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Abstract

Particle swarm optimization algorithm

The adaptive Fourier decomposition (AFD) uses an adaptive basis instead of a fixed basis in the rational analytic
function and thus achieves a fast energy convergence rate. At each decomposition level, an important step is to
determine a new basis element from a dictionary to maximize the extracted energy. The existing basis searching
method, however, is only the exhaustive searching method that is rather inefficient. This paper proposes four
methods to accelerate the AFD algorithm based on four typical optimization techniques including the unscented
Kalman filter (UKF) method, the Nelder-Mead (NM) algorithm, the genetic algorithm (GA), and the particle swarm
optimization (PSO) algorithm. In the simulation of decomposing four representative signals and real ECG signals,
compared with the existing exhaustive search method, the proposed schemes can achieve much higher computation
speed with a fast energy convergence, that is, in particular, to make the AFD possible for real-time applications.
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1 Introduction
The adaptive Fourier decomposition (AFD), introduced
by Qian et. al, is a type of positive frequency expansion
algorithm based on a given basis search dictionary [1-3].
It offers fast energy decomposition via the adaptive basis,
which is different from the conventional Fourier decom-
position that is based on the Fourier basis. All the tra-
ditional methods, including the wavelet one, are of the
same nature. Accordingly, the AFD has been success-
fully applied to the system identification, modeling, signal
compression and denoising [4-9].

The AFD is based on the rational orthogonal system,
{Bu},—, where
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a,€D(m=1,2,---),D={ze€C:|zl <1},and Cis the
complex plane [1]. For a given signal G(e’*) in H? space,
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the core AFD, as basis of the other AFD methods and itself
is often abbreviated as AFD, expresses G(¢/*) as

N
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where Ry (eﬂ) denotes the standard remainder at the
decomposition level N, and G, (e”) denotes the reduced
remainder at the decomposition level # that is defined as
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€{a,) is the evaluator at a,, that is
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and (G,,(ejt),e{an}> denotes the inner product of G, (eft)
and e(,,} in L? space. The most important step at each
decomposition level is to determine a suitable a, to
achieve a fast energy convergence rate. In the AFD, the
maximal selection principle (MSP) is applied to identify
such a,, by solving the following optimization problem:
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maximize AZGH (an) = |<Gn(3jt):3{an}>
subject to |a,| < 1.

This process to get G,41 (ejt) from G, (e/t) through the
MSP is called maximal sifting [1]. The convergence,
convergence rate, and robustness of the AFD have been
theoretically proved in [1, 10, 11]. For convenience,
B, (e/t), G (eft), Gy (ej‘), and R, (e/t) are abbreviated as B,,,
G, Gy, and R, in the following equations.

There are several versions of the AFD, including the core
AFD, the unwinding AFD, and the cyclic AFD, proposed
in literature to determine the suitable a, array [2, 12, 13].
The key decomposition strategy of the unwinding AFD
coincides with the study of the nonlinear phase unwind-
ing of functions by Coifman et al. [14, 15]. Although
they adopt different decomposition processes or basis
representations to improve the computation efficiency,
these versions of the AFD all require to implement the
MSP. Until now, the most common implementation for
the MSP in the AFD is the exhaustive search method
(1, 3, 4, 7-9, 12, 13]. In the exhaustive search, the param-
eters aj,- - ,ay, as indices of the selected dictionary ele-
ments, are selected according to the MSP in the one by
one manner.

To make sure that the searched result closely gives
rise to the global optimum, the density of the search
dictionary should be sufficiently high. Since the objec-
tive function in (5) is highly nonlinear and complicated,
this exhaustive and inefficient search strategy would be
usually time consuming, which seriously limits the prac-
ticability of the AFD. It turns out to be a crucial prob-
lem of the implementation of the AFD. Besides the
above mentioned versions of the AFD, Plonka et. al. pro-
posed a sparse approximation of the exponential summa-
tions for the adaptive Fourier series which can estimate
the almost optimal basis, and thus can provide signif-
icantly good convergence behavior [16]. However, this
paper will not focus on proposing a new algorithm for
the decomposition based on the Takenaka-Malmquist
system but focus on improving the computation effi-
ciency of the AFD by improving the searching strategy
in the MS.

