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Abstract

In this paper, we discuss distributed optimization over directed graphs, where doubly stochastic weights cannot be
constructed. Most of the existing algorithms overcome this issue by applying push-sum consensus, which utilizes
column-stochastic weights. The formulation of column-stochastic weights requires each agent to know (at least) its
out-degree, which may be impractical in, for example, broadcast-based communication protocols. In contrast, we
describe FROST (Fast Row-stochastic-Optimization with uncoordinated STep-sizes), an optimization algorithm
applicable to directed graphs that does not require the knowledge of out-degrees, the implementation of which is
straightforward as each agent locally assigns weights to the incoming information and locally chooses a suitable
step-size. We show that FROST converges linearly to the optimal solution for smooth and strongly convex functions
given that the largest step-size is positive and sufficiently small.
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1 Introduction
In this paper, we study distributed optimization, where n
agents are tasked to solve the following problem:

min
x∈Rn

F(x) � 1
n

n∑

i=1
fi(x),

where each objective, fi : Rp → R, is private and known
only to agent i. The goal of the agents is to find the
global minimizer of the aggregate cost, F(x), via local
communication with their neighbors and without reveal-
ing their private objective functions. This formulation has
recently received great attention due to its extensive appli-
cations in, for example, machine learning [1–6], control
[7], cognitive networks, [8, 9], and source localization
[10, 11].
Early work on this topic includes Distributed Gradient

Descent (DGD) [12, 13], which is computationally simple
but is slow due to a diminishing step-size. The conver-
gence rates are O

(
log k√

k

)
for general convex functions

andO
(
log k
k

)
for strongly convex functions, where k is the
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number of iterations.With a constant step-size, DGD con-
verges faster albeit to an inexact solution [14, 15]. Related
work also includes methods based on the Lagrangian dual
[16–19] to achieve faster convergence, at the expense of
more computation. To achieve both fast convergence and
computational simplicity, some fast distributed first-order
methods have been proposed. A Nesterov-type approach
[20] achieves O

(
log k
k2

)
for smooth convex functions with

bounded gradient assumption. EXact firsT-ordeR Algo-
rithm (EXTRA) [21] exploits the difference of two con-
secutive DGD iterates to achieve a linear convergence to
the optimal solution. Exact diffusion [22, 23] applies an
adapt-then-combine structure [24] to EXTRA and gener-
alizes the symmetric doubly stochastic weights required
in EXTRA to locally balanced row-stochastic weights over
undirected graphs. Of significant relevance to this paper is
a distributed gradient tracking technique built on dynamic
consensus [25], which enables each agent to asymptot-
ically learn the gradient of the global objective func-
tion. This technique was first proposed simultaneously in
[26, 27]. Xu et al. and Qu and Li [26, 28] combine it
with the DGD structure to achieve improved convergence
for smooth and convex problems. Lorenzo and Scutari
[27, 29], on the other hand, propose the NEXT framework
for a more general class of non-convex problems.
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All of the aforementioned methods assume that the
multi-agent network is undirected. In practice, it may not
be possible to achieve undirected communication. It is
of interest, thus, to develop optimization algorithms that
are fast and are applicable to arbitrary directed graphs.
The challenge here lies in the fact that doubly stochas-
tic weights, standard in many distributed optimization
algorithms, cannot be constructed over arbitrary directed
graphs. In particular, the weight matrices in directed
graphs can only be either row-stochastic or column-
stochastic, but not both.
We now discuss related work on directed graphs. Early

work based on DGD includes subgradient-push [30, 31]
and Directed-Distributed Gradient Descent (D-DGD)
[32, 33], with a sublinear convergence rate of O

(
log k√

k

)
.

Some recent work extends these methods to asyn-
chronous networks [34–36]. To accelerate the con-
vergence, DEXTRA [37] combines push-sum [38] and
EXTRA [21] to achieve linear convergence given that the
step-size lies in some non-trivial interval. This restriction
on the step-size is later relaxed in ADD-OPT/Push-
DIGing [39, 40], which linearly converge for a suffi-
ciently small step-size. Of relevance is also [41], where
distributed non-convex problems are considered with
column-stochastic weights. More recent work [42, 43]
proposes the AB and ABm algorithms, which employ
both row- and column-stochastic weights to achieve
(accelerated) linear convergence over arbitrary strongly
connected graphs. Note that although the construction of
doubly stochastic weights is avoided, all of the aforemen-
tioned methods require each agent to know its out-degree
to formulate doubly or column-stochastic weights. This
requirement may be impractical in situations where the
agents use a broadcast-based communication protocol.
In contrast, Refs. [44, 45] provide algorithms that only
use row-stochastic weights. Row-stochastic weight design
is simple and is further applicable to broadcast-based
methods.
In this paper, we focus on optimization with row-

stochastic weights following the recent work in [44, 45].
We propose a fast optimization algorithm, termed as
FROST (Fast Row-stochastic Optimization with uncoor-
dinated STep-sizes), which is applicable to both directed
and undirected graphs with uncoordinated step-sizes
among the agents. Distributed optimization (based on
gradient tracking) with uncoordinated step-sizes has been
previously studied in [26, 46, 47], over undirected graphs
with doubly stochastic weights, and in [48], over directed
graphs with column-stochastic weights. These works
introduce a notion of heterogeneity among the step-sizes,
defined respectively as the relative deviation of the step-
sizes from their average in [26, 46] and as the ratio of
the largest to the smallest step-size in [47, 48]. It is then

shown that when the heterogeneity is small enough, i.e.,
the step-sizes are very close to each other, and when the
largest step-size follows a bound as a function of the het-
erogeneity, the proposed algorithms linearly converge to
the optimal solution. A challenge in this formulation is
that choosing a sufficiently small, local step-size does not
ensure small heterogeneity, while no step-size can be cho-
sen to be zero. In contrast, a major contribution of this
paper is that we establish linear convergence with uncoor-
dinated step-sizes when the upper bound on the step-sizes
is independent of any notion of heterogeneity. The imple-
mentation of FROST therefore is completely local, since
each agent locally chooses a sufficiently small step-size,
independent of other step-sizes, and locally assigns row-
stochastic weights to the incoming information. In addi-
tion, our analysis shows that all step-sizes except one can
be zero for the algorithm to work, which is a novel result in
distributed optimization. We show that FROST converges
linearly to the optimal solution for smooth and strongly
convex functions.
Notation: We use lowercase bold letters to denote vec-

tors and uppercase italic letters to denote matrices. The
matrix, In, represents the n × n identity, whereas 1n (0n)
is the n-dimensional uncoordinated vector of all 1’s (0’s).
We further use ei to denote an n-dimensional vector of
all 0’s except 1 at the ith location. For an arbitrary vec-
tor, x, we denote its ith element by [ x]i and diag{x}
is a diagonal matrix with x on its main diagonal. We
denote by X ⊗ Y the Kronecker product of two matri-
ces, X and Y. For a primitive, row-stochastic matrix, A, we
denote its left and right Perron eigenvectors by π r and 1n,
respectively, such that π�

r 1n = 1; similarly, for a primi-
tive, column-stochastic matrix, B, we denote its left and
right Perron eigenvectors by 1n and π c, respectively, such
that 1�

n π c = 1 [49]. For a matrix, X, we denote ρ(X) as
its spectral radius and diag(X) as a diagonal matrix con-
sisting of the corresponding diagonal elements of X. The
notation ‖ · ‖2 denotes the Euclidean norm of vectors and
matrices, while ‖·‖F denotes the Frobenius norm ofmatri-
ces. Depending on the argument, we denote ‖ · ‖ either as
a particular matrix norm, the choice of which will be clear
in Lemma 1, or a vector norm that is compatible with this
matrix norm, i.e., ‖Xx‖ ≤ ‖X‖‖x‖ for all matrices, X, and
all vectors, x [49].
We now describe the rest of the paper. Section 2

states the problem and assumptions. Section 3 reviews
related algorithms that use doubly stochastic or
column-stochastic weights and shows the intuition
behind the analysis of these types of algorithms. In
Section 4, we provide the main algorithm, FROST,
proposed in this paper. In Section 5, we develop the
convergence properties of FROST. Simulation results
are provided in Section 6, and Section 7 concludes
the paper.
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2 Problem formulation
Consider n agents communicating over a strongly con-
nected network, G = (V , E), where V = {1, · · · , n} is the
set of agents and E is the set of edges, (i, j), i, j ∈ V , such
that agent j can send information to agent i, i.e., j → i.
Define N in

i as the collection of in-neighbors, i.e., the set
of agents that can send information to agent i. Simi-
larly,N out

i is the set of out-neighbors of agent i. Note that
both N in

i and N out
i include agent i. The agents are tasked

to solve the following problem:

P1 : min
x

F(x) � 1
n

n∑

i=1
fi(x),

where fi : Rp → R is a private cost function only known
to agent i. We denote the optimal solution of P1 as x∗.
We will discuss different distributed algorithms related
to this problem under the applicable set of assumptions,
described below:

Assumption 1 The graph, G, is undirected and con-
nected.

Assumption 2 The graph, G, is directed and strongly
connected.

Assumption 3 Each local objective, fi, is convex with
bounded subgradient.

Assumption 4 Each local objective, fi, is smooth and
strongly convex, i.e., ∀i and ∀x, y ∈ R

p,

i. There exists a positive constant l such that
∥∥∇fi(x) − ∇fi(y)

∥∥
2 ≤ l‖x − y‖2.

ii. there exists a positive constant μ such that

fi(y) ≥ fi(x) + ∇fi(x)�(y − x) + μ

2
‖x − y‖22.

Clearly, the Lipschitz continuity and strong convexity
constants for the global objective function, F = 1

n
∑n

i=1 fi,
are l and μ, respectively.

Assumption 5 Each agent in the network has and knows
its unique identifier, e.g., 1, · · · , n.
If this were not true, the agents may implement a finite-

time distributed algorithm to assign such identifiers, e.g.,
with the help of task allocation algorithms, [50, 51], where
the task at each agent is to pick a unique number from the
set {1, . . . , n}.

Assumption 6 Each agent knows its out-degree in the
network, i.e., the number of its out-neighbors.

We note here that Assumptions 3 and 4 do not hold
together; when applicable, the algorithms we discuss use
either one of these assumptions but not both. We will dis-
cuss FROST, the algorithm proposed in this paper, under
Assumptions 2, 4, 5.

3 Related work
In this section, we discuss related distributed first-order
methods and provide an intuitive explanation for each one
of them.

3.1 Algorithms using doubly stochastic weights
A well-known solution to distributed optimization over
undirected graphs is Distributed Gradient Descent (DGD)
[12, 13], which combines distributed averaging with a
local gradient step. Each agent i maintains a local esti-
mate, xik , of the optimal solution, x∗, and implements the
following iteration:

xik+1 =
n∑

j=1
wijx

j
k − αk∇fi

(
xik

)
, (1)

where W = {
wij

}
is doubly stochastic and respects

the graph topology. The step-size αk is diminishing such
that

∑∞
k=0 αk = ∞ and

∑∞
k=0 α2

k < ∞. Under the
Assumptions 1, 3, and 6, DGD converges to x∗ at the rate
of O

(
log k√

k

)
. The convergence rate is slow because of the

diminishing step-size. If a constant step-size is used in
DGD, i.e., αk = α, it converges faster to an error ball, pro-
portional to α, around x∗ [14, 15]. This is because x∗ is not
a fixed-point of the above iteration when the step-size is a
constant.
To accelerate the convergence, Refs. [26, 28] recently

propose a distributed first-order method based on gradi-
ent tracking, which uses a constant step-size and replaces
the local gradient, at each agent in DGD, with an asymp-
totic estimator of the global gradient1. The algorithm is
updated as follows [26, 28]:

xik+1 =
n∑

j=1
wijx

j
k − αyik , (2a)

yik+1 =
n∑

j=1
wijy

j
k + ∇fi

(
xik+1

) − ∇fi
(
xik

)
, (2b)

initialized with yi0 = ∇fi
(
xi0

)
and an arbitrary xi0 at each

agent. The first equation is essentially a descent method,
after mixing with neighboring information, where the
descent direction is yik , instead of∇fi

(
xik

)
as was in Eq. (1).

The second equation is a global gradient estimator when
viewed as dynamic consensus [52], i.e., yik asymptotically
tracks the average of local gradients: 1

n
∑n

i=1 ∇fi