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Abstract

Many physical and engineered systems (e.g., smart grid, autonomous vehicles, and robotic systems) that are observed
and controlled over a communication/cyber infrastructure can be efficiently modeled as stochastic hybrid systems
(SHS). This paper quantifies the bias of a mode-based Kalman filter commonly used for state estimation in SHS. The
main approach involves modeling the bias dynamics as a transformed switched system and the transitions across
modes are abstracted via arbitrary switching signals. This general model effectively captures a wide range of SHS
systems where the modes may follow deterministic, Markovian, or guard condition based transitions. By leveraging
techniques developed to analyze the stability of switched systems, we derive conditions for statistical convergence of
the bias in a mode-based Kalman filter in the presence of mode mismatch errors. Developed upon the foundations of
Lyapunov theory, we demonstrate a linear matrix inequality condition that guarantees asymptotic stability of the
corresponding autonomous switched system irrespective of the choice of mode mismatch probability. Furthermore,
we obtain the range of mode mismatch probabilities that assures bounded input bounded output stability of the bias
dynamics for both stable and unstable SHS. Using numerical simulations of a smart grid with network topology errors,
we verify and validate the theoretical results and demonstrate the potency of using the analysis in critical
infrastructures.
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1 Introduction
Stochastic hybrid systems (SHS) represent a class of
dynamical systems that experience interactions of both
discrete and continuous dynamics with uncertainty. The
uncertainty can be modeled in continuous dynamics,
discrete state transitions, or both. In most cases, the
evolution of continuous state is described via stochastic
differential/difference equation (SDE) whereas the dis-
crete state evolves depending on the application. Typi-
cal examples include random process (such as Markov
chain) and guard conditions (i.e., the discrete state tran-
sitions depend on the continuous state). The first type
of SHS has been applied in modeling of biochemical
processes [1, 2], manufacturing processes [3], and com-
munication networks [4]. The second type of SHS, also
known as state-dependent SHS, finds application in flight
management systems [5, 6]. For more complex systems
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such as a microgrid [7], the transitions of discrete state
may be governed by both random processes and guard
conditions.

1.1 Motivating example: impact of smart grid network
topology error

Our conventional power grid is transitioning to a “smart
grid” with the addition of renewable energy source
(e.g., photovoltaics (PV)), advanced metering and sensing
infrastructure, electric vehicles, and controllable loads [7].
A conceptual small-scale smart grid model is shown in
Fig. 1. This toy model includes a bank of PV panels, elec-
tricity grid, home loads, and electric vehicles. S1, S2, S3,
and S4 are switches whose status determine the network
topology. In practice, S2 can be switched OFF when peo-
ple unplug their electric vehicles and S1, S3, and S4 can
be switched ON or OFF based on power demand and the
weather. To aid state estimation in a smart grid, there are
typically two types of data collected [8]:
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Fig. 1 Conceptual smart grid model

1 Status data for switches, breakers, and
communication links. Status data defines the
real-time network topology of the grid.

2 Analog data such as bus voltage, power flow, and
reactance. Analog data is used to determine the
voltage profile at different nodes of the power grid.

In general, a smart grid can be formallymodeled as an SHS
with each switch status determining a specific network
topology (discrete state) and continuous state capturing
the analog parameter dynamics. A typical estimator for
the continuous dynamics is a mode-based Kalman filter
[9–17] which relies on mode information. Discrete mode
information may be obtained from status data entered
by human operators or sensor measurements or esti-
mated based on measurements. These approaches are
error prone due to human errors, missing data, communi-
cation, or estimation errors. Consequently, errors in status
data result in network topology errors which eventually
lead to performance degradation in amode-based Kalman
filter. In this work, we explore the impact of discrete state
estimation error (or inaccurate information) on the quality
of continuous state estimation derived via a mode-based
Kalman filter.

1.2 Related work
State estimation in SHS has attracted research interest
for decades. Kalman filter-based solutions dominate the
arena. For one category of SHS where both discrete and
continuous states are observable and the discrete state
transitions are independent with continuous state, mode-
based Kalman filter can be applied as a minimum mean
square error (MMSE) estimator [10–12]. Matei et al. [13]

proposes a Kalman filter-based MMSE estimator for SHS
with observation of continuous state and delayed mea-
surement of discrete state. Matei and Baras [14] expand
their results to the case of delayed observations of both
continuous and discrete states. In general SHS appli-
cations, discrete state may not be directly observable
[12, 15–21]. In this case, the optimal estimator is obtained
from a weighted sum of a bank of Kalman filters with each
matched to a possible mode. Therefore, it requires expo-
nentially increasing memory and computing time. A cou-
ple of hybrid estimation algorithms have been proposed
forMarkov jump linear system (MJLS), such as interacting
multiple model (IMM) algorithm [19] and multiple model
adaptive estimation (MMAE) algorithm [20, 21]. Seah and
Hwang [15] and Liu et al. [16] extend the IMM algorithm
to state-dependent SHS. Note that all the abovementioned
algorithms require online computation with a bank of
Kalman filters and they suffer from high computational
complexity. Zhang and Natarajan [17]and Hofbaur et al.
[18] decrease the complexity by formulating the mode
estimation as a problem of belief-state update and using
only one Kalman filter corresponding to estimated mode
for continuous state estimation.
As the preceding discussion suggests, Kalman filter

plays an essential role in most of the estimation algo-
rithms for SHS. When the discrete states are known,
Kalman filter is an optimal estimator; when the discrete
states are not available, the optimal estimator is obtained
from a bank of Kalman filters. In practice, there are
cases that we have information on the discrete states
but the information is not accurate as discussed in the
motivating example. In this situation, one approach is to
implement a bank of Kalman filters at the cost of the
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exponentially increasing memory and computing time.
Another option is to treat the known discrete state as the
true state and conduct estimation via only one Kalman
filter. This Kalman filter is optimal if there is no mode
mismatch. In case of a mode mismatch, the resulting
estimator will be biased. Review of the recent literature
reveals that there is limited prior work that considers the
bias of a mode-based Kalman filter in SHS estimation.
For non-hybrid scenarios, Kalman filter is proved to be
an unbiased estimator. Therefore, multiple papers have
analyzed the performance of Kalman filters by only focus-
ing on error covariance [22–30]. Specifically, [22–28, 30]
consider dynamical system with missing measures, inter-
mittent observations, random delays, and packet dropouts
and they follow the similar approach of deriving a bound
for the critical probability of missing observation that
ensures the convergence of error covariance. Another
work [31] considers an estimation problem where the
model for the Kalman filter is mismatched with the true
system. Unlike the previous mentioned papers, [31] stud-
ies the residual of Kalman filter and derives mean and
covariance of the Kalman filter residual without analyzing
its convergence behavior. In terms of estimation strate-
gies for SHS, there have been several prior efforts [32–35].
Their analysis is based onMMAE algorithm and the IMM
approach. Hwang et al. [32] first consider the problem of
quantifying performance of a hybrid estimation algorithm
and derive the condition for exponential convergence of
the estimator in terms of detection delay and sojourn time
[33]. In [34, 35], the authors extend their research on eval-
uating the stability of IMM algorithm and they focus on
the mean and covariance of the Kalman filter residual.
However, the existing research efforts have not explored
the relationship between mode mismatch error and SHS
estimation. It is not known as to how discrete state esti-
mation error influences the performance of a mode-based
Kalman filter. How sensitive is the convergence of bias
in a mode-based Kalman filter to errors in discrete state
knowledge? Is there a critical region within which the
error dynamics in a mode-based Kalman filter will con-
verge? These are the fundamental unanswered questions
that our work seeks to address.

