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Abstract

A novel direction-finding method is proposed for bistatic multiple-input-multiple-output (MIMO) radar in the impulse
noise in this paper. The method has the capacity to suppress the impulse noise by means of infinite norm
normalization and can obtain better performance for direction finding via the weighted signal subspace fitting
algorithm. To solve the objective function of this method, we devise a quantum-inspired grey wolf optimization
algorithm to acquire the global optimal solution. The proposed method based on QGWO can resolve the
direction-finding difficulties of bistatic MIMO radar. Monte-Carlo experiments have confirmed the robustness and
superiority of the proposed method for locating independent and coherent sources with a small number of
snapshots in the impulse noise compared with some existing direction-finding methods in a series of scenarios. In
addition, we present the Cramér-Rao bound (CRB) of angle estimation for bistatic MIMO radar in the impulse noise,
which generalizes the Gaussian CRB for performance analysis.

Keywords: Bistatic MIMO radar, Direction finding, Impulse noise, Infinite norm normalization, Weighted signal
subspace fitting, Quantum-inspired grey wolf optimization, Cramér-Rao bound

1 Introduction

Recently, multiple-input-multiple-output (MIMO) radar
has caused extensive concern because of its better param-
eter estimation performance compared with phased array
radar [1]. Overall, there are two types of MIMO radar
according to the radar configurations: statistical MIMO
radar and colocated MIMO radar. The first type, whose
antennas are widely separated in both the transmitting
and receiving arrays, can achieve high resolution via the
spatial diversity gain in multiple channels [2, 3]. The
second type, whose antennas are closely located in the
transmitting and receiving arrays, can achieve a coher-
ent processing gain [4, 5]. Furthermore, the transmitters
and receivers of the monostatic colocated MIMO radar
are closely located, which causes the result that the direc-
tion of departure (DOD) of a target is the same as the
direction of arrival (DOA) of the target. For the bistatic
colocated MIMO radar, the transmitters are far from the

*Correspondence: gaohongyuan@hrbeu.edu.cn
College of Information and Communication Engineering, Harbin Engineering
University, Nantong Street, Harbin, China

@ Springer Open

receivers, which brings about different DOD and DOA. In
this paper, we consider the bistatic colocated MIMO radar
to study.

Direction finding is a major issue of interest in array
signal processing for MIMO radar. In this context, this
issue has drawn attention from researchers in recent
years. The quaternion theory was applied in direction
finding for bistatic MIMO radar by means of singular
value decomposition and root multiple signal classifica-
tion (Root-MUSIC) in [6]. An ESPRIT-based algorithm
was presented via the banded symmetric and Toeplitz
matrices for direction finding of bistatic MIMO radar in
[7]. The unitary dual-resolution ESPRIT algorithm was
proposed for direction finding of bistatic MIMO radar
without extra pairing in [8]. Moreover, the maximum like-
lihood direction finding method for bistatic MIMO radar
was proposed in [9].

Overall, these methods have been studied for additive
Gaussian noise, but their performance can deteriorate in
the presence of non-Gaussian noise. The impulsivity is
a major characteristic of the non-Gaussian noise. In the
real world, the atmospheric noise, switching transients,
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and lightning are the typical impulse noises, which are
characterized by significant peak values. In this sense,
the symmetric a-stable (SaS) distribution, which general-
izes the Gaussian distribution, is an appropriate model to
describe the impulse noise [10, 11].

However, there are no second and higher-order
moments in the SaS distribution, and the conventional
direction-finding methods based on the second and
higher-order moments are not able to work on the impulse
noise. In this case, fractional low-order moment (FLOM)
was applied to suppress the impulse noise, and the FLOM-
ESPRIT method was proposed for direction finding of
bistatic MIMO radar in [12]. A FLOM-unitary ESPRIT
method for direction finding of bistatic MIMO radar
was proposed in the impulse noise in [13]. In [14], the
FLOM-MUSIC method was presented for direction find-
ing of MIMO radar in the impulse noise, then an infinite
norm (IN) normalization MUSIC method was proposed
to avoid obtaining prior knowledge about characteristic
exponent to achieve effective noise suppression. Com-
pared with fractional low-order moment, we can improve
the performance of suppressing the impulse noise via infi-
nite norm normalization. The weighted signal subspace
fitting (WSSF) algorithm [15] can achieve higher accuracy
in comparison to these subspace-based algorithms. But
under the background of impulse noise, the basic WSSF
method can not guarantee the performance. In order to
suppress the impulse noise, we introduced the IN normal-
ization to WSSF method for the first time and proposed
the IN-WSSF method for the direction finding of the
bistatic MIMO radar. Moreover, the proposed IN-WSSF
method is insensitive to the signal-to-noise ratio (SNR)
and snapshots.