Normally, the objective function in (5) is highly non-
linear and contains an uncertain term G, that varies
for different input signals at different decomposition lev-
els. Therefore, calculating the gradient information and
objective function values of (5) is complicated and time
consuming. In our previous work shown in [6], a prelim-
inary study of applying the NM method to improve the
computation efficiency of the AFD shows that the NM
method can reduce the computation time of the AFD
to the half of that based on the conventional exhaus-
tive search method. However, in [6], the performance of
the NM method is only verified by one kind of special
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signals, i.e., the ECG signals, with non-optimal parameter
selection, and is only compared with that of the exhaustive
search. Besides our previous work, Kirkbas et. al propose
the Jaya-based AFD method for reducing the computation
time [17]. Thanks to the advanced searching strategy
and remarkable convergence speed of the Jaya method
that is one kind of the novel population-based heuristic
optimization methods, the Jaya-based AFD method can
provide faster computation speed comparing to the con-
ventional method with the accurate signal representation.
Similarly with our previous work, the performance of the
Jaya-based AFD method is only verified by one cosine sig-
nal and one kind of specific signals, i.e. speech signals,
and only compared with the conventional method. In this
paper, four typical optimization algorithms that require
neither the gradient information nor too many function
evaluations are reviewed and adopted to determine each
successive g, in the AFD, including the unscented Kalman
filter (UKF) method which is based on the deterministic
sampling, the NM algorithm which is a simplex method,
and the genetic algorithm (GA) as well as the particle
swarm optimization (PSO) algorithm which belong to
the stochastic search. In order to apply these methods,
the optimization problem in (5) is reformulated from a
maximization problem with one complex-valued variable
to a minimization problem with two real-valued vari-
ables. The performances of these proposed methods in
the sifting of the AFD are compared with the conven-
tional exhaustive search method in the decomposition of
four representative signals, including the heavisine signal,
the doppler signal, the block signal, and the bump signal.
These signals are chosen because they caricature spatially
variable functions arising in imaging, spectroscopy, and
other scientific signal processing [18]. In addition, to ver-
ify the performance of the proposed methods for real
signals, simulations are also carried out for real ECG sig-
nals from the MIT-BIH Arrhythmia Database [19, 20].
Simulation results show that, compared with the exist-
ing exhaustive search method, all these proposed four
optimization methods can provide higher computation
speed with a fast energy convergence rate. In addition,
the UKF method performs best among all the tested
algorithms.

The rest of this paper is organized as follows. In
Section 2.1, the reformulated optimization problem and
the method for determining the initial points are pro-
posed. In addition, a brief review of the above mentioned
optimization methods, i.e., the NM method, the UKF
method, the GA, and the PSO algorithm, is provided.
Section 3 and Section 4 show effects of optimization
parameters and comparison results of these acceleration
methods in simulations as well as the detail computation
results of the UKF method. Finally, the conclusion is given
in Section 5.
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2 Proposed implementation method and
simulation settings

2.1 Efficient implementation of basis search for AFD

2.1.1 Maximal sifting problem reformulation

The optimization problem of the MSP in (5) is a

maximum problem with complex-valued variables. How-

ever, the selected optimization methods, including the

NM algorithm, the UKF method, the GA, and the PSO

algorithm, are all designed for the minimization prob-

lem with real-valued variables. Therefore, the original

optimization problem shown in (5) needs to be further

adjusted.

For the NM algorithm, the GA, and the PSO algorithm,
since the objective function AZGH (a,) only contains non-
negative function values, finding the global maximum of
Aén is equivalent to finding the global minimum of —AZG”.
Moreover, A2Gn (ay,) is mainly determined by the magni-
tude p, and the phase «;, of a,, and thus the correspond-
ing equivalent minimization problem with real-valued
variables can be expressed as

2
minimize Yi(p,, o) = — ‘<Gn,€{pnd¢xn}>' , ©)
subjectto 0 < p, < land 0 < o, < 2.

For the UKF method, since it requires that the objective
function values are non-negative, the reformulated opti-
mization problem shown in (6) is not further suitable.
According to the orthogonal property of {B,}32, (5) is
equivalent to

minimize
n
Y2om @) = 1GI2 = Y |G e, 00m))
m=1

subjectto0 < p, < 1and 0 < oy, < 27,

2

) (7)

which can be applied for the UKF method.

2.1.2 Determination of initial points

For the selected optimization methods, initial points are
important for the optimization performance. In the NM
algorithm and the UKF method, to determine suitable ini-
tial points, a coarse search step is applied. First, a set
of (P oyk) in the search range 0 < p,r < 1 are
selected randomly with the uniform distribution where
k=1,2,3,- -, Npand and Npanq denote the total number
of points in the dictionary of determining suitable initial
points. Then, the objective function values at these points
Y (ouk 2ni) are evaluated. Finally, points at which the
objective function contains small values are selected as the
initial points. Since the initial points are only required to
approximate to the point at which the objective function
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achieves the global optimum, the number of points to be
evaluated can be much smaller compared to that in the
conventional exhaustive search method. In the GA and
the PSO algorithm, such kind of the coarse initial point
searching has already been included in their stochastic
searching process. Therefore, the dictionary of determin-
ing suitable initial points in the GA and the PSO algorithm
is equivalent to that of individuals, i.e., a set of (p,k, oty k)
where k = 1,2,3,---,Njng, and Nj,q denotes the total
number of individuals.