1.3 Contributions
In this paper, we study the statistical convergence of the
bias dynamics in a mode-based Kalman filter in the pres-
ence of mode mismatch errors. To our best knowledge,
our work is the first attempt to quantify the influence of
inaccurate mode information on continuous state estima-
tion process. Specifically, we consider a linear SHS frame-
work that finds application in many practical system, e.g.,
smart grid and aircraft management system. In our previ-
ous work [36], we derived the dynamics of bias that results
from mode mismatch errors for a specific model of SHS

with two discrete states. Additionally, the discrete state
transitions were modeled via independent and identically
distributed (i.i.d) binary Bernoulli random variables. For
this specific system, we derived the sufficient condition
for statistical convergence of bias. In contrast to the con-
ference paper, the assumptions of two modes and i.i.d.
Bernoulli transitions are relaxed in this work. The exten-
sion is not trivial because for SHS with two modes, there
is only one error mode for a given discrete state. There-
fore, in this work, we take a fresh perspective and propose
to use a transformed switched system to describe the bias
dynamics. The convergence of the bias is then mapped
to the stability of the transformed switched system. The
SHS model considered in this paper is general and can
be applied to many practical systems. The novelty of this
work lies in modeling the bias dynamics as a transformed
switched system enabling us to exploit techniques devel-
oped for stability analysis of switched system to our prob-
lem of interest. Specifically, the stability analysis involves
two stages. First, we consider stability of the correspond-
ing autonomous switched system and derive sufficient and
necessary conditions that guarantee asymptotic stability.
Second, we investigate the bounded input bounded out-
put stability and acquire a tolerant region on probability of
mode mismatch errors that guarantees the convergence of
the bias dynamics. The boundedness of the input is related
to the stability of the original SHS and we consider both
stable and unstable cases. Finally, the theoretical results
are verified and validated using numerical simulations of a
smart grid with network topology errors. Theoretical and
numerical results help us identify the fidelity required in
discrete state knowledge in order tomeet the performance
requirements of continuous state estimates.
The rest of the paper is organized as follows: The system

model, mode-based Kalman filter, and its performance
metrics are introduced in Section 2. In Section 3, we
derive the bias dynamics and the model of a transformed
system that fully captures the bias evolution. The stabil-
ity analysis for the transformed system is discussed in
Section 4. The stability conditions and tolerant region for
mode mismatch error are also derived as the main results
in Section 4. Two experiments are conducted, and the sim-
ulation results are presented in Section 4. We conclude
this work and discuss future directions in Section 6.

2 Preliminaries
2.1 Notations
We use normal face to define scalars; bold face to define
vectors (lower case) and matrices (upper case); I and 0
denote identity matrix and zero-vector, respectively. R
denote the space of real number. For any set, |·| denotes
the numbers of elements in the set. ρ(·) denotes the spec-
tral radius of any square matrix. ‖·‖ represents 2-norm
of a matrix or a vector. [ ·]′ and [ ·]−1 denote transpose
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and inverse of a matrix, respectively. For any vector u,
u[i] denotes ith element of the vector. For a symmetric
matrix A, A�0 denotes that A is positive definite and
A≺0 indicates that A is negative definite. E(·) represents
expectation and P(·) represents probability measure.

2.2 Systemmodel
We consider a discrete-time autonomous linear SHS.
Mathematically, the continuous state xk ∈ R

n and mea-
surement yk ∈ R

m are related via the following equations:

xk = Aqkxk−1 + Bqkwk ,
yk = Cqkxk + vk . (1)

Here, qk ∈ Q represents the discrete state at time k, which
is sometimes referred to as the mode.Without loss of gen-
erality, we define Q = {1, 2, 3, . . . , d}. For each qk , the
corresponding Aqk is an n-by-n matrix, Bqk is an n-by-p
matrix, and Cqk is am-by-nmatrix. Regarding the system
model, we have the following assumptions:

1 wk ∼ N (0,Q) and vk ∼ N (0,R) are mutually
independent white Gaussian capturing model and
measurement uncertainty, respectively.

2 The initial distribution of the continuous state
follows a Gaussian distribution . The
discrete state has a unique initial mode q0 ∈ Q.

3 For all qk ∈ Q,
(
Aqk ,BqkQB′

qk

)
is controllable and(

Cqk ,Aqk
)
is observable.

In this paper, we consider a generalized SHS model
without restricting ourselves to any specific type of dis-
crete state transitions. At a higher level, the generalized
SHS can be astracted as a switched system with arbitrary
switching. This allows us to neglect specific details of the
discrete state behavior and instead incorporate all possi-
ble switching patterns [37]. With this connection between
switched system and the generalized SHS model in mind,
we confine ourselves to the convention of switched sys-
tems with arbitrary switching signals throughout the
remainder of this paper.
As an illustrative example, we consider a toy smart grid

setup inspired by [7, 38]. The system consists of three
components—main distribution grid, local power net-
work, and electrical loads. The discrete status for each
component is:

• Local power network—On: 1, Failure mode: 0;
• Distribution grid (G)—Connected: 1, Disconnected:

0;
• Electrical loads (D)—Connected: 1, Disconnected: 0.

The corresponding power generation and power con-
sumption dynamics are given below:

• Grid power: If the micro grid is connected to the
main electricity grid (G = 1), the grid power PG has
the following dynamics: ṖG = kGPG + σGdW , where
kG is a proportional coefficient and σG is a variation
parameter [7]. If G = 0, both kG and σG are close to
0. dW denotes Wiener process.

• Electrical loads: Electrical loads can be modeled via a
stochastic differential equation. We use Uhlenbeck-
Ornstein model to describe electricity loads [38]. Let
ṖD = α(m−PD)dt+σDdW . Here, we assumem = 0.
α represents a tracking coefficient. σD is a variation
coefficient, and dW denotes Wiener process.