Nevertheless, it is difficult to implement the IN-WSSF
method, because it requires the maximization of the cost
function, which is high-dimensional, nonlinear, and mul-
timodal. These characteristics motivate the development
of a series of alternative optimization algorithms, one of
which is the intelligence algorithm. They have the capacity
to reduce the computational complexity and accelerate the
speed of convergence when solving the IN-WSSF function
to perform direction finding.

Intelligence algorithms, such as particle swarm opti-
mization (PSO) [16], artificial bee colony (ABC) [17],
harmony search (HS) [18], and cuckoo search (CS) [19],
have been remarkably popular over the past two decades,
and they have been employed in a variety of domains
[20, 21] in a black-box style because of their simplicity
and derivation-free mechanism. However, some of them
can be easily trapped in a local optimum or not rapidly
converge to the global optimum, both of which are obsta-
cles for engineering problems, especially in the direction-
finding issue. Hence, we propose a quantum-inspired grey
wolf optimization (QGWO) algorithm, which is inspired
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by quantum computing [22] and the social hierarchy of
grey wolves [23]. Additionally, the proposed QGWO algo-
rithm can effectively avoid converging to local optima and
accelerate the speed of convergence compared with the
original grey wolf optimization (GWO) [23]. Then, the
global optimal solution of the proposed IN-WSSF method
can be achieved by the QGWO, which is referred to as the
QGWO-IN-WSSF method for short.

For the purpose of analyzing the performance of the
QGWO-IN-WSSF method, we first derive a general
expression of the Cramér-Rao bound (CRB) of angle esti-
mation for bistatic MIMO radar in the impulse noise.
Then, our work is pushed forward in testing the per-
formance of the proposed QGWO-IN-WSSF method in
different direction-finding scenarios, including a number
of snapshots and sources. Monte-Carlo experiments pro-
vide the evidence that the proposed QGWO-IN-WSSF
method has obtained the expected performance in differ-
ent direction-finding scenarios.

To summarize, the major contributions of this paper can
be briefly listed in the following:

1. A novel direction-finding method of bistatic MIMO
radar is addressed in the impulse noise, which can effec-
tively suppress the impulse noise and achieve the desired
performance with a small number of snapshots.

2. The proposed direction-finding method of bistatic
MIMO radar can locate the coherent sources without
extra preprocessing techniques.

3. A novel iterative optimization algorithm, the QGWO,
is devised to solve the continuous optimization problem
of the IN-WSSF method.

4. A general expression of the CRB, as the generalization
of the Gaussian CRB, is presented for direction finding of
bistatic MIMO radar in the impulse noise.

5. The Cauchy-Gaussian mixture (CGM) model is
adopted for the approximation of the probability distri-
bution function (PDF) of the SaS distribution in order to
obtain the CRB.

The remainder of this paper is organized as follows. In
Section 2, the direction-finding model of bistatic MIMO
radar in the impulse noise and the IN-WSSF method are
addressed. In Section 3, we provide the detailed descrip-
tion of QGWO, and then, the QGWO is applied to solve
the cost function of the IN-WSSF method. In Section 4,
the CRB for direction finding of bistatic MIMO radar
in the impulse noise is derived for performance analysis.
In Section 5, the performance of QGWO-IN-WSSF is
examined in comparison to several existing direction-
finding methods in some scenarios, and some important
evaluations and remarks are offered via the simulations.
Finally, Section 6 concludes the paper and presents the
subsequent research interests.

The following notations are used in this paper. Matri-
ces and vectors are represented by bold uppercase and
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bold lowercase characters, respectively. Vectors are in col-
umn orientation by default, and superscripts (-)7, (-)*, and
() denote the transpose, the conjugate, and the conju-
gate transpose. [-];; denotes the ith row and the jth column
element of the matrix. Furthermore, tr(:), ®, ®, diag(-),
E[], Re(-), Im(-), and | - | stand for the trace of the matrix,
the Hadamard product, the Kronecker product, the diag-
onal operator, the expectation, the real part, the imaginary
part, and the absolute value operator, respectively. Finally,
| - |2 represents the normalized norm of the vector.

2 Direction-finding model for bistatic MIMO radar
in the impulse noise

We assume that there are M transmitting antennas and N
receiving antennas in bistatic MIMO radar and both sides
are a uniform linear array (ULA). The transmitting side
can transmit M temporally orthogonal signals at the same
time, and they have the same center frequency and band-
width. Here, s(k) = [s1 (k);sy(k), ..., M(k)]T denotes the
transmitting signal vector, and its elements satisfy the
following orthogonality:

1K4/*k_1,i:j )
E;slms,( )—{O,i#j, (1)

where s;(k) and sj(k) denote the signals transmitted
from the ith and jth transmitting elements, respectively,
i=12....M,j=12,....M,k =1,2,...,K,and K
represents the maximum number of snapshots.

