a rank
r sampled from the random orthogonal model, and put
n = max(n1, n2). Suppose we observe m entries of M with
locations sampled uniformly at random. Then, they are
numerical constants C and c such that if :

m ≥ Cn5/4r log n (4)

The minimizer to the problem (3) is unique and equal
to M with probability at least 1 − cn−3; that is to say, the
semidefinite program (3) recovers all the entries of M with
no error. In addition, if r ≤ n1/5, then the recovery is exact
with probability at least 1 − cn−3 provided that:

m ≥ Cn(6/5)r log n (5)

Under the hypothesis of Theorem 1, there is a unique
low-rank matrix, which is consistent with the observed
entries. This matrix can be recovered by the convex opti-
mization (3). For most problems, the nuclear norm relax-
ation is formally equivalent to the combinatorial hard rank
minimization problem.
If the coherence is low, few samples are required to

recover M. As an example, matrices with incoherent
column and row space matrices with random orthogo-
nal model or those with small components of the singular
vectors ofM.
Conventional semidefinite programming solvers such

as SDPT3 [5] and SeDeMi [6] solve the problem (3).
However, such solvers are usually based on interior-point
methods and cannot deal with large matrices. They can
only solve problems of size at most hundreds by hundreds
on a moderate computer. These solvers are problematic
when the size of the matrix is large. They need to solve
huge systems of linear equations to compute the New-
ton direction. To be precise, SDTP handles only square
matrices with the size less than 100. Another alternative
is to think of using iterative solvers such as the method of
conjugate gradients to solve the Newton system. However,

it is still problematic as well since it is well known that
the condition number of the Newton system increases
rapidly as one gets closer to the solution. Furthermore,
none of these general-purpose solvers use the fact that the
solution may have low rank.
Therefore, the first-order methods are used to complete

large low-rank matrices by solving (3).
In the special matrix completion setting presented

in (3), P�(X) is the orthogonal projector onto the
span of matrices vanishing outside of �. Therefore, the
(i, j)th component of P�(X) is equal to Xij if (i, j) ∈
� and 0 otherwise. X ∈ R

n1×n2 is then the optimization
variable. Fix τ > 0 and a sequence δk of scalar step sizes.
Starting with Y0 = 0(∈ R

n1×n2), the algorithm defines
until a stopping criterion is reached:{

Xk = shrink(Yk−1, τ)

Yk = Yk+1 + δkP�(M − Xk)
(6)

shrink(x, λ) is a nonlinear function that applies a soft-
thresholding rule at level λ to the singular values of the
input matrix. The key property here is that for large values
of τ , the sequence Xk converges to a solution which very
nearly minimizes (3). Hence, at each step, one only needs
to compute at most one singular value decomposition and
perform a few elementary matrix additions.

2.3 The singular value thresholding algorithm
The most popular approaches to matrix completion in lit-
erature are the thresholding methods that can be divided
into two groups: one-step thresholding methods and iter-
ative thresholdingmethods. Despite the strong theoretical
guaranties which have been obtained for one-step thresh-
olding procedures, they show poor behavior in practice
and only work under the uniform sampling distribution
which is not realistic in many practical situations [7].
On the other hand, iterative thresholding methods are
well adapted for general nonuniform distribution as well
as they show practical performances as in [4]. Authors
in [8] proposed a first-order singular value thresholding
algorithm SVT which is a key subroutine in many numer-
ical schemes for solving nuclear norm minimization. The
conventional approach for SVT is to find the singular
value decomposition SVD of the matrix, then to shrink its
singular values.

The singular value decomposition step
The singular value shrinkage operator is the key building

block of the SVT algorithm. Consider the singular value
decomposition SVD of a matrix X ∈ R

n1×n2 of rank r

X = U�V ∗ Where � = diag({σi}1≤i≤τ ) (7)

whereU and V are respectively n1 × r and n2 × rmatrices
with orthonormal columns, and the singular values σi are
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positive. For each τ ≥ 0, the soft-thresholding operator
Dτ is defined as follows:

Dτ (X)=UDτ(�)V∗ =U .

⎛
⎜⎜⎝

(σ1 − τ)+
. . .