Therefore, the continuous state in this smart grid system
can be defined as x =[PG,PD]′ with corresponding state
equation as:

[
ṖG
ṖD

]
=

[
kG 0
0 −α

] [
PG
PD

]
+

[
σG 0
0 σD

]
dW
dt

.

By discretizing the state space with a sampling period of τ ,
we get a discrete-time SHS:

xk = Aqkxk−1 + Bqkwk , (2)

where

Aqk =
[
ekGτ 0
0 e−ατ

]
, (3)

and

Bqk =
[
kG 0
0 −α

]−1
(Aqk − I)

[
σG 0
0 σD

]
. (4)

Here, the index k corresponds to the time instant kτ . The
discrete state space is defined by combination of different
status of L, G, and D. Consequently, the value of parame-
ters kG,α, σG, and σD are determined by different discrete
states. The measurement equation corresponds to

yk = Cqkxk + vk . (5)

We will provide more details on this smart grid model in
Section 5.2.

2.3 Mode-based Kalman filter
The goal of a mode-based Kalman filter is to estimate xk
based on knowledge of discrete states q̂k and measure-
ments yk until time k. Note that the known mode q̂k can
be inconsistent with the true mode qk resulting in a mode
mismatch error. Denote the measurement sequence and
known mode sequence up to time k as ysk = (y1, · · · , yk)
and q̂sk = (q̂1, · · · , q̂k), respectively. The mode-based
Kalman filter equations for switched system in (1) are
given in Algorithm 1.
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Algorithm 1Mode-based Kalman filter
1: function ESTIMATION UPDATE(μμμ0,M0|0,Q,R, q̂sk , y

s
k)

2: x0|0 = μμμ0,M0|0 = �0
3: ysk = (y1, · · · , yk)
4: q̂sk = (q̂1, · · · , q̂k)
5: for i = 1 : k do
6: xi|i−1 = Aq̂ixi−1|i−1
7: Mi|i−1 = Aq̂iMi−1|i−1A′

q̂i + Bq̂iQB′
q̂i

8: Kq̂i,i = Mi|i−1C′
q̂i(Cq̂iMi|i−1C′

q̂i + R)
−1

9: xi|i = xi|i−1 + Ki,q̂i(yi − Cq̂ixi|i−1)
10: Mi|i = (I − Ki,q̂iCq̂i)Mi|i−1
11: end for
12: return xk|k
13: end function

Here, Kq̂i,i is the Kalman gain related to mode q̂i. xk|k is
the estimate of xk , and we denote it as x̂k . If the estima-
tor has full knowledge of the actual mode, i.e., q̂sk = qsk ,
then the mode-based Kalman filter has been proven to
be an unbiased minimum mean square error estimator.
However, q̂sk = qsk does not always hold in practice. As a
consequence, the inconsistency between qsk and q̂sk results
in a bias in the mode-based Kalman filter estimate. In
the following, we will first derive the formulation of bias
dynamics and then discuss its statistical convergence.

2.4 Bias dynamics in the presence of modemismatch
In general, the bias is defined as the difference between
the estimator and the actual value of a state. However,
for a mode-based Kalman filter, both x̂k and xk are ran-
dom variables which result in the bias being a random
variable. Therefore, we define the bias to be the differ-
ence between means of estimator and the true state, i.e.,
ek = E(x̂k)−E(xk). In other words, we capture the differ-
ence between x̂k and xk in amean sense via ek . This metric
is similar to those considered in [31, 32]. Based on Algo-
rithm 1, we derive the bias dynamics in a Kalman filter due
to mismatch between qsk and q̂sk .

Theorem 1 Given the actual mode sequence qsk =
(q1, · · · , qk) and estimated mode sequence q̂sk =
(q̂1, · · · , q̂k), the bias dynamics in a mode-based Kalman
filter corresponds to:

ek = (
Aq̂k − Kq̂k ,kCq̂kAq̂k

)
ek−1

+(
Aq̂k −Kq̂k ,kCq̂kAq̂k + Kq̂k ,kCqkAqk − Aqk

)
E(xk−1).

Proof The expectation of xk is:

E(xk) = E(E(xk|xk−1)) = AqkE(xk−1).

The stochasticity of the estimate x̂k comes from the
randomness in the measurements. Therefore, we can
write the mean of x̂k as:

E(x̂k) = E(E(x̂k|x̂k−1)) = Aq̂kE(x̂k−1)

+ Kq̂k ,k(E(yk) − Cq̂kAq̂kE(x̂k−1)).

From the definition of bias ek , we have:

ek =E(x̂k)−E(xk)
= (

Aq̂k − Kq̂k ,kCq̂kAq̂k
)
E

(
x̂k−1

)

+ (
Kq̂k ,kCqkAqk − Aqk

)
E

(
xk−1

)

Substituting for E(x̂k−1) = ek−1 + E(xk−1), we get:

ek = (
Aq̂k − Kq̂k ,kCq̂kAq̂k

) (
ek−1 + E

(
xk−1

))

+ (
Kq̂k ,kCqkAqk − Aqk

)
E

(
xk−1

)

= (
Aq̂k − Kq̂k ,kCq̂kAq̂k

)
ek−1

+(
Aq̂k − Kq̂k ,kCq̂kAq̂k +Kq̂k ,kCqkAqk − Aqk

)
E

(
xk−1

)
.

For the sake of compactness in notation, we introduce
t and i to denote actual mode and estimated mode at
time k. That is, t = qk ∈ Q and i = q̂k ∈ Q. It
needs to be noted that t and i are indeed time-variant
random variables. With this, the evolution of ek can be
rewritten as:
ek =(Ai − Ki,kCiAi)ek−1

+ (Ai − Ki,kCiAi + Ki,kCtAt − At)E(xk−1).

For each mode i, let Ki be the steady state Kalman gain.
Since we assume that Q and R are the same for all modes
i ∈ Q, the Kalman gain Ki,k will converge to the corre-
sponding steady Kalman gain Ki quickly [9]. Therefore,
the update of ek can be approximately written as:

ek =(Ai−KiCiAi)ek−1+(Ai−KiCiAi+KiCtAt−At)E(xk−1).
(6)

Denote �i = Ai −KiCiAi, �i,t = At −KiCtAt, when t = i,
�i,t = �i. In general,

ek = �iek−1 + (�i − �i,t)E(xk−1). (7)

In the following sections, we will model the evolution of
ek as a transformed switched system and further leverage
results in stability analysis for switched systems to derive
our main results.