We consider P targets that appear in the far field.
0 = [01,0s....00)" , @ = [pn92...,0p)", and
B = [B1,B2-..,Bpr]" represent the DOD vector, DOA
vector, and complex reflection coefficient vector of the
targets, respectively. Then, the received signal vector can
be expressed as follows:

r(k) = Ac(@)ApA] (©)s(k) + k), (2)

where k = 1,2,...,K, Ai(@) = [ar(¢1),ar(¢2),...,
a,(pp)] represents the N x P receiving array manifold,
Ai(0) = [ac(61), ai(62),...,ai(0p)] represents the M x P
transmitting array manifold, a;(¢y)(p = 1,2,...,P) is
the N x 1 receiving steering vector of ¢, at(f,)(p =
1,2,...,P) is the M x 1 transmitting steering vector of
0y, Ap = diag(p) is the diagonal matrix constituted by
3 which obeys the standard normal distribution, and n(k)
denotes the N x 1 noise vector, which is assumed to be
impulsive and modeled by standard SaS distribution in
this paper.

For the purpose of separating the orthogonal com-
ponents of the transmitting signals, matched filters are
employed at the receiving side. Then, the output after
matched filtering is given by
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P
Y(k) = Bpar(6,) ® ar(gp) + n(k)
p:l (3)

= C(6, )B (k) + n(k),

where C(0, @) = [at(01) ® ar(¢1),at(62) @ ar(¢2), ...,
a¢(0p) ® a;(pp)] is the MN x P transmitting-receiving
array manifold, and n(k) denotes the MN x 1 complex
impulse noise vector.

Then, the estimation of the covariance matrix for y(k)
can be obtained while considering the finite snapshots as
follows:

. 1 &
Ry == ;wkw” (k), ()

Hence, the eigendecomposition of f{y is given by
Ry = U AU 4+ 0,A,0%, (5)

where Ag and A, denote the diagonal matrices that are
constructed by the eigenvalues of the signal-subspace and
noise-subspace, respectively, and the column vectors of
matrices U and U, represent the eigenvectors of the
signal-subspace and noise-subspace, respectively.

According to weighted signal subspace fitting, the esti-
mation of {0, @} can be achieved via the following func-
tion (the characteristic exponent « = 2) [15]:

{é, (f)] = argmaxtr [Pc(e,(p)fls\f(/ﬁf] , (6)
®

where Pc(p,) = C(8, 9)[C1(8, 9)C(8, )] ' C(0, )
represents the projection matrix of C(0, @), W is the
weighted matrix, and the optimal weighted matrix is
given by
~ ~ 2.1

Wopt = (As - &31) A, @)
where 62 represents the estimation of the noise variance,
and I represents the identity matrix.

Because there is no second-order moment when the
characteristic exponent « < 2, weighted signal subspace
fitting algorithm based on the second-order moment is
not able to work on the impulse noise. Thus, we utilize
the infinite norm normalization method to deal with the
problem, which does not need any prior knowledge about
characteristic exponent and is able to improve the perfor-

mance of suppressing the impulse noise compared with
the FLOM. The normalized data can be described as:

y (k)
k) = , 8
“O = @] e ®] - @]
where y(k) = [y1 ), y2(k), . ... ,yMN(k)]T.

Remark. The weighted signal covariance matrix R, =
E [z(k)zH (k)] is bounded in the impulse noise.
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Theoretical analysis demonstrates that the weighted sig-
nal covariance matrix R, is finite and the cross-correlation
is also zero. Then, the estimation of weighted signal
covariance matrix can be given by:

K

A l H
R, = < kgz(k)z k). )

In this case, we can obtain the signal-subspace and
noise-subspace by the eigendecomposition then achieve
the estimation of {6, @} according to weighted signal
subspace fitting algorithm in the impulse noise.

To summarize, weighted signal subspace fitting algo-
rithm based on infinite norm normalization is suitable for
Gaussian noise (¢ = 2) and impulsive noise (¢ < 2).

In addition, the proposed method can be applied to
other more complicated array structures. Although the
array manifold of complicated array structure is differ-
ent from that of the ULA, the style of corresponding
direction-finding function is similar to the ULA. Based on
this, the proposed method can be expanded to realize the
sources estimation of some complicated arrays.