(σr − τ)+

⎞
⎟⎟⎠ .V∗

(8)

where t+ is the positive part of t defined by:

(σi−τ)+ = max(0, σi−τ) =
{

σi − τ if σi − τ > 0
0 otherwise

(9)

In other words, in Dτ (X), the singular vectors of X are
kept and the singular values are shrinked by the soft-
thresholding.
Even though the SVD may not be unique, it is easy

to see that the singular value shrinkage operators are
well defined. In some sense, this shrinkage operator is a
straightforward extension of the soft-thresholding rule for
scalars and vectors. In particular, note that if many of the
singular values of X are below the threshold τ , the rank of
Dτ may be considerably lower than that of X, just like the
soft-thresholding rule applied to vectors leads to sparser
outputs whenever some entries of the input are below
threshold.
The singular value thresholding operator is the proximal

operator associated with the nuclear norm. The proxi-
mal operator has its origins in convex optimization the-
ory, and it has been widely used for non-smooth convex
optimization problems, such as the l1-norm minimiza-
tion problems arising from compressed sensing [9] and
related areas. It is well known that the proximal opera-
tor of the l1-norm is the soft-thresholding operator, and
soft-thresholding-based algorithms are proposed to solve
l1-norm minimization problems [10].
Shrinkage iteration step
The singular value thresholding SVT algorithm approx-

imates the minimization (3) by:{
minX τ‖X‖∗ + 1

2‖X‖2F
subject to Xij = Mij

(10)

with a large parameter τ . ‖.‖F denotes the matrix Frobe-
nius norm or the square root of the summation of squares
of all entries. Then, it applies a gradient ascent algorithm
to its dual problem. The iteration is:{

Xk = Dτ (Yk−1, τ)

Yk = Yk+1 + δkP�(M − Xk)
(11)

where Dτ is the SVT operator defined as:

Dτ = argmin
1
2
‖Y −X‖F + τ‖X‖∗ ,X ∈ R

n1×n2 (12)

The iteration is called the SVT algorithm, and it was
shown in [11] to be an efficient algorithm for huge low-
rank matrix completion. Two crucial properties make the
SVT algorithm suitable for matrix completion.

• Low-rank property: The matrices Xk turn out to have
low rank, and hence, the algorithm has minimum
storage requirement since it only needs to keep
principal factors in memory.

• Sparsity: For each k ≥ 0 , Yk vanishes outside of �
and is, therefore, sparse, a fact, which can be used to
evaluate the shrink function rapidly.

The SVT algorithm
The initial step of the SVT algorithm is to start with the

following:

• Y0 = 0;
• Choosing a large τ to make sure that the solution of

(11) is close enough to the solution of (3).
• Defining k0 as the integer that obeys to:

τ
δ‖P�(M)‖ ∈ (k0 − 1, k0)

• Since Y0 = 0, Xk = 0, Yk = kδP�(M), k = 1, ..., k0

The stopping criteria of the SVT algorithm is motivated
by the first-order optimality conditions for the minimiza-
tion of the problem (10). The solution X∗

τ to (11) must
verify:

{
X = Dτ (Y )

P�(X − M) = 0 (13)

where Y is a matrix vanishing outside of �c. Therefore, to
make sure that Xk is close to X∗

τ , it is sufficient to check
how close (Xk ,Yk−1) is obeying (13). By definition, the
first equation in (13) is always true. Therefore, it is natu-
ral to stop (12) when the error in the second equation is
below a specified tolerance:

‖P�(X − M)‖F
‖P�(M)‖F ≤ ε (14)

The matrix completion problem can be viewed as a spe-
cial case of the matrix recovery matrix, where one has
to recover the missing entries of a matrix, given limited
number of known entries.

2.4 Literature review
Other works dressed other algorithms in the attempt to
minimize the nuclear norm of low-rank sparse matrix.
Authors in [12] presented the fixed-point continuation
(FPC) algorithm. It combines the fixed-point continua-
tion [13] with Bregman iteration [14]. The iteration is as
follows:
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⎧⎨
⎩ Iterate on i to get Xk

{
Xi=Dτ (Yi−1)
Yi=Xi−1+δiP�(M + Zk−1−Xi)

Zk = Zk−1 + P�(M ∗ Xk)

(15)

In fact, the FPC algorithm is a gradient ascent algorithm
applied to an augmented Lagrangian of (3). The aug-
mented Lagrangian multiplier (ALM) method in [15]
reformulates the problem into:{

minX ‖X‖∗
subject to X + E = P�(M), P�(E) = 0, (16)

where E is an auxiliary variable. The corresponding
(partial) ALM function is:
	(X,E,Y ,μ) = ‖X‖∗+ < Y ,P�(M) − X − E >

+ μ

2
‖P�(M)−X−E‖2F with P�(E)=0

(17)

An inexact gradient ascent is applied to the ALM and
leads to the following algorithm:⎧⎪⎨

⎪⎩
Xk = D

μ−1
k

(
P�(M) − Ek + μ−1

k Yk−1
)

Ek = P�c (Xk)
Yk = Yk−1 + μkP� (M − Xk)

(18)

For all these algorithms, the SVT operator is the key to
make them converge to low-rank matrices.
Just like the FPC and SVT algorithms, the proximal gra-

dient (PG) [16] algorithm for matrix completion needs to
compute the SVD at each iteration. It is as simple as the
cited algorithms.
There are two main advantages of the SVT algorithm

over the FPC and the PG algorithms when the former is
applied to solve the problem of matrix completion.

First, in some cases, we dispose a sequence of low-
rank iterates; in contrast, so many iterates at the initial
phase of the FPC or PG algorithms may not have low rank
even though the optimal solution itself has low rank. We
observed this behavior when we applied them to solve the
problem of matrix completion.
Second, the intermediate matrices generated during the

resolution of our problem are sparse due to the sparcity of
�, the set of observation. This makes the SVT algorithm
computationally more attractive. Indeed, the generated
matrices by FPC and PG algorithmsmay not be sparse and
specially for the last one.
The first-ordermethods presented above are the basis of

a number of recent works that minimize the nuclear norm
of a matrix to recover an image with missing data.
In [17], authors proposed a two-step proximal gradient

algorithm to solve nuclear norm regularized least squares
for the purpose of recovering low-rank data matrix from
sampling of its entries. Each iteration generated by the
proposed algorithm is a combination of the latest three
points, namely, the previous point, the current iterate,
and its proximal gradient point. This algorithm preserves
the computational simplicity of classical proximal gradi-
ent algorithm [16] where a singular value decomposition
in proximal operator is involved. Global convergence is
followed directly in the literature.
Authors in [18, 19] adopted the SVT algorithm to

achieve the completed matrix but by using the power
method [20] instead of using PROPACK [21] for com-
puting the singular value decomposition of large and
sparse matrix. They showed that accelerating Soft-Impute
is indeed possible while still preserving the “sparse plus

Fig. 1 Benchmark of images. Set of images used in the tests. This is a set of benchmark used as an original image in the tests
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Table 1 PSNR values of the reconstructed images using different
ratios

Image Method 15% missing
data

25% missing
data

35% missing
data

Lena FPC 46.2950 45.8888 45.6461

ALM 48.2790 48.2248 45.5295

IALM 48.2673 48.2278 46.0819

PPG 45.0964 41.9579 40.2865

PG 45.0966 41.9582 40.2863

SVT with
power
method

48.3221 48.2745 48.2295

Proposed
approach

48.9848 48.7817 48.5952

Cameraman FPC 28.2855 32.3433 31.7894

ALM 36.8075 33.9694 29.5169

IALM 36.7101 33.9849 29.8495

PPG 31.3222 27.9425 24.3797

PG 31.3199 27.9458 24.3757

SVT with
power
method

40.9528 40.5182 40.0158

Proposed
approach

43.3525 42.4823 40.4596

Flinstones FPC 28.9102 37.4826 37.2896

ALM 42.9923 37.3583 34.3512

IALM 42.8769 37.4573 34.6774

PPG 31.5781 29.5989 24.3693

PG 31.5936 29.5887 24.3708

SVT with
power
method

43.6614 43.5614 43.2075

Proposed
approach

47.8234 47.3814 44.3920

House FPC 28.6407 27.7999 27.4826

ALM 37.0989 36.4579 36.3583

IALM 36.8952 36.5262 36.4573

PPG 31.5992 29.8729 29.5998

PG 31.6005 29.8769 29.5701

SVT with
power
method

38.1457 38.0827 37.6494

Proposed
approach

39.0707 38.1743 37.8234

Man FPC 39.2493 38.5864 38.1565

ALM 41.3640 41.2133 40.4455

IALM 41.2952 41.2191 40.8616

PPG 39.4997 39.1895 39.3266

PG 39.5008 39.1889 39.3264

SVT with
power
method

42.9572 42.4158 42.0357

Proposed
approach

44.3212 43.9939 43.6724

For each test setting, six results are provided: FPC, ALM, IAM, PPG, PG, SVT with
power method, and our proposed model. The best value of the PSNR is the number
written in italics on each row

low rank” structure. To further reduce the iteration
time complexity, instead of computing SVT exactly using
PROPACK, they proposed an approximate SVT scheme
based on the power method. Though the SVT obtained
in each iteration is only approximate, they demonstrated
that convergence can still be as fast as performing exact
SVT. Hence, the resultant algorithm has low iteration
complexity and fast convergence rate. Our objective is to
increase the accuracy and the precision of image com-
pletion results by adopting unsupervised learning process
that takes into account the characteristics of image pixels.

2.5 Nuclear normminimization-based collaborating
filtering for image reconstruction

In the problem of collaborating filtering based on nuclear
norm minimization, the goal is to predict entries of an
unknownmatrix based on a subset of its observed entries.
For example in a collaborative prediction movie recom-
mendation system, where the rows of the matrix represent
users and columns represent movies, the task is to predict
ratings that users gave to movies based on their prefer-
ences. The prediction of users’ preferences over movies—
they have not yet seen—are then based on patterns in
the partially observed rating matrix. The setting can be
formalized as a matrix completion problem completing
entries in a partially observed data matrix.

Algorithm 1 Collaborating filtering based algorithm
Input: Image with missing data X, the smoothing degree
mu
b = ∅ set of observed pixels values
� = ∅ set of observed pixels indices
Find the clusters Cu and Ci
m=size(Cu)
n=size(Ci)
for u from 1 to m do
for i from 1 to n do
if exist(Xui) then
b.append(Xui)
�.append((u,i))
end if
end for
end for
X̂ = SVT([m, n] ,�, b,mu)
if notexist(X̂uk ,ik′ ) then
Apply median filtering on 3-by-3 neighbours
end if
Output: Recovered matrix X̂

In the same analogy for image completion problem, the
collaborating filtering setting aims to predict the pixels
missing in the image based on the partially observed
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entries, i.e., pixels in the image. The proposed approach
then is based on two main steps:

• Clustering step: uses a learning process to identify
pixels’ clusters.

• Prediction step: uses a predictive method based on
clusters found in the first step to predict the
unknown pixels.

Clustering defines the optimal partitioning of a given set
of N data points into K subgroups. The points belong-
ing to the same group are as similar as much as possible.
However, data points from two different groups share the
maximum difference.
The first step of our approach is to perform a data fil-

tering. The learning process starts by applying a principal

component analysis (PCA) in the attempt to reduce
the number of variables and make the information less
redundant. As a result, our data are centered. To detect
the pixels’ clusters, the process adopts a bi-clustering
step founded on prototype-based clustering by using the
K-means algorithm on the principal component scores,
that is, the representation of the data matrix in the princi-
pal component space and its correlation matrix.
The second process takes place to predict the miss-

ing pixels using the clusters, which performs a new
framework for predicting the missing pixels. The cluster-
ing phase regroups automatically the pixels of an image
into different homogeneous regions. These homogeneous
regions usually contain similar objects or part of them. As
a result, interesting performance will be achieved in the
prediction step.

Fig. 2 Results obtained for image “man” using the different methods. From left to right, the order of the images is as follows: simulated image with
missing data, recovered image using FPC algorithm, recovered image using ALM algorithm, recovered image using IALM algorithm, recovered
image using PPG algorithm, recovered image using PG algorithm, recovered image using SVT with power method, and finally the recovered image
using our proposed approach
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For a given point in the image, we identify clusters in
which the selected pixel row index, respectively the col-
umn index, belongs. The predicted value is the result of
singular value thresholding (SVT) algorithm applied on
the matrix containing values of pixels existing in the inter-
section between the two clusters found in step 1. The
adopted algorithm takes as parameters three mandatory
elements:

• � the set of locations corresponding to the observed
entries.

• b the linear vector which contains the observed
elements.

• mu the smoothing degree.

The set of locations corresponding to the observed
entries � might be defined in three forms:

• The first one as a sparse matrix where only the
elements different of 0 are to take into account.

• The second one as a linear vector that contains the
position of the observed elements.

• The third one where � is specified as indices (i, j)
with (i, j) ∈ N.

The application of the proposed algorithm in image
completion procures in some cases certain results that are
out of range. In this case, we propose to use a median fil-
tering on the predicted pixels. The median filter is often
used as a typical pre-processing step to improve the result
of later process in signal processing (for example, edge
detection on an image). The idea is to use it as a final
process to replace each entry (here, entries are the pre-
dicted pixels) with the median of neighboring entries,
which performs a good result in image reconstruction as
shown in the experimental results.

Fig. 3 Results obtained for image “cameraman” using the different methods. From left to right, the order of the images is as follows: simulated
image with missing data, recovered image using FPC algorithm, recovered image using ALM algorithm, recovered image using IALM algorithm,
recovered image using PPG algorithm, recovered image using PG algorithm, recovered image using SVT with power method, and finally the
recovered image using our proposed approach
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The result of our proposed approach is a completed data
matrix that contains all the pixels’ values. The goal of the
proposed approach is to predict the missing pixels in the
image matrix. Our learning process detects the partitions
of pixels’ indices where the predicting process exploits the
clusters found to predict the missing value. It works on the
assumption that pixels in the same cluster share almost
the same characteristics in the image.

3 Results and discussion
The proposed approach is compared with several state-
of-the-art matrix completion methods including the
following: fixed point continuation (FPC) algorithm [22],
proximal gradient (PG) algorithm [16, 18, 19], par-
tial proximal gradient (PPG) algorithm [16], augmented
Lagrange multiplier (ALM) algorithm [15], and inexact
augmented Lagrange multiplier (IALM) algorithm [15].

All these methods need the PROPACK Package [21] for
computing the SVD for large and sparse matrix. Our
approach was also compared to the method presented in
[18, 19] that used the power method [20].
The images used are the standards for image processing.

We chose a benchmark of five images (Fig. 1) with dif-
ferent gray-level histogram. The computed results are the
peak signal-to-noise ratio (PSNR).
We constructed images with arbitrarymissing data from

the specified benchmark.
In Table 1, the PSNR values are shown for the five

different images in Fig. 1 with different choices of the
percentage of missing data. The best value of the PSNR
is the number written in italics on each row. We can
deduce then that our proposed approach is always bet-
ter than the others, which assures the efficiency of our
algorithm.

Fig. 4 Results obtained for image “flinstones” using the different methods. From left to right, the order of the images is as follows: simulated image
with missing data, recovered image using FPC algorithm, recovered image using ALM algorithm, recovered image using IALM algorithm, recovered
image using PPG algorithm, recovered image using PG algorithm, recovered image using SVT with power method, and finally the recovered image
using our proposed approach
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In Figs. 2, 3, 4, 5, and 6, we have shown the simulated
images compared with the recovered images using our
proposed approach, FPC, ALM, IALM, PPG, and PG algo-
rithms. Visually, we can ensure that our approach predicts
the missing pixels effectively.
The execution of the main proposed algorithm requires

an average of 2 to 10 min on 2.60 GHz Intel i7 core
computer for 256 × 256 grayscale images.
The fact that our approach adopts a clustering step

to detect the regions with similar pixels allowed us
to augment the relevancy and the precision of our
SVT-based prediction process. Indeed, when the SVT
algorithm is applied on the sub-matrix that contains the
pixels of the same cluster, the predicted values procured
better PSNR and reconstructed images that are visually
consistent more than the SVT algorithm using the power
method presented by [18–20]. In addition, the sparcity of

the observation matrix made the SVT algorithm the most
suitable resolution method for matrix completion prob-
lem. Indeed, when recovering the missing image pixels,
the FPC, PG, and ALM algorithms procured at their ini-
tial phase many iterates that have not a low rank though
the optimal solution itself has low rank.

4 Conclusions
We propose in this work a new method for image recon-
struction frommissing data. It is based on twomain steps.
The first one is a bi-clustering process using K-means
algorithm to identify pixels’ clusters. It is applied on the
matrix of PCA scores and its correlation. The second step
predicts the missing pixels by applying a matrix com-
pletion algorithm on the observations’ matrices obtained
using the clusters found in step 1. In each iteration, a
matrix of observations is constructed. It contains the

Fig. 5 Results obtained for image “house” using the different methods. From left to right, the order of the images is as follows: simulated image with
missing data, recovered image using FPC algorithm, recovered image using ALM algorithm, recovered image using IALM algorithm, recovered
image using PPG algoritm, recovered image using PG algorithm, recovered image using SVT with power method, and finally the recovered image
using our proposed approach
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Fig. 6 Results obtained for image “Lena” using the different methods. From left to right, the order of the images is as follows: simulated image with
missing data, recovered image using FPC algorithm, recovered image using ALM algorithm, recovered image using IALM algorithm, recovered
image using PPG algorithm, recovered image using PG algorithm, recovered image using SVT with power method, and finally the recovered image
using our proposed approach

values of pixels that are in the same cluster of the selected
missing pixel.
The experimental process is conducted on a benchmark

of five standard gray-level images in image processing.
The proposed approach is compared visually to different
nuclear norm minimization methods for matrix comple-
tion and also by measuring the PSNR for different per-
centages of missing data. Indeed, the proposed approach
augments the PSNR of the completion by exploiting the
fact that the SVT algorithm is applied per blocks, i.e., on
matrices that contain pixels regrouped in the same cluster.
A cluster contains eventually pixels that share almost the
same characteristics.
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