3 Transformed switched system
So far, we have derived the dynamics of the bias in amode-
based Kalman filter. In Eq. (7), the bias evolves based on
matrices �i and �i,t. As defined in the previous section, i
and t are random variables that represent estimated and
true mode at time k. In general, for an SHS with dis-
crete state space Q = {1, 2, · · · , d}, if the actual state is
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t, there are d − 1 mode mismatch errors that could hap-
pen. Intuitively, we want to derive the evolution of ek
as a stochastic equation based on the probabilistic event
of mode mismatch occurrence. In the following, we will
formally model this random process by introducing two
sequences of random variables, {�t}t=d

t=1 and {�t}t=d
t=1 as:

�t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1 with probability λ1,t;
�2 with probability λ2,t;
...

...
�d with probability λd,t

with
∑d

i=1 λi,t = 1. For a given t, �t is a random vari-
able on the outcome space {�1, · · · ,�d} and all the events
�t = �1, · · · , �t = �d are mutually exclusive. The prob-
ability λi,t can be interpreted as the probability that the
estimated mode is i while the true mode is t. It is worth
mentioning that in realistic applications, the probability
of mode mismatch may not only be a function of i and t
but can also be correlated across time or across modes.
Similarly, a random variable �t is defined as:

�t =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

�1 − �1,t with probability λ1,t;
�2 − �2,t with probability λ2,t;

...
...

�d − �d,t with probability λd,t.

Note that the probabilities are the same as �t for the same
t. With �t and �t, we can rewrite Eq. (7) as:

ek = �tek−1 + �tE(xk−1). (8)

From Eq. (8), {ek}∞k=0 is a stochastic process for a given
initial value e0. The process ek is bounded with probability
1 if and only if E(ek) is bounded [23]. Therefore, we con-
sider convergence in mean, i.e., lim

k→∞
E(ek) < ∞. Accord-

ing to the tower rule, we have E(ek) = E(E(ek|ek−1)),
where the outer expectation is taken over ek−1 and the
inner expectation is taken over the random variables �t

and �t. Therefore,

E(ek) =
d∑
i=1

λi,t�iE(ek−1) +
d∑
i=1

λi,t(�i − �i,t)E(xk−1)

(9)

Recall that a discrete-time switched system is defined on
the hybrid space of continuous and discrete state spaces.
The dynamics of E(ek) in Eq. (9) follows the structure of
the system in (1). That is, the evolution of E(ek) is lin-
early dependant on the previous E

(
ek−1

)
and the current

mode t (which by definition is the actual discrete state in
the original system). Therefore, we propose to define a
transformed switched system to describe (9) as:

x∗
k = Fqkx

∗
k−1 + Gqkuk−1, (10)

where the continuous state x∗
k = E(ek) and uk = E(xk)

can be treated as an external input. We use the same
notation qk to denote the discrete state since it follows
the same transitions in both the original system and the
transformed switched system. The system matrices are:

Fqk =
d∑
i=1

λi,qk�i, Gqk =
d∑
i=1

λi,qk
(
�i − �i,qk

)

Our goal is to find conditions under which E(ek) con-
verges. With the transformed switched system (10), this
problem is equivalent to analyze the stability of x∗

k . As
stated, we abstract the discrete state transitions in (1)
as arbitrary switching between each linear subsystem.
Therefore, the goal is to find conditions such that the
switched system (10) with arbitrary switching signal is sta-
tistically stable. Additionally, since the system matrices
Fqk and Gqk depend on the probability of mode mismatch
λi,qk , the impact of λi,qk on the stability of (10) also needs
to be investigated. In the following, we will first review and
summarize the progress that has been made regarding the
stability for switched systems and then derive convergence
conditions for stability of (10).

4 Main results
As with general linear systems, numerous concepts of
stability have been defined for switched systems. In this
paper, we use the definition of asymptotic stability for
switched systems.

Definition 1 The switched system (10) is asymptoti-
cally stable if there exists some δ > 0 such that ‖x∗0‖ < δ

implies ∀k, ‖x∗
k‖ < ε

(
or lim

k→∞
‖x∗

k‖ = 0
)

for all solu-

tions x∗
k of the system.

Remark 1 A switched system is marginally stable if it is
neither asymptotically stable nor unstable.

Note that asymptotic stability gives a stronger condition
for lim

k→∞
‖x∗

k‖ < ∞ since it not only requires convergence
but requires convergence to the origin. The definition
of marginal stability implies that the state trajectory is
bounded but not necessarily convergent, which is equiva-
lent to lim

k→∞
‖x∗

k‖ < ∞. Therefore, conditions for asymp-
totic stability are sufficient to guarantee lim

k→∞
‖x∗

k‖ < ∞.
Also, because asymptotic stability is closely related to the
stability of the corresponding autonomous system, it is
typical to consider the stability of the autonomous sys-
tem first. For the transformed switched system in (10), the
corresponding autonomous system is:

x∗
k = Fqkx

∗
k−1. (11)
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Among the existing research works, there are primarily
two approaches to address the stability of the autonomous
switched system in (11). One approach involves solving
the generalized/joint spectral radius (JSR) of a bounded
set of matrices [39]. As proved in [40], testing whether the
JSR of a bounded set of matrices is less than or equal to 1
is computationally undecidable. While the exact compu-
tation of JSR is Turing-undecidable in general, the approx-
imation of JSR is an active area of research. The other
approach is primarily built on the well-known Lyapunov
theory. Specifically, it has been proved that the existence
of a common quadratic Lyapunov function (CQLF) pro-
vides a sufficient condition for the asymptotic stability of
the switched system in (11) which also implies the JSR
of the bounded set of matrices is less than 1. Therefore,
without dwelling on the approaches that involve approx-
imations of JSR, our main results are built on Lyapunov
theory. The analysis procedure is summarized in Fig. 2.
We use to denote the subsystem

corresponding to mode q. The autonomous switched sys-
tem (11) switches between for all q. The following
lemma is introduced in [41].

Lemma 1 The switched system (11) is asymptotically
stable under arbitrary switching signal if:
(i). ρ(Fq) < 1,∀q ∈ Q;
(ii). ∃P = P′�0, F′

qPFq − P≺0.

Condition (i) in Lemma 1 implies asymptotic stability of
every subsystem and condition (ii) is the existence of
common Lyapunov quadratic function (CQLF). Also, it is
worth pointing out that the stability for each subsystem
does not imply asymptotic stability of the switched system
[42]. The converse does not always hold either. As dis-
cussed in [43], by choosing the switching signal carefully,
the switched system can be made asymptotically stable
even though the subsystem is not. In the following, we first
study conditions such that

ρ(Fq) < 1,∀q ∈ Q (12)

holds, i.e., each subsystem is asymptotically stable.