3 Direction-finding method based on
quantum-inspired grey wolf optimization for
bistatic MIMO radar

3.1 Quantum-inspired grey wolf optimization
Grey wolf optimization (GWO) algorithm is inspired by
the social hierarchy of grey wolves. Grey wolves usually
live in a pack, and they have a very strict social dominant
hierarchy. The head grey wolf at the first level of hierar-
chy is called epsilon (¢), and ¢ is the leader of grey wolf
swarm. Its function is to make decisions about hunting,
habitat, food distribution, and so on. The grey wolf at the
second level of hierarchy is called eta (7). When ¢ is miss-
ing from the grey wolves, n will replace ¢ as the new head
grey wolf. The grey wolf at the third level of hierarchy is
rho (p), p follows the instructions of ¢, n, the old ¢ and old
n would also fall into this level. The remaining grey wolves
at the final level are responsible for balancing the internal
relations of the grey wolf swarm. The principle of GWO
algorithm is simple, the parameters needed to be adjusted
are few, and it is easy to be realized. But the basic GWO
algorithm is easy to fall into local optimum, which leads
to the failure of finding the optimal solution. Besides, the
convergence value is not accurate enough for the complex
continuous optimization problems.

According to the theory of GWO algorithm and quan-
tum computation, the QGWO algorithm is proposed in
this paper. In the QGWO algorithm, we design the entirely
new equations compared with the GWO, which can
improve the search ability and overcome the drawbacks of
GWO algorithm.
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There is a grey wolf swarm with Q grey wolves, each
of which possesses its own position. Thus, we define
t

the gth grey wolf’s position at the ¢th iteration as x;, =

[9?;’1,562’2, .. ’552,3] (g =1,2,...,Q) mapped by the quan-

tum position x;, =

1(b=1,2,...,B) [24]. Accordingly, the mapping function
is defined as follows:

~t _ ~low t ~high ~low
Xop =% —l—xq,b . (xb — X ),

¢t ¢ ¢
[xq,l,xqu, . ..,xq,B], where 0 < Xop <

0b (10)

~ ~ ~high]l -~ .
where xf] » € [x}jow,xblg ], x}fw denotes the bth dimen-

sional lower bound, and a?zlgh denotes the bth dimensional
upper bound.

The position of each grey wolf represents a potential
solution with B-dimension. Thus, the quality of a poten-
tial solution can be evaluated through the fitness function
F (ig), whose value denotes the fitness of ifl.

According to the feature of social hierarchy in the grey
wolf swarm, we define that three grey wolves correspond-
ing to the first three best quantum positions obtained so
far are the epsilon (¢), eta (), and rho (p), respectively. In
addition, the omega (w) denotes one of the remaining grey
wolves. To hunt the prey (locate the potential global opti-
mum), we update the quantum positions of the omegas
through the epsilon, eta, and rho during the iterations. In
this sense, there are two types of novel quantum position
updating strategies in the proposed QGWO. The updat-
ing equations of the first strategy are proposed by using a
simplified simulated quantum rotation gate as follows:

32;1 =1 - ‘cl % —x;,h , (11)
g;;l =2y~ ‘62 .xg —x;’b , (12)
Sont =ta e af —afy . 13
1| e 5t +m in (8211 (14)
ity =|xj xcos (87 Fp) XSmO )1
xlt;bl: xz % COS (8;;1)4_\/% X sin (8;’21> , (15)
x;”;: #° x cos (8;;1)4‘\/@ x sin (5;;1> , (16)
i1 A | vt 1
L1 Yab Tap * rah (17)
b T 3 '

where x, x?, and xg denote the bth dimension of the
§t1 sel
ab’ “qb’

and 'S'f;;l represent the quantum rotation angles of ¢,
n, and p, respectively, ¢ denotes the iteration number,

quantum positions of ¢, 1, and p, respectively,
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e =2 -roAir=Q2-rp—1-pu,t=123,r and ry
are the uniform random numbers in [0,1], and u decreases
linearly from 2 to 0 during the iterations.

For the second quantum position updating strategy, the
updating equations are adjusted by altering the size and
direction of the searching as follows:

i = (v =) £ (=) 09
P S (5t+1) +mx sin (8”1) (19)
A @b b wb /|

where r3 denotes a uniform random number in [0,1], r4
represents a random number that obeys the standardized
normal distribution, 8;21 denotes the quantum rotation

angle, and ¥, = (1/Q) 25:1 x;‘b is the bth dimension

of the average value X' = [x%,5, ...
positions.

,&%] of Q quantum

3.2 Computational complexity analysis of the QGWO
algorithm

As described in Section 3.1, the QGWO algorithm
updates the quantum rotation angles in all dimensions
of all grey wolves at each iteration, and the correspond-
ing complexity is O(QB), where Q is the population size
of grey wolf swarm and B denotes the dimension of the
optimization problem. The quantum position of each grey
wolf is updated by the quantum rotation angle, and the
position of the grey wolf can be obtained by mapping from
the quantum position, with the computational complexity
O(2QB). After that, we need to calculate the correspond-
ing fitness of the updated positions with complexity O(Q).
By means of the greedy selection, the current epsilon (¢),
eta (), and rho (p) are updated at each iteration, and the
complexity is O(Q).