In addition, for some specific types of signals, such as
electrocardiography (ECG) signals, the distributions of
a, have already been recognized, which can be consid-
ered as the pre-knowledge for searching suitable a,, [6, 7].
Accordingly, the number of points in the coarse search
process for initial points can be further reduced [7]. More
specifically, suppose the distribution range of a,, is known,
which is that the phase search range of a,, is limited into
[ @min> ®max), and the magnitude search range of a,, is lim-
ited into [ Pmin, Pmax), the kth point in the dictionary for
searching initial points can be computed as

{ Prk = \/(prznax - prznin) up + prznin (8)

Ay, = (@max — %min)Vk + Xmin

where u; and vi are two random numbers in [0, 1).
The distributions of u#; and v; follow the distributions
of a,. Suppose only the searching range of a,, is known,
ur and vi can be assumed as the uniform distribution
to achieve the maximum entropy and thus cover most
points in the searching range [21]. Since the following
simulations are carried out mainly for comparing per-
formances of optimization methods, this strategy is not
applied. However, for real applications, the distribution
of a, can be recognized first to further reduce the com-
putation time of searching the initial points. Moreover,
since the evaluations of the objective function at dif-
ferent points are not interrupted with each other, the
parallel computing can be adopted to enhance the com-
puting speed of the searching the initial points. However,
this paper is mainly to verify the effects of parameters
and the performances of following optimization methods
for the computation efficiency of the AFD. Therefore, in
the following simulations, the parallel computing is not
adopted.

In the next section, the NM algorithm, the UKF method,
the GA, and the PSO algorithm will be reviewed, which
will be adopted to solve (6). The pseudocode of the AFD
based on the four optimization algorithms is shown in
Algorithm 1. Although this implementation is based on
the core AFD, these optimization algorithms can also be
applied for the unwinding AFD and the cyclic AFD.
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Algorithm 1 AFD based on the NM algorithm, the UKF
method, the GA, or the PSO algorithm.
Input:
y(¢): testing signal;
Ngecom: maximum decomposition level;
Parameters required by optimization algorithms.
1: Initializationa; = 0,N = 1, ey, =1,B1 = 1;
2: Transfer y(¢) to its analytic representation in H> space
as G

3: if NM algorithm or UKF method is applied then

4 Use (8) to generate the dictionary D for searching
initial points;

5: else if GA or PSO algorithm then

6: Use (8) to generate the dictionary of individuals;

7. end if

8: while N < Nyecom do

o Gy < (GN — (G eta)) elay)) S

dt—an ’

10: if NM algorithm or UKF method is applied then

11 Search initial points at which the objective
function values in (6) are small from D;
12 end if

13: if NM algorithm, GA, or PSO algorithm then

14 Search the result (popt, ctopt) of (6);
15: else if UKF method then
16: Search the result (popt, ctopt) of (7);
17: end if
18 an+41 < Popt®oP;

5
19: BN < V1=lant1l®  dl—an B

1—EN+1dt \/1—‘ﬂN|2 N>
20: En+1 < (GN+1s €ay1)) BN+15
21: N <« N+1;

22: end while

Output:
F,;: decomposition component at #» decomposition
level where n = 1,2,3, - - - , Ndecom-

2.2 Adopted optimization algorithms

2.2.1 Nelder-Mead algorithm

The NM algorithm is known as one of the best simplex
methods for finding the local minimum of a function
[22]. For two variables, this method performs a pattern
search based on three vertices of a triangle [23]. At each
stage, among three initial vertices, the worst vertex at
which the objective function achieves the largest value is
replaced by a new vertex which is generated by reflection,
expansion, contraction, or shrink and leads to smallest
objective function value compared to the previous vertices
[22]. This process is iterated until converging to a local
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minimum. The searching strategy is shown in Algorithm 2
[22, 24].

Algorithm 2 Searching strategy of the NM algorithm.

Input:
Y1(p, @): objective function shown in (6);
{(ok> @) k=1, N,,q" S€L Of initial points;
Niter: maximum iteration number.

1: repeat

2: for each point do

3: Denote this point and its closest two points as

B, G and W where Y1(B) < Y1(G) < Y1(W);

4: Set
R=2M-W, E=2R-M,
Ci=(W+M)/2 C=M+R)/2
S=B+W)/2

as shown in Fig. 1;
if Y1(R) < Y1(W) then
W <« argmin {Y1(X) : X € {R,E}};
else if min {Y7(Cy), Y1(Cy)} < Y1(W) then
W <« argmin {Y1(X) : X € {C1,Ca}};
else
W < Sand G < M;
10: end if
11: end for
12: until the convergence is finished or the iteration
number has reached Niter.
Output:
B: approximated minimum point.

R AN

The NM algorithm requires the differences of the objec-
tive function values rather than directly calculating the
gradients of the objective function. Owing to such a bet-
ter search strategy, the NM algorithm needs much fewer
function evaluations in most cases compared with the
exhaustive search method.

B
e S
\ L’ °
\ o s
\ R.” Si---M __C"__;,.w
L Shl Sibtady
\ . -’ @ fﬁ,ﬁ"
\ - - rd
¢’ G

Fig. 1 Example of operations in the NM algorithm. The line segments
with the same color have the same length. The solid lines build up
the initial triangular. The dashed lines are auxiliary lines of operations




Wang et al. EURASIP Journal on Advances in Signal Processing

2.2.2 Unscented Kalman filter method

The UKEF is a type of extended Kalman filters which has
good performance for highly non-linear state transition
and observation models [25]. Based on the deterministic

Algorithm 3 Searching strategy of the UKF method.
Input:

Y>(p, @): objective function shown in (7);

{(oks o) Y g=1,... Neang' S€t of initial points;

Njter: maximum iteration number;

B: spread of sigma points;

k: secondary scaling parameter.

1: L < 2, which is the dimension of the independent
variable of Y5 (p, @);
2 A< p2UL+k)—L;

3 X « | OV *Naana |
P15 5 PNiand

4 1 T
= X < Nrand X]:Nrand

where 1y, is the row vector of Ny,nq ones;
5 Px < - XHXT

rand 1 T
where H = I — =—1y 1,4 and Lis the identity

matrix of size Nyand;
6: repeat

7: Create sigma points
X = [i, X1y + /(L + ) P, X1, — /(L+A)P§(],
as shown in Fig. 2, where 1, is the row vector of 2 ones,
and P;( contains the absolute values of elements in Px

)

8: Set weights of sigma points
[ 1 1.
W= |:L+A’ 20+ 2(L+A)]’

9: ? < XWT;

10: PX < XHWwdiagH%}/XT
where Hy = I — W11 Neana @and Wiag denotes the
square matrix with the elements of W on the main
diagonal;

11: Y <« Yy (X);

12: Y« ywT;

13 Py < YHwWaingHyVT;

14: P_)(y <~ XHWwdiagH{x,yT;

15: K < PXyngl;
16: i<—X+K(0—§>;
17: Px <—PX —KPyKT;
8 until the convergence is finished or the iteration
number has reached Niter.
Output:
X: approximated minimum point.

=
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Fig. 2 Examples of sigma points in the UKF method for 8 = 0.001
and « = 0. The blue crosses denote the initial points X. The red star
and yellow plus signs denote the sigma points X

sampling technique called unscented transform, the UKF
minimizes the absolute error between the estimated
observation and the true measurement. In the optimiza-
tion problem, by setting the true measurement as 0
and the estimated observation as the objective function,
the UKF can be considered as a numerical optimization
method to minimize the absolute value of the objective
function. The searching strategy is shown in Algorithm 3
[26, 27]. In the following simulations, the parameters of
the UKF method are set following the suggestions in [25],
i.e., 8 =0.001 and « = 0.

Based on the unscented transform technique, the UKF
does not require the gradient information and normally
does not need too many function evaluations.

2.2.3 Evolutionary algorithms

Evolutionary algorithms belong to stochastic search
methods [28]. They mimic the metaphor of the natural
biological evolution and the social behavior of species
[29]. In this paper, the GA and the PSO algorithm are
studied.

The GA is inspired by the improved fitness of bio-
logical systems through the evolution, used in several
research areas to find exact/approximate solutions to the
optimization problems [30]. In the GA, a population of
candidate solutions, called chromosomes, containing low
objective function values are selected from a random
population [31, 32]. These selected chromosomes change
their elements, called genes, through crossover or muta-
tion processes to produce offspring chromosomes [33].
Then, these offspring chromosomes are evaluated by the
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Table 1 Suggested selection ranges of parameters in NM, UKF,
GA, and PSO algorithms

Algorithm Nrand Niter

NM [600,1000] [10,200]

UKF [200,1000] [1,8]
Ngen Nind

GA [5,200] [10,50]

PSO [10,40] [10,40]

objective function and selected to evolve the population
if they could provide better solutions than weak popula-
tion members do [34]. In the crossover process, selected
chromosomes containing better solutions exchange parts
of their information to produce offspring chromosomes
[35]. As opposed to the crossover process, the mutation
process changes a piece of genes in one offspring chro-
mosome randomly, which generates new genetic mate-
rial to avoid the genetic algorithm converging to local
minimum [32].

The PSO algorithm is a population-based search algo-
rithm, inspired by the social behavior of a flock of
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migrating birds trying to reach an unknown destination
[32, 36]. The optimization procedure initializes with a
random generation of points in the search space, usu-
ally called particles [37]. As opposed to the GA, the PSO
algorithm does not create new generations. The particles
in the population only evolve their movement speed and
position to achieve the desired position based on their
own experience and also the experience of others [38]. In
every search step, the position of the best particle who
achieves the minimum objective function value is deter-
mined as the best fitness of all particles. Based on this
position and its own previous best position, each particle
updates its velocity to catch up with the best particle [39].

As evolutionary algorithms in general are based on
stochastic search, they do not require the gradient infor-
mation as well as sifting initial points in the compu-
tation. In addition, comparing to the exhaustive search
method, less number of function evaluations is needed,
normally.

2.3 Evaluation indices

In the following simulation studies, three indices are con-
sidered to evaluate the performances of different opti-
mization algorithms:

a 180
0.8

160
0.7

140
120 0.6
2100 0.5

=z

80 0.4
60 0.3
40 02

20
i 01

500 1000 1500 2000

rand

Computation time.

.ﬂ

1 OOO 1500 2000

rand

composition levels.

Mean of the absolute differences between Epn of the
conventional method and the NM algorithm at first 20 de-

b

x 107

180
160
25
140
20 2
£ 100
1.5
80
60 1
40
0.5
20

1 000 1500 2000

rand

w

ENgpoom at the 20th decomposition level.

0.07
0.06
0.05
0.04
0.03
0.02
0.01

1 000 1500 2000

rand

Standard derivation of the absolute differences between

EN of the conventional method and the NM algorithm at
first 20 decomposition levels.

Fig. 3 Effects of Niang and Nier in the NM algorithm for the complex-valued signal G(2). Four figures show the computation time and £y, at the
20th decomposition level as well as the mean and the standard deviation of the absolute differences between £y of the conventional method and
the NM algorithm at first 20 decomposition levels for different values of Nyang and Niger




Wang et al. EURASIP Journal on Advances in Signal Processing

1. The reconstruction energy error at the maximum
decomposition level Ngecom, denoted as En,,..» is
defined as

‘ ”SO['i ”2 - ”SNdecom Hz‘
Ndecom —

x 100% 9)

lISori ||2

where sor and sy,,,,, denote the original signal and
the reconstructed signal at the maximum
decomposition level, respectively. Ey,_ . is assessed
to verify whether the AFD based on the optimization
algorithm converges or not;

2. The absolute difference between the reconstruction
error in sense of energy at the Nth decomposition
level, Ey, of the conventional exhaustive search
method and the other optimization method at each
decomposition level where Ey is defined in (10),
which is used to verify whether the energy
convergence rate remains satisfactory by considering
the search results of the conventional exhaustive
search method as the standard results.
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_ [lsorill* = llsn 1|

En
2
lIsorill

x 100% (10)

where sy denote the reconstructed signal at the Nth
decomposition level.

3. The computation time that is applied to evaluate the
computation efficiency of the AFD. The units of time
for the following simulation results are the second.

All following simulations are conducted in MATLAB
R2014a at a PC equipped with Intel(R) Core(TM) i7-4770
CPU @ 3.40 GHz and 12 GB RAM. Moreover, in the
following simulations, all numerical integrations in algo-
rithm 1 are implemented based on the 6 order Newton-
Cotes formula. The lengths of the processed signals in the
following simulations are all set as 2500 sample points.

3 Simulation results

3.1 Effects of optimization parameters

To reveal the effects of optimization algorithm parame-
ters, a complex-valued signal given by (11), which is also
studied in [1], is taken as an example. In this part, only
effects of parameters for the complex-valued signal G(z) is

a 20 T
1] 1.8
16 1.6
14 14
12 1.2
2
z 10 1
8 08
6 L
L H 0.6
4
0.4
2
500 1000 1500 2000

rand

Computation time.

500

1000

rand

1500 2000

Mean of the absolute differences between Epn of the
conventional method and the UKF algorithm at first 20
decomposition levels.

x 10
18
16
14
12
10
8
6
4
2
500 1000 1500 2000
Nrand

ENgecom at the 20th decomposition level.
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02

500 1’300 1500 2000

rand

Standard derivation of the absolute differences between
En of the conventional method and the UKF algorithm at
first 20 decomposition levels.

Fig. 4 Effects of Nyang and Nier in the UKF method for the complex-valued signal G(2). Four figures show the computation time and E,,.,,, at the
20th decomposition level as well as the mean and the standard deviation of the absolute differences between £y of the conventional method and
the UKF method at first 20 decomposition levels for different values of Niang and Niter
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shown in detail. For real-valued signals in Section 3.2 and
real ECG signals in Section 3.3, effects of parameters are
similar to the case for G(z).

0.0247z* + 0.03552°
(1 — 0.90482)(1 — 0.3679z)

G(2) = (11)

The total number of points that need to be evaluated in
the MS process affects the optimization accuracy and the
workload very much. The more points evaluated, the bet-
ter computation result but the longer computation time.
Therefore, there exists a trade-off between the computa-
tion accuracy and the fast speed. Such control parameters
for the NM algorithm and the UKF method are the num-
ber of points Niang in the dictionary for searching initial
points and the maximum iteration number Nj,, respec-
tively. The control parameters for the GA and the PSO
algorithm are the number of individuals Nj,q and the max-
imum number of generations Ngep, respectively. For the
UKF method, to get the best searching speed, L and A are
set as 2 and 0.001, respectively.

Effects of these parameters are determined based on
simulation results. The maximum decomposition level
Ndecom is set to 20 for the complex-valued signal G(z)
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since the first 20 decomposition components are enough
to approximate G(z) according to Ref. [1]. According to
the following simulation results, the suggested ranges of
the parameters for the optimization algorithms are shown
in Table 1, which can lead to relative low computation
time and high optimization accuracy at the same time.
For the NM algorithm, Nyang and Njter are selected from
[100, 2000] and [1,200] for evaluations, respectively. Sim-
ulation results of the G(z) signal are illustrated in Fig. 3.
It can be seen that all values of Ey,,., are small no mat-
ter which values of parameters are selected as shown in
Fig. 3b, which means that the NM algorithm can keep
the convergence of the AFD. In addition, the simulation
result shown in Fig. 3a indicates that the effect of Nijter
in the given range for the computation speed is not very
large. However, the absolute differences of Ex between
the conventional method and the NM method are large
and unstable when Nite, is smaller than 10 and Nyayq is
smaller than 600. A major reason is that, when the eval-
uated points are not enough, the NM algorithm would
not lead to the global optimum, which may deteriorate
the convergence rate of the remainder energy. Although
increasing Niang and Niter could increase the computation
accuracy, the computation time would also be increased.
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Fig. 5 Effects of Ngen and Ning in GA for the complex-valued signal G(2). Four figures show the computation time and E,,.,,, at the 20th
decomposition level as well as the mean and the standard deviation of the absolute differences between Ey of the conventional method and the
GA at first 20 decomposition levels for different values of Ngen and Ning
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In summary, for the NM algorithm, the suggested ranges
of Niand and Nige, are [600,1000] and [ 10, 200], respec-
tively.

For the UKF method, N;and and Njger are selected from
[ 100,2000] and [ 1, 20] respectively for evaluations. Sim-
ulation results are illustrated in Fig. 4. It can be seen
that values of Ey,_ . are small. However, for some Njer
values when N4 is smaller than 200, the absolute dif-
ferences of Eyx between the conventional method and
the UKF method cannot keep small and stable, or con-
sequently, the convergence rate of the remainder energy
can not keep high. In addition, the computation time will
be increased very much as Njang and Nigr increase as
shown in Fig. 4a. Moreover, based on simulation results,
the effect of Nitr is larger than that of Niang. In sum-
mary, the suggested ranges of Nyanq and Niee, for the UKF
method are [ 200, 1000] and [ 1, 8], respectively.

For the GA, Ngen, and Njpq are all selected in [5,200]
for evaluations. Simulation results are illustrated in Fig. 5.
Although all values of Ep,,., are small, differences
between Exn of the conventional method and the GA
become large and unstable when Njnq is smaller than
20. Therefore, to achieve the fast energy convergence
rate, Nj,q is required to be larger than 20. Moreover,
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Ning will affect the computation speed significantly. As
Ninq increases, the computation time increases dras-
tically. In summary, the ranges of Ngen and Njyq for
the GA method are suggested as [5,200] and [10,50],
respectively.

For the PSO algorithm, Njyq and Nge, are all selected
in [ 10, 100] for evaluations. Simulation results are shown
in Fig. 6. It can be seen that all values of Ey,,, . are
small. Although the absolute differences of Ex between
the conventional method and the PSO algorithm are rel-
atively large and unstable when Nj,q and Nge, are small,
they are still acceptable in comparison with the simula-
tion results of the NM algorithm, the UKF method and
the GA. Moreover, since all individual states need to be
updated one by one, computation time will be increased
considerably as Ninq and Nge, increase. In summary, the
suggested ranges of Ngen and Njnq for the PSO algorithm
are all [ 10, 40].

3.2 Optimization performance comparison for typical
signals

In this part, four typical real-valued signals defined in

Ref. [18] are considered to compare decomposition per-

formances of the AFD based on the NM algorithm, the
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UKF method, the GA and the PSO algorithm. Accord-
ing to the suggested selection ranges shown in Table 1,
the selected parameters for the optimization algorithms
are shown in Table 2. The maximum decomposition levels
Ngecom of the AFD for these four signals are set as 100 to
make sure that the AFD can extract most energy from the
original signal.

Table 3 lists the computation times in all situations
where STD denotes the standard deviation of the com-
putation time for these different signals. The AFD based
on the UKF uses the least computational time for all four
types of signals. In addition, the computation time of the
AFD based on the PSO method is close to or higher than
that of the AFD based on the conventional exhaustive
search.

The corresponding reconstructed energy error is shown
in Table 4. It can be seen that, compared to the relative
energy error in [1, 40] for evaluating whether the AFD
is converged, all reconstructed signals can approximate
the original signals respectively with very small recon-
struction error. Therefore, these optimization algorithms
do not affect the convergence of the AFD. Compara-
tively, the reconstructions for the block signal are worse
than these for other signals since the block signal, as a
combination of several different square waves, contains
many high-frequency components and thus requires more
decomposition levels to obtain a more accurate recon-
struction.

To verify the convergence rate, the remainder energy
errors at the first 100 decomposition levels are illustrated
in Fig. 7. The UKF and the NM methods have energy
decay rates almost the same as the conventional method
but larger than the GA and the PSO methods, especially
for the bump signal. The reason is that the GA and the
PSO methods fail to reach the global minimum in some
decomposition levels due to small number of initial points
and iteration loops. However, increasing the number of
generations and individuals would increase the computa-
tion time as shown in Figs. 5a and 6a. Therefore, for these
four typical real-valued signals, the GA and the PSO algo-
rithm cannot make the AFD achieve a fast computation
speed with a high energy convergence rate at the same
time.

Table 2 Selected parameters of NM, UKF, GA, and PSO
algorithms for simulations

Algorithm Nrand Niter
NM 700 10
UKF 700 8
Ngen Nind
GA 100 20

PSO 10 10
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Table 3 Computation time for five optimization algorithms in
four typical real-valued signals

Heavisine  Doppler Bump Block Mean STD
signal signal signal  signal
Conventional 5496 5451 5647 5501 5524 0085
method
NM method 1.286 1172 1316 1.331 1276 0.072
UKF method 1.135 1.052 1.208 1.161 1.139  0.065
GA method 1.607 1447 1934 2424 1853 0431
PSO method 5.094 8.047 5.031 4953 5781 1512

Fonts in italics denote that there are all significant differences between the UKF
method and any one of other methods by paired t-tests (p < 0.01)

3.3 Optimization performance comparison for real ECG
signals

Results in Section 3.3 show that the proposed AFD imple-
mentation methods can provide the better performance
for four representative signals compared with the con-
ventional exhaustive search. To verify the performance of
these proposed methods for real signals, simulations of
real ECG signals are carried out. Table 5 illustrates the
comparisons of computation time between optimization
methods. For all records, the computations based on the
proposed methods are faster than that based on the con-
ventional exhaustive search. In these proposed methods,
the UKF-based AFD method uses least computation time
for most records. The PSO-based AFD method performs
worst compared to other proposed methods.

4 Discussions

According to results in Section 3, the UKF method based
AFD can provide the best performance for all four rep-
resentative and real ECG signals. It is reasonable that the
UKEF can achieve the good performance. The UKF method
can produce the optimization results within a small num-
ber of iterations, and therefore, not too many points need
to be evaluated. Figure 8 illustrates the comparisons of
the convergence of proposed optimization methods. The
UKF method has the highest convergence rate and most
accurate searching result at the beginning iteration level,

Table 4 Reconstruction energy error of different optimization
algorithms for different signals

Heavisine Doppler Bump Block

signal signal signal signal
Conventional 1.1 x 107® 73 x 10~/ 01x107° 06x1073
method
NM method 14x 107  38x 10~/ 01x107° 21x1073
UKF method  80x 107 100x 1077 12x107° 44x1073
GA method 95x107% 68x 107/ 24 %107 17 x1073
PSOmethod 15x107% 13 x 107/ 16x 107 11x1073
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Table 5 Computation time of optimization algorithms for real

ECG signals

Real ECG  Conventional ~ NM UKF GA PSO
records method method ~ method  method  method
100 2.895 0.722 0.539 1.156 2211
101 2982 0618 0.526 1.019 2015
102 2.871 0.594 0.541 1.022 2071
103 2.798 0.554 0519 1.002 2010
104 2.793 0.547 0.578 0.928 1.994
105 2.824 0.546 0.545 0.966 1.986
106 3.172 0.543 0.989 1.348 2.148
107 3.293 0.595 0.495 1.122 2.046
108 3.294 0.577 0.533 1.013 2.059
109 2.863 0.563 0.543 0.959 2.067
119 2775 0518 0.546 0.945 1.994
201 3.029 0557 0.565 0.996 2.520
202 3.059 0.585 0.563 0.981 2.049
203 2942 0.831 0.654 0.999 2117
205 3.011 0.903 0.714 1.113 2.366
207 2.907 0.607 0.528 1.025 2117
208 2958 0.560 0.606 1.033 2.067
209 2.888 0.573 0.533 1.271 2.093
213 2.847 0.620 0.588 0.961 2077
Mean 2958 0611 0.584 1.045 2.106
STD 0.155 0.101 0.110 0.111 0.134

Fonts in italics denote that there are all significant differences between the UKF
method and any one of other methods by paired t-tests (p < 0.001)

which means that the UKF method can achieve the pre-
set threshold of the optimization error within a small
iteration number. Therefore, the UKF does not need to
evaluate large number of function values in the opti-
mization process. Figure 9 shows the total number of
evaluated objective function values in the AFD based on
proposed optimization methods. It can be seen that the
UKF requires the smallest number of points to search the
suitable a, sequence. Such small number of iterations and
small number of objective function evaluations will lead
the UKF-based AFD achieve the short computation time.

In the UKF, besides the parameters Nyanq and Njer men-
tioned in the Section 3.1, there are other two parameters,
i.e., the spread of sigma points 8 and the secondary scaling
parameter «, as shown in Algorithm 3. These two param-
eters determine the scaling parameter A defined as [25]

r=pB2L+«)—L. (12)

In this paper, simulations are carried out with § = 0.001
and ¥ = 0 which is suggested in [25]. These two param-
eters will also affect the optimization results of the UKF
method. Figure 10a and b illustrate the effects of 8 for
the convergence of the UKF method where X; denotes the
estimated observation in the ith iteration that can be con-
sidered as the updated optimization result obtained from
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Fig. 8 Differences of the searching results X; in the ith iteration of four proposed optimization methods and final optimization results of the
conventional exhaustive search method. Four figures compare the convergences of the optimization results for the NM algorithm, the UKF method,
the GA, and the PSO algorithm in the heavisine signal, the doppler signal, the bump signal, and the block signal

the ith iteration, as well as Pé( and Pgi(“al denote the covari-
ances of sample points X in the ith and the final iterations
that can be considered as the updated descent steps
obtained from the ith iteration and the final iteration. It
can be seen that the error between X; and the optimum is
small at the beginning iteration level when g is small. In
addition, X and Px achieve the small values faster when
B is smaller. Except the parameter g, Fig. 10c and d show
the effects of « for the convergence of X and Px. It can
be seen that, when « is close to 0, X and Px can converge
to the small values faster though the differences between

P, and Pgi(“al are not smallest at the beginning iteration
level when « = 0. Based on these simulation results, the
suggested selections of ¥ and B in [25] are also suitable
for the AFD.

5 Conclusion

In order to improve the computation efficiency of the
AFD, four typical optimization algorithms, including
the UKF method, the NM algorithm, the GA, and the
PSO algorithm, are adopted in basis search and com-
pared to the conventional exhaustive search method. The
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Fig. 9 Total number of evaluated objective function values in four optimization methods-based AFD. This figure compares the number of evaluated
objective function values for the NM algorithm, the UKF method, the GA, and the PSO algorithm in the heavisine signal, the doppler signal, the

bump signal, and the block signal
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maximization problem with one complex-valued variable
in the basis search of the AFD is reformulated as the
equivalent minimization problem with two real-valued
variables. Simulations are conducted to four typical sig-
nals, including the heavisine signal, the doppler signal,
the bump signal, and the block signal, which can repre-
sent spatially variable functions appearing in the signal
processing. To verify the performance for real signals,
simulations are also carried out for real ECG signals.
Comparative results show that the UKF method can
achieve the highest computation speed with a fast energy
convergence rate for these signals.
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