4.1 Stability of subsystem
By definition, Fq is composed of convex combination of
matrices as:

Fq =
d∑
i=1

λi,q�i

The task of checking spectral radius of summation of
matrices is not trivial in general. If two matrices are com-
mutable, i.e., AB = BA, then ρ(A + B) ≤ ρ(A) +
ρ(B) [44]. If all the matrices are non-negative (element-
wise), [45] proves that spectral radius is strictly convex.
But all the mentioned results cannot be extended to
general cases. Therefore, directly checking the spectral
radius is not feasible. An alternative approach is built
on Lyapunov theory which demonstrates the relationship
between a quadratic Lyapunov function (QLF) and the
spectral radius of system matrices.

Lemma 2 The following statements are equivalent:
(i) if there exists a positive definite matrix P such that

F′
qPFq − P≺0;
(ii) ρ(Fq) < 1;
(iii) the subsystem is asymptotically stable.

We first illustrate a property related to the spectral
radius of �i in the following lemma.

Lemma 3 For a switched system defined in (1), if
(Ai,BiQB′

i) is controllable and (Ci,Ai) is observable for all
i ∈ Q, then ∀i ∈ Q, ρ(�i) < 1.

Proof From the definition,

�i = Ai − KiCiAi = (I − KiCi)Ai.

Fig. 2 Stability analysis for the transformed switched system
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For any Kalman filter, the observer gain corresponding to
mode i is defined as Li = AiMiC′

i

(
CiMiC′

i + R
)−1. Here,

Mi is the steady error covariance related to steady Kalman
gain Ki. Given that

(
Ai,BiQB′

i

)
is controllable and (Ci,Ai)

is observable for all i ∈ Q, the closed-loop dynamics Ai −
LiCi is stable. That is,

ρ(Ai − LiCi) < 1.

Rewrite it as:
Ai − LiCi = Ai − AiKiCi = Ai(I − KiCi).

From commutativity property of spectral radius,
ρ(Ai − LiCi) = ρ(�i) < 1.

With the fact that all the matrices �i are stable, we have
the following theorem.

Lemma 4 If there is only one λi,q > 0 for each q ∈ Q, then
the subsystem is asymptotically stable for all q ∈ Q.

Proof Let kq be the index indicating the non-zero λkq ,q
for each q ∈ Q; note that kq also takes value inQ. Based on
the property of random variable�t discussed in Section 3,
λkq ,q = 1. Therefore, we have

Fq = �kq ,∀q.
From Lemma 3, it is straightforward to conclude that
ρ(Fq) = ρ(�kq) < 1,∀q ∈ Q. According to Lemma 2, all
the subsystems are asymptotically stable.

Following the notation in proof of Lemma 4, we use kq
to denote the index indicating the non-zero λkq ,q for each
q ∈ Q. Note that kq is not necessarily equal to q. As
ρ(�q) < 1 for all q, even though the probability of mode
mismatch between q and mode kq is 1 (i.e., the mode mis-
matches always happen), all the subsystems are still
stable. The physical interpretation behind the result seems
inconsistent. However, this result is only related to the sta-
bility of the autonomous subsystem but not the complete
switched system. In fact, if we take a close look at our sys-
tem in (10), the choice of λkq ,q will have impact on the
input matrix Gq. We will discuss this result in Section 4.3.
Lemma 4 gives a non-trivial condition such that the sta-

bility of each subsystem is guaranteed. However, the
condition that only one λi,q > 0 is not generally realistic
since it eliminates the randomness associated with errors.
The next theorem is built on the concept of CQLF and it
is applicable for broader choices of λi,q.

Theorem 2 If for all i ∈ Q, �i share a common
quadratic Lyapunov function. That is, if there exists a
positive definite matrix P ∈ R

n×n such that

�′
iP�i − P≺0,∀i ∈ Q, (13)

then every subsystem ∀q ∈ Q is asymptoti-
cally stable for all choices of λi,q.

Proof

�′
iP�i − P≺0 (a)⇐⇒ P − �iP�′

i�0 (b)⇐⇒
[
P �i

�′
i P−1

]
�0.

(a) is due to the fact that P is positive definite and (b) is
a result of Schur decomposition. According to Lemma 2,
in order to prove is asymptotically stable for all q, we
need to find if there exists some positive definite matrix
Pq for each q such that Pq − FqPqF′

q�0.
Since P− �iP�′

i�0, therefore, P− λ2i,q�iP�′
i�0 for 0 ≤

λi,q ≤ 1. For all q ∈ Q, we have:

[
P λi,q�i

λi,q�
′
i P−1

]
�0 =⇒

d∑
i=1

[
P λi,q�i

λi,q�
′
i P−1

]
�0

=⇒

⎡
⎢⎢⎢⎣
P

d∑
i=1

λi,q�i

d∑
i=1

λi,q�
′
i P−1

⎤
⎥⎥⎥⎦ �0

=⇒
[
P Fq
F′
q P−1

]
�0 =⇒ P − FqPF′

q�0.

By taking Pq = P, we proved that there exists positive
definite matrix Pq for each q such that Pq − FqPqF′

q�0.
Therefore, every subsystem ∀q ∈ Q is
asymptotically stable for all choices of λi,q.

As presented in Lemma 1, there are two conditions that
can guarantee the stability of the autonomous switched
system. Condition (i) is related to the stability of each sub-
system and we have developed Lemma 4 and Theorem 2
determine ρ(Fq) < 1 for all q ∈ Q. To complete the sta-
bility analysis for switched autonomous system in (11), we
will study conditions such that constraint (ii) in Lemma 1
is satisfied in the following subsection.

4.2 Stability of switched autonomous systems
We have introduced the concept of CQLF in Lemma 1.
For stability analysis and CQLF conditions, [46] provides
an excellent survey on the progress that have been made
in this research area. In general, determining algebraic
conditions (on the subsystems’ state matrices) for the exis-
tence of a CQLF remains an open task. For switched
system with only two modes, [47] derives a necessary
and sufficient condition for the existence of a CQLF
for a second-order (two dimensional) continuous-time
switched system with two modes while a similar approach
is proposed in [41] by considering a discrete-time system.



Zhang et al. EURASIP Journal on Advances in Signal Processing         (2018) 2018:71 Page 9 of 15

Their approach is based on the stability of the matrix pen-
cil constructed using the state matrices corresponding to
the two modes. While the matrix pencil presents a dif-
ferent perspective on the CQLF existence problem, it also
lacks an analytical solution.
In this work, the switched system in (11) contains

unknown variable λi,q in the subsystem matrices Fq. Due
to the unknown values in Fq and lack of algebraic solu-
tions, we cannot directly solve the LMI conditions nor
derive constraints on λi,q such that the existence of CQLF
for Fq is guaranteed. In the following, we propose to estab-
lish a relationship between the existence of CQLF for �i

and Fq and then obtain conditions for stability of switched
system (11) regardless of the choice of λi,q.

Theorem 3 If there exists a CQLF for �i,∀i ∈ Q, then
there exists a CQLF for Fq,∀q ∈ Q. As a consequence,
the switched system (11) is asymptotically stable under
arbitrary switching signal.