When the number of terminated iterations is ¢, the
computational complexity of the QGWO algorithm is
O(t(3QB + 2Q)).

3.3 QGWO-IN-WSSF method for bistatic MIMO radar

For the QGWO, each dimension of the initial quantum
positions is randomly created in [0,1]. For the direction
finding problem of this paper, the fitness function should
be defined as follows:

F&) =tr [P ol )05\?0135 ] , (20)
q

where the grey wolf’s position ifi = [%2,1,9?;2, ... ’552,3]
corresponds to a set of estimation values of angles,
B = 2P, and P denotes the number of targets.

As described above, the issue can be converted into
a continuous optimization problem. In the process of
implementing QGWO, two types of quantum position
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updating strategies are repeatedly applied until the num-
ber of iterations has been reached. To summarize, the
QGWO-IN-WSSF method is outlined as follows:

Step 1: Initialize the arguments for the QGWO: the pop-
ulation size Q, wu, A, ¢z (t = 1,2,3), and the number of
iterations.

Step 2: Randomly create the initial quantum positions of
Q grey wolves in [0,1].

Step 3: Compute the fitness of the initial positions map-
ping from the quantum positions of grey wolves. Accord-
ing to the fitness values, select the first three best quantum
positions as the initial epsilon, eta, and rho.

Step 4: Update the current quantum positions of grey
wolves by means of these two strategies with the probabil-
ity of 50%.

Step 5: Calculate corresponding fitness of the updated
positions mapping from the quantum positions of grey
wolves.

Step 6: According to the new fitness values, update
the current epsilon, eta, and rho by greedy selection and
update the arguments p, A, ;.

Step 7: Examine the end criterion: if satisfied, break
up and output the ultimate mapping position of epsilon
which corresponds to a set of global optimal estimation
values of angles; otherwise, go back to step 4.

4 Performance analysis for direction finding of
bistatic MIMO radar in the impulse noise

4.1 Basic definitions in the impulse noise model
Because there is a heavy tail in the PDF of the impulse
noise, the SaS distribution with zero-location is an appro-
priate model to describe it, and its characteristic function
can be represented as follows:

pw) = e, (21)
where 0 < o < 2 denotes the characteristic exponent,
y > O represents the scale, and y 2 resembles the variance
for the Gaussian distribution.

The tail of the PDF for the SaS distribution is depicted
via «. In addition, a small value of « leads to a strong
impulsivity [10]. However, the SNR is usually insignifi-
cant for the SaS distribution because of the non-existence

of its second and higher order moments. Therefore, a
generalized SNR (GSNR) is defined as follows [25]:

2
GSNR = 10lg :E["s;f)'”} ) (22)

where E [Ils(k) IIZ] is the average power of the signals.

4.2 Cramér-Rao bound in the impulse noise
To verify the performance of the direction-finding meth-
ods, the CRB is a useful mathematical tool. Under the
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background of Gaussian noise, the CRB [26] has been dis-
cussed for many different direction-finding methods [27].
But the related researches for the CRB in the impulse
noise are few.

We will derive the CRB of the estimated parameters for
bistatic MIMO radar in the impulse noise to analyze the
performance of direction finding in this section. First, we
consider the following direction-finding model:

y(k) = C(8, @)B (k) + n(k)

(23)
= g(T, k) + h(k),

where g(T', k) and h(k) denote the signal component and
noise component, respectively, a complex quantity v =

7+j5 T = [e, ©,B1),BQ), ..., BEK),BL),BQ),. ..,
BUO] B0 = (0, 2K, ., I (01

(k) = hy(k) + (@ = 1,2,...,MN), k = 1,2,...,K,
and f,(h, h) denotes its PDF with parameter 2, which
satisfies the regularity conditions [28].

In general, the CRB of I is a major issue of interest, and
thus, the CRB can be represented as follows:

crB(f) = [17] .