Proof We will use the similar approach as shown in the
proof of Theorem 2. If there exists a CQLF for�i, we know
that there exists a positive definite matrix P ∈ R

n×n such
that

�′
iP�i − P≺0,∀i ∈ Q.

As a result of Theorem 2, for all q ∈ Q, we have
d∑
i=1

[
P λi,q�i

λi,q�
′
i P−1

]
�0=⇒

[
P Fq
Fq P−1

]
�0=⇒F′

qPFq − P≺0.

Therefore, there exists a CQLF for Fq,∀q ∈ Q. From
Lemma 1, the switched system (11) is asymptotically sta-
ble under arbitrary switching signal.

The condition derived in Theorem 3 is only based on all
the matrices �i which can be determined given the sys-
tem matrix. The LMI condition can be easily checked in
practice via an LMI solver alleviating the lack of an ana-
lytical solution. As illustrated in Fig. 2, we have completed
the discussion for the stability of autonomous switched
system (11) thus far. In the following, we will consider sta-
bility of the complete transformed switched system (10)
including the input term.

4.3 Bounded-input bounded-output (BIBO) stability
For the transformed switched system in (10), we introduce
the notion of BIBO stability that has been defined in [48].

Definition 2 The system in (10) is BIBO stable if there
exists a positive constant η such that for any essentially
bounded input signal u, the continuous state x∗ satisfies

sup
k≥0

∥∥x∗
k
∥∥ ≤ η sup

k≥0
‖uk‖.

According to this definition, an input signal cannot
be amplified by a factor greater than some finite con-
stant η after passing through the system if the system is
BIBO stable. It has been proven that if the correspond-
ing autonomous switched system (11) is asymptotically
stable, then the input-output system (10) is BIBO stable
provided the input matrix Gq is uniformly bounded in
time for all q [49]. This in fact is the case when the system
switches between a finite family of matrices. In our trans-
formed switched system, the input signal uk = xk , where
xk is the continuous state of original system (1). There-
fore, depending on the stability of (1), uk can be either
bounded or unbounded. Therefore, we should consider
two different scenarios based on the boundedness of uk in
the following discussions.
Scenario 1: Original system in (1) is not asymptoti-

cally stable
If the original system in (1) is unstable, then

supk≥0 ‖uk‖ = supk≥0 ‖xk‖ = ∞. Since uk is an n-
dimensional vector, when uk is unbounded, at least one
of the elements in the vector is unbounded. We refer
to those elements as unstable components and these
components are collected in the set I :

I =
{
i : sup

k≥0
u[i]k = ∞

}
.

For this situation, if the columns ofGq corresponding to
those unstable components of uk are 0, then the bound-
edness of supj≥0,q

∥∥Gquj
∥∥ is guaranteed. The process of

finding the stable region for each probability of mode
mismatch error is summarized in Algorithm 2:

Algorithm 2 Find stable region of λi,q
1: Analyze stability of the original SHS
2: Find unstable components → I
3: for all q ∈ Q do
4: for all i ∈ Q do
5: Let T = �i − �i,q
6: if ∃j ∈ I s.t. jth column of T is not 0 then
7: λi,q = 0
8: else
9: 0 ≤ λi,q ≤ 1

10: end if
11: end for
12: Solve

∑
i

λi,q = 1 for all non-zero λi,q

13: end for

Generally, λi,q = 1 for i = q should always be a solution
of Algorithm 2 because of �i = �i,q for i = q. Further-
more, this condition along with the result of Lemma 4
indicate that λi,q = 1 for i = q not only guarantees sta-
bility of subsystem but also BIBO stability of the switched
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system in (10). By definition, λi,q represents the prob-
ability that true mode is q while estimated mode is i.
λi,q = 1 for i = q meaning that there is no mode mis-
match error. Therefore, the convergence of x∗

k (i.e., the
bias generated from mode-based Kalman filter) is reason-
able. Besides the trivial solution, Algorithm 2 also gives a
less conservative result. For those unstable components in
the original SHS, if the difference of �i − �i,q at the col-
umn corresponding to the unstable components are all 0,
the mode-based Kalman filter is still tolerant of the mode
mismatch between i and q.
Scenario 2: Original system in (1) is asymptotically

stable
If the original system in (1) is asymptotically stable,

then the continuous state xk (i.e., uk in the transformed
switched system) is bounded. Since linear transformations
of a vector is a bounded operator in Euclidean space, for
a bounded vector u, Gu is bounded. For this situation, we
are interested in minimizing the upper bound of ‖x∗

k‖.
From the definition of BIBO stability, we can write

∥∥x∗
k
∥∥ ≤ η sup

k≥0,q

∥∥Gquk
∥∥ (a)≤ ηmax

q

∥∥Gq
∥∥ sup

j≥0

∥∥uj
∥∥, (14)

where η and supj≥0
∥∥uj

∥∥ are fixed constant for a given sys-
tem and Gq is related to the unknown variable λi,q. The
equality in (a) holds if and only if each row ofGq is linearly
dependent of uk for all q, k. In this framework, we seek to
address the following questions:
(1) Given the probability of mode mismatch is P , i.e.,∑d
i=1
i �=q

λi,q = P ,∀q, what is the lowest upper bound of

‖x∗
k‖?

(2) Given a certain upper bound B of ‖x∗
k‖, what is the

largest tolerant region for mode mismatch probability P
that will guarantee that B is achievable?
The following theorem is developed to answer the first

question.

Theorem 4 Given the probability of mode mismatch
P �= 0 and the original system in (1) is asymptotically sta-
ble, the lowest upper bound of ‖x∗

k‖ that can be achieved
is:

∥∥x∗
k
∥∥ ≤ η · P · sup

j≥0

∥∥uj
∥∥ · max

q
min
i,i �=q

∥∥�i − �i,q
∥∥.

Proof From the definition of Gq,

∥∥Gq
∥∥ =

∥∥∥∥∥∥
d∑
i=1

λi,q(�i − �i,q)

∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥

d∑
i=1
i �=q

λi,q(�i − �i,q)

∥∥∥∥∥∥∥∥

≤
d∑
i=1
i �=q

λi,q
∥∥�i − �i,q

∥∥. (15)

With the constraint that
∑d

i=1
i �=q

λi,q = P , we have:

min
λi,q

d∑
i=1
i �=q

λi,q
∥∥�i − �i,q

∥∥ = Pmin
i,i �=q

∥∥�i − �i,q
∥∥. (16)

From Eq. (14), we have the lowest bound of ‖x∗
k‖ as a

function of
∥∥Gq

∥∥. Given the constraint onmodemismatch
probability and results of (15) and (16), we get the lowest
upper bound of ‖x∗

k‖ that can be reached is:
∥∥x∗

k
∥∥ ≤ η · P · sup

j≥0

∥∥uj
∥∥ · max

q
min
i,i �=q

∥∥�i − �i,q
∥∥.

To assist in the analysis for the second question, we first
define an auxiliary function φ : Rd−1 → R as:

φ(υυυ) = max
q

∥∥∥∥∥∥
d−1∑
i=1

υυυ[i]Si,q

∥∥∥∥∥∥
,υυυ ∈ R

d−1

where Si,q ∈ R
n×n is a series of knownmatrices for a given

q. The following lemma illustrates the convexity of this
function.

Lemma 5 φ(υυυ) is a convex function respect to υυυ .

Proof In order prove that φ(υυυ) is a convex function
respect to υυυ, we want to show that for all υυυ,ννν ∈ R

d−1, and
θ with 0 ≤ θ ≤ 1, φ(θυυυ+(1−θ)ννν) ≤ θφ(υυυ)+(1−θ)φ(ννν).
We have

φ(θυυυ + (1 − θ)ννν) = max
q

∥∥∥∥∥∥
d−1∑
i=1

(θυυυ + (1 − θ)ννν)[i]Si,q

∥∥∥∥∥∥

= max
q

∥∥∥∥∥∥
θ

d−1∑
i=1

υυυ[i]Si,q + (1 − θ)

d−1∑
i=1

ννν[i]Si,q

∥∥∥∥∥∥

≤ max
q

∥∥∥∥∥∥
θ

d−1∑
i=1

υυυ[i]Si,q + (1 − θ)

d−1∑
i=1

ννν[i]Si,q

∥∥∥∥∥∥

≤ θ max
q

∥∥∥∥∥∥
d−1∑
i=1

υυυ[i]Si,q

∥∥∥∥∥∥
+ (1 − θ)max

q

∥∥∥∥∥∥
d−1∑
i=1

ννν[i]Si,q

∥∥∥∥∥∥
= θφ(υυυ) + (1 − θ)φ(ννν).

Therefore φ(υυυ) is a convex function on υυυ.

Recall that the second question is to derive the largest
tolerant region for mode mismatch probability P such
that an upper bound B of ‖x∗

k‖ is achievable. In other
words, we need to solve for λi,q such that

∑d
i=1
i �=q

λi,q = P
and ‖x∗

k‖ ≤ B holds. Based on Eq. (14), we have
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∥∥x∗
k
∥∥ ≤ ηmax

q

∥∥Gq
∥∥ sup

j≥0

∥∥uj
∥∥ ≤ B

=⇒max
q

∥∥Gq
∥∥ ≤ B

η · sup
j≥0

∥∥uj
∥∥

=⇒max
q

∥∥∥∥∥∥∥∥

d∑
i=1
i �=q

λi,q(�i − �i,q)

∥∥∥∥∥∥∥∥
≤ B

η · sup
j≥0

∥∥uj
∥∥ . (17)

Use the auxiliary function and define λλλ ∈ R
d−1 and

Si,q = �i − �i,q. We can write the left-hand side of (17) as:

φ(λλλ) = max
q

∥∥∥∥∥∥
d−1∑
i=1

λλλ[i]Si,q

∥∥∥∥∥∥
.

Since φ(λλλ) is convex in λλλ, a non-negative bound B is
achievable by taking λλλ[i] = 0 for all i. To seek a λλλ such that

φ(λλλ) ≤ B
η · sup

j≥0

∥∥uj
∥∥ ,

we will use triangle inequality to approximate φ(λλλ) and get
a more conservative condition. Since

φ(λλλ) ≤ max
q

d−1∑
i=1

λλλ[i]
∥∥Si,q

∥∥,

with
∥∥Si,q

∥∥ is known for all i and q. The condition

max
q

d−1∑
i=1

λλλ[i]
∥∥Si,q

∥∥ ≤ B
η · sup

j≥0

∥∥uj
∥∥ (18)

is a 1st degree polynomial inequality with d − 1 variables,
and this can provide a feasible region for each λi,q on the
d − 1 dimensions space.
The discussion of BIBO stability completes the conver-

gent analysis of bias dynamics in a mode-based Kalman
filter. Both stable and unstable original SHS have been
taken into consideration. For an unstable system, we can
still stabilize the bias dynamics by specifically choosing
the probability λi,q. For an asymptotically stable system,
we addressed two important questions regarding the min-
imization of the upper bound for the bias.

5 Experimental results
In this section, we conduct two experiments to verify our
main results in Section 4.We first consider a second-order
switched system with two discrete states. Then, we illus-
trate the value of the theoretical results on a small scale
smart grid set up.

5.1 Example 1: Switched systemwith two discrete states
Consider a switched system with two discrete states Q =
{1, 2}. The continuous state is a two-dimensional vector.
Define matrices A, B, and C as:

A1 =
[
0.9 0
0.2 0.8

]
,A2 =

[
0.5 0.2
0.2 0.4

]
;B1 =

[
1 0
0 0.8

]
,

B2 =
[
1.3 0.4
0.2 0.7

]
;

C1 = I,C2 = 5 × I.

Let the system noise be wk ∼ N (0,Q) and measure-
ment noise be vk ∼ N (0,R), where Q = 0.5 × I
and R = 0.3 × I. In this system setting,

(
A1,B1QB′

1
)

and
(
A2,B2QB′

2
)
are both controllable and (C1,A1) and

(C2,A2) are observable. The corresponding�i and �i,t are
calculated as follows:

�1=
[
0.2763 − 0.0137
0.0654 0.3232

]
, �2 =

[
0.0054 − 0.0034
0.0033 0.0205

]
;

�1,2=
[− 1.2401 − 0.5234
− 0.4387 − 0.8091

]
, �2,1 =

[
0.7225 − 0.0028
0.1593 0.6496

]
.

For this setup, we get ‖�1‖ = 0.3373 < 1, ‖�2‖ =
0.0209 < 1. Therefore, for any choice of λi,t, we have

ρ(F1) = ρ(λ1,1�1 + λ2,1�2) ≤ λ1,1‖�1‖ + λ2,1‖�2‖<1,
ρ(F2) = ρ(λ1,2�1 + λ2,2�2) ≤ λ1,2‖�1‖ + λ2,2‖�2‖<1.

(19)

By solving the feasibility of two LMIs that defined in
(13), the result shows that �1 and �2 share a CQLF. Based
on Theorem 3, there exists a CQLF for F1 and F2 with any
choice of λ1,1, λ1,2, λ2,1, λ2,2. Therefore, the switched sys-
tem composed with and is asymptotically stable
under arbitrary switching signal.
The next step is to study the boundedness of uk (i.e.,

xk of the original system). The boundedness of xk can
be checked by the existence of CQLF between A1 and
A2. With a similar LMI condition, it shows that the orig-
inal system is asymptotically stable. Therefore, the bias
dynamics in the mode-based Kalman filter should be
BIBO stable with upper bounds derived in (14).
Figures 3 and 4 are the experiment results over N =

5000 Monte-Carlo simulation for two different switching
signals. For each switching signal, two different probabil-
ities of mode-mismatch error λ1,2 and λ2,1 were consid-
ered. In both Figs. 3 and 4, we plot the theoretical bias
performance in line with squares. The theoretical bias is
obtained via Eq. (9). The actual bias dynamics (difference
of E(x̂k) and E(xk)) from Monte-Carlo simulation is pre-
sented using dashed line with triangles. Since we have
verified that the bias evolution should always converge
with any switching signal, all the above experiments also
validate this result.
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Fig. 3 Bias in mode-based Kalman filter using Monte-Carlo simulation and theoretical bias evolution for switching signal 1

In Fig. 5, the line with squares shows the maximum
value for norm of bias over Monte-Carlo simulation given
that probability of modemismatch isP . The dashed line is
the upper bound calculated using Theorem 4. In Fig. 6, we
seek to address question (2) proposed in the last section.
That is, we want to achieve a certain upper bound B =
0.3 for the bias dynamics. By solving Eq. (18), the max-
imum probability of mode mismatch is λ1,2 = λ2,1 =
0.154554. Figure 6 shows the actual and theoretical bias
evolution with mode mismatch error λ1,2 = λ2,1 =
0.154554.We can conclude that the target bound has been
achieved.
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Fig. 4 Bias in mode-based Kalman filter using Monte-Carlo simulation
and theoretical bias evolution for switching signal 2

5.2 Example 2: Smart grid
A classic example of a cyber-physical system that can be
modeled in the SHS framework is a smart grid. We have
defined the system model in Section 2.2. For this case
study, the status of components L, G and D and the grid
parameters are defined in Table 1. Based on system set-
tings, kG, α, σG and σD completely determine the system
matrices Aq and Bq. Let Cq = I for all modes. Define the
noise as wk ∼ N (0,Q) and vk ∼ N (0,R) with Q = 2 × I
and R = I. With this system setting, we get ‖�1‖ =
0.9817, ‖�2‖ = 0.8837, and ‖�3‖ = 0.8611. Therefore,
similar as (19), we have ρ(F1), ρ(F2), and ρ(F3) < 1 for
all choices of λi,t. The next step is to solve the LMI condi-
tions on�1,�2, and�3 and the results shows that�1,�2,
and �3 share a CQLF. Based on Theorem 3, the switched
system composed with , , and is asymptotically

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability of mode mismatch error (P)

0

0.5

1

1.5

2

2.5
Upper bound on norm of bias for different P

Max ||x*
k
|| over [0,3000]

Upper Bound of ||x*
k
||

Fig. 5 Upper bound of ‖x∗
k‖ given mode mismatch probability P
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stable under arbitrary switching signal. In order to check
the boundedness of input uk , we solve for the CQLF for
A1,A2, andA3. In this case, the result reveals that the orig-
inal SHS is not stable (falls into scenario 1 in Section 4.3).
Therefore, we are able to use Algorithm 2 to derive the
stable region of each λi,q. In this system, the unstable
component is: I = {1}, i.e., only the first element is unsta-
ble. Based on Algorithm 2, we need to calculate Ti,q and
find out the corresponding elements on column 1 of each
matrix. We get:

T1,2 =
[ − 0.3303 0
0 0.0385

]
,T1,3 =

[ − 0.3303 0
0 0.0375

]
,

T2,1 =
[
0.1827 0
0 − 0.0361

]
,T2,3 =

[
0 0
0 − 0.0088

]
,

T3,1 =
[
0.1745 0
0 − 0.0342

]
,T3,2 =

[
0 0
0 0.0086

]
.

It can be observed that the first column in T2,3 and T3,2
are 0. Therefore, the mode-based Kalman filter can be tol-
erant onmodemismatch error betweenmode 2 andmode
3. The stable region for each λ is:

λ1,2 = λ1,3 = λ2,1 = λ3,1 = 0
0 ≤ λ2,3, λ3,2, λ1,1, λ2,2, λ3,3 ≤ 1.

Note that the condition that
∑3

i=1 λi,q = 1 should also
hold for every q. Figure 7 shows a Monte-Carlo simu-
lation for two different λ settings. For Setting I, we use
λ2,1 = λ3,1 = λ1,2 = λ1,3 = 0, λ3,2 = 0.4, λ2,3 = 0.7

Table 1 Discrete status and continuous dynamics parameters

Status L G D q kG α σG σD

Failure mode 0 0 0 1 0.1 0.1 0.1 0.1

Grid connected 1 1 0 2 3 0.5 0.8 0.8

1 1 1 3 3 0.49 1.5 1

where all the λs are within the stable region. The simula-
tion results for Setting I are shown in lines with squares
and triangles with left y-axis. Specifically, the line with
squares is the theoretical bias derived using the bias evo-
lution Eq. (10) while the line with triangles shows the bias
in a mode-based Kalman filter via Monte-Carlo simula-
tion. We can conclude that when all the λs are in stable
region, the bias of the mode-based Kalman filter is con-
vergent and bounded. For Setting II, we use λ2,1 = λ3,1 =
λ1,2 = 0.1, λ1,3 = 0, λ3,2 = 0.3, λ2,3 = 0.2 in which λ2,1,
λ3,1, and λ1,2 are outside the stable region. The solid line
and the dashed line with right y-axis present the results
for theoretical bias and actual bias generated in a mode-
based Kalman filter viaMonte-Carlo simulation. Note that
the y-axis on the right is log

(∥∥x∗
k
∥∥)

since the actual
∥∥x∗

k
∥∥

explodes rapidly. As this system does not have tolerance
between mode 1,2 and mode 1,3, even a small probability
of error (i.e., 0.1 in this case) will result in rapid explosion
in the bias dynamics.

6 Conclusions and future work
In this work, we consider the open research problem of
quantifying the impact of mode-mismatch errors on the
performance of a mode-based Kalman filter. The problem
itself is appropriate to describe network topology errors
in a smart grid or other cyber-physical systems. The main
technique proposed involves modeling the bias dynam-
ics in the Kalman filter as a transformed switched sys-
tem. Abstracting the discrete state transitions as arbitrary
switching signals not only broaden the application space
but also provides us tools from switched system stability
analysis to study the statistical convergence of the bias. As
part of our future work, we intend to consider generalizing
the model of mismatch events as time-variant correlated
Bernoulli random processes and study the impact on bias
convergence.
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