, the element

(24)

where f'i is the estimation of an element I'; in ', and J is
the Fisher information matrix (FIM) of I' whose element
is given by:

(25)

Jy=E [3 Infy(¥) 9 lnfy(Y)} |

where Y =[y(1),y(2), . ..,y(K)], whose PDF can be repre-
sented as
K MN
A =[] Ali® — &, k), 5ik) — (T, k). (26)
k=1I=1
Let (k) = 5,(k) — (T, k) and Iy (k) = 5,(k) — (T, k),
and then, we obtain
0 _ _ . -
ﬁfh[)’l(k) — g, k), yi(k) — g(T, k)]
9, 7= 0g(T, k)
= —fulh, h) : [— } 27
oh (g o,y () T @7)
0 - agy(T, k)
+ =t - [—gl} ,
dh (g o,y () ol
and
K MN
ag(T, k) 3gz(r k)
Ji —1(9);; o
(28)
9g(T, k) 3gz(r k)
+MmZ§:a ,
k=1 I=1
where
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FPT

L(®) =E wh® B (29)
| Ay |
EXAE

() = B”fhi (30)
i) |

We assume that the PDF f;, (7, h) is circularly symmetric,
and thus, f; (il‘q, ilZ) = £, (1&, 12) —f (\/122 n 122), which
demonstrates that /;(k) and izl(k) are uncorrelated with
zero-mean. Then, [, (2) and [;(2) are equivalent to

< [r©]
”A 7@

1(R) = gds. 31)

In this case, we can obtain

K 9 H P
Ji =1C(9)]§Re [(mg(r’k)> (arjg(l“,k)ﬂ, (32)

where [(3/3T)g(T, k)] =[(8/dT)g1(T', k), (3/0T;) g2(T', k),
- (3/3T)gmn (T, )17
We assume that Nj,, denotes the number of param-
eters in I, and thus, we can obtain the matrix
[(d/0T)g(T, k)] =[(9/0T"1)g(T, k), (3/0T2)g(T, k), .. .,
(0/0T'N,,)8(I',k)]. Then, the FIM is represented as
follows:

K 3 H g
Jr = IC(SZ)];Re [(arg(r,k)) (arg(r,k))}(%)

Finally, the CRB can be obtained by calculating the
inverse of Jr as follows [30]:

{Re [(DHPéD) @ (Rg ® 1M)] }
I.(R)

where ©@ = [911 §01;92: 025 - .,0p, QOP]T) D = [d(el))
d(¢1),d(62),d(¢2), . ..,d(Op), d(gp)] with d(0;) = 0[x(0;)
Qo ()] /3(0;) and d(g;)) = [ oxe(6) ® axe(9i)] /(i)
Pé = I — P¢ denotes the projection onto the orthogonal
complementary space of C, Rg = 1/K Zle B (kB (k),
and 1547 denotes a 2 x 2 matrix covered with ones.

To summarize, the CRB can be written as a product of
two terms. The first term depends on the noise, and the
second term depends on the signal. For the first term, the
PDF f(£) is a major issue of interest for I.(£2). Usually,
the PDF f(&) is obtained via the inverse Fourier trans-
form of the characteristic function [10]. Nevertheless, the
closed-form expression of (&) does not exist, except for
a = 1 and ¢ = 2 (Cauchy and Gaussian distribu-
tions, respectively) [10], which has become an obstacle to
obtaining the CRB.

-1

CRB(O®) = , (34)
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In this context, the Cauchy-Gaussian mixture (CGM)
model [31] is an appropriate approximation model for the
SaS PDE. For the purpose of reducing the computational
burden in the CGM model, we adopt the bi-parameter
CGM (BCGM) model [31] to obtain the PDF as follows:

FE) = (L= 0fs(®) + xfec®)
et e (_%2) N A
2y 4?) @1y

(35)

where x denotes the mixture ratio, and y represents the
scale. In this way, we can obtain the CRB in the impulse
noise through Egs. (31) and (34).

5 Simulation results and discussion
For the purpose of evaluating the direction-finding perfor-
mance of QGWO-IN-WSSE, a chain of experiments will
be conducted in this section. We consider the ULAs of
six transmitting elements and six receiving elements with
half-wavelength inter-element spacing in bistatic MIMO
radar. For the QGWO, the size of the population Q =
30, and the number of iterations is set to 100. To make
the simulation results more reliable, 500 Monte-Carlo
experiments are performed for each scenario.

In the following, the performances of the QGWO-IN-
WSSF, FLOM-MUSIC (the fractional order is set to 1.2)
[14], IN-MUSIC [14], and the CRB, are compared.

5.1 First scenario
First, we consider two independent sources located at
(61, ¢1) = (30°,40°), (62, 92) = (36°,46°). To assess the
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estimation accuracy, we define the root mean square error
(RMSE) as follows:

P N |:<9p — éph)z + ((Pp - @ph)2j|
, (36)

RMSE = Z Z PN

p=1n=1

where P is the number of sources, Ny is the number of
Monte-Carlo experiments, 6, and ¢, denote the true value
of DOD and DOA for the pth source, respectively, and éph
and @p;; denote the estimated value of DOD and DOA for
the pth source in the 71th experiment, respectively.

For the purpose of assessing the performance of
QGWO-IN-WSSF under the circumstances of different
numbers of snapshots, the RMSE curves and the CRB
of two independent sources are displayed for different
numbers of snapshots in Fig. 1 with GSNR = 20dB, « = 1.5,
x = 04,y = 1. It is shown that the RMSE of the pro-
posed QGWO-IN-WSSF method is quite close to the
CRB asymptotically, which indicates that it can obtain
an accurate estimation of two independent sources in
the impulse noise. In addition, the proposed QGWO-IN-
WSSE method outperforms the existing FLOM-MUSIC
method and IN-MUSIC method in the matter of estima-
tion accuracy in such a small-snapshot domain.

In Fig. 2, the success rate curves of two independent
sources are exhibited for different numbers of snapshots
with GSNR = 20dB,« = 1.5. Basically, we consider
that an angle is successfully estimated when the angular
distance between the estimated value and the true value
becomes smaller than 1°, and the success rate indicates the
percentage of successful estimations. As we can observe in

RMSE(degree)
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Fig. 1 RMSE curves and CRB versus the number of snapshots for two independent sources with GSNR= 20dBand « = 1.5
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Fig. 2 Success rate curves versus the number of snapshots for two independent sources with GSNR= 20dBand a = 1.5

Fig. 2, the proposed QGWO-IN-WSSF method can suc-
cessfully estimate the DODs and DOAs of the targets in
almost all of the experiments with a small number of snap-
shots. Moreover, the proposed QGWO-IN-WSSF method
is better than the existing FLOM-MUSIC method and IN-
MUSIC method in the matter of success rate, especially in
the small-snapshot domain, which demonstrates that the
QGWO-IN-WSSEF is robust for direction finding with a
small number of snapshots.

5.2 Second scenario

Next, we consider the same two independent sources, and
the number of snapshots K is set to 20 with the identical
simulation parameters as in the first scenario.

Based on the IN-WSSF function, Fig. 3 exhibits the
performance of QGWO and a number of conventional
intelligence algorithms, such as ABC [17], HS [18], CS
[19], and GWO [23]. The IN-WSSF methods based on the
ABC, HS, CS, and GWO are referred to as ABC-IN-WSSF,
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Fig. 3 Convergence curves of five intelligence algorithms for two independent sources with GSNR= 20dBand & = 1.5




Gao et al. EURASIP Journal on Advances in Signal Processing

HS-IN-WSSE, CS-IN-WSSE, and GWO-IN-WSSF for
short, respectively. The size of the population is 30, and
the number of iterations is 100 in all of the intelli-
gence algorithms. Additionally, the result shown in Fig. 3
demonstrates that QGWO is better than ABC, HS, CS,
and GWO according to the speed and accuracy of conver-
gence, which indicates the superiority of QGWO.

In Fig. 4, the RMSE curves and the CRB of two inde-
pendent sources are displayed for different GSNRs with
a = 1.5. As we can observe in Fig. 4, the RMSE of
the proposed QGWO-IN-WSSF method is quite close to
the CRB asymptotically. The RMSE of the three meth-
ods and the CRB worsen with a decrease in the GSNR
because the lower GSNR shifts the estimated values from
the true values in such a way that the RMSE is more
pronounced. Moreover, the proposed QGWO-IN-WSSF
method outperforms the FLOM-MUSIC method and IN-
MUSIC method in the matter of estimation accuracy.

In Fig. 5, the success rate curves of two independent
sources are shown for different characteristic exponents
with GSNR = 20dB. As we can observe in Fig. 5,
the proposed QGWO-IN-WSSF method can success-
fully estimate DODs and DOAs of targets in almost all
of the experiments in the weak impulse noise. More-
over, as the characteristic exponent increases, the success
rate of the three methods rises apparently. In addition,
the proposed QGWO-IN-WSSF method is better than
the FLOM-MUSIC method and IN-MUSIC method in the
matter of success rate, especially in the strong impulse
noise.
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5.3 Third scenario

To examine whether the different angles affect the per-
formance of the proposed QGWO-IN-WSSF method,
we consider another two independent sources located at
(61, 91) = (30°,40°), (62, 92) = (40°,50°), and the other
simulation parameters are identical to those in the second
scenario. Then, simulations were performed to calculate
the RMSE and success rate, respectively.

The RMSE curves, as well as the CRB of two different
independent sources, are exhibited for different GSNRs
with @« = 1.5 in Fig. 6, and the success rate curves of
two different independent sources are shown for different
characteristic exponents, with GSNR = 20dB in Fig. 7. We
can obtain some conclusions that are similar to those in
the second scenario from Figs. 6 and 7. In addition, the
larger difference in the angles makes the direction finding
easier.

Hence, we can conclude that the proposed QGWO-IN-
WSSF method can obtain the desired performance for
different angles.

5.4 Fourth scenario

The previous simulations were conducted for only two
sources. For the purpose of testing whether the perfor-
mance of QGWO-IN-WSSEF is influenced by the increas-
ing number of sources, we consider three independent
sources located at (01,¢1) = (30°,40°), (62,¢2) =
(40°,50°), (63,¢3) = (50°,60°), and the other sim-
ulation parameters are identical to those in the third
scenario.
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Fig. 4 RMSE curves and CRB versus GSNR for two independent sources with @ = 1.5
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Fig. 5 Success rate curves versus characteristic exponent for two independent sources with GSNR = 20dB

In Fig. 8, the RMSE curves, as well as the CRB of three
independent sources, are displayed for different GSNRs
with « = 1.5. In Fig. 9, the success rate curves of three
independent sources are exhibited for different character-
istic exponents with GSNR = 20dB. From Figs. 8 and 9,
we can conclude that the proposed QGWO-IN-WSSF
method has the capacity to locate the DODs and DOAs
precisely with the increase in the number of sources.

Additionally, the other conclusions are similar to those in
the previous experiments.

5.5 Fifth scenario

The previous simulations are performed only for some
scenarios of independent sources. However, the coherent
sources will present some challenges for direction find-
ing. In this sense, the performance of the FLOM-MUSIC

RMSE(degree)
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Fig. 6 RMSE curves and CRB versus GSNR for two different independent sources with o = 1.5
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method and IN-MUSIC method will deteriorate severely
when locating the coherent sources [32]. Hence, we
employ forward-backward spatial smoothing (SS) to han-
dle the coherent sources [33, 34].

For the purpose of examining the capacity of the pro-
posed QGWO-IN-WSSF method to locate the coherent
sources, two coherent sources located at (61,¢1) =
(30°,40°), (62, 92) = (40°,50°) are considered, and the
other simulation parameters are identical to those in

the third scenario. Then, the simulations have been per-
formed to obtain the RMSE and success rate.

The RMSE curves and the CRB of two coherent sources
are displayed for different GSNRs with « = 1.5 in
Fig. 10, and the success rate curves of two coherent
sources are exhibited for different characteristic expo-
nents with GSNR = 20dB in Fig. 11. From Figs. 10 and
11, we can conclude that the proposed QGWO-IN-WSSF
method is capable of locating the DODs and DOAs of the
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Fig. 8 RMSE curves and CRB versus GSNR for three independent sources with @ = 1.5
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two coherent sources accurately. Moreover, the proposed
QGWO-IN-WSSF method has obtained the desired per-
formance again when locating the coherent sources,
and it outperforms the FLOM-SSMUSIC method and
IN-SSMUSIC method according to the estimation accu-
racy and success rate.

As a consequence, the performance of the pro-
posed QGWO-IN-WSSF method does not worsen when
addressing the coherent sources, which testifies to the
robustness and superiority of the method. In this way, it is

worthwhile to apply this method for locating the coherent
sources.

6 Conclusions

In this paper, a novel method referred to as QGWO-
IN-WSSE is presented for locating the targets of bistatic
MIMO radar in the impulse noise. A chain of Monte-
Carlo experiments has demonstrated that the pro-
posed QGWO-IN-WSSF method can suppress the noise
and locate multiple independent and coherent sources
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Fig. 10 RMSE curves and CRB versus GSNR for two coherent sources with @ = 1.5
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effectively. Compared with some previous methods, the
proposed QGWO-IN-WSSF method is capable of obtain-
ing better performance with a small number of snap-
shots, which verifies the superiority and robustness of the
method. In addition, we derive a general CRB, which gen-
eralizes the Gaussian CRB, for direction finding of bistatic
MIMO radar in the impulse noise. In the subsequent
research, we will design a multimodal QGWO algorithm
to solve more complicated direction-finding problems for
MIMO radar.

Appendix

Proof Because the component [R,];i(i,j = 1,2,..., MN)
of R, is a complex number, we should demonstrate that
both real part Re{[R,];;} and imaginary part Im{[R,];;} are
bounded. Thus, we can obtain

Re([R,];) = Re { Elz:(k)z (k)] |
= E{Relz(k)z ()] |
S AACEACH
< E{ 1z [5(0])

lyi(b)|

y2. (k)
b’j (k) |

max { [y1(k)|, |y2 (k)

<E{yi<k> y,(k)\}
= Uit ™ [y

3y yee ey

max { |1 (k) yun (k)| }

Jes e

ymn (k)| }

(37)

Note that

Re([R,Jy} = —E{ |zitkz} )|
—E {1z |7k} (38)

> —1.

v

In this case, we can obtain —1 < Re{[R,];} < 1. Sim-
ilarly, =1 < Im{[R.];} < 1. Hence, weighted signal
covariance matrix R; is bounded in the impulse noise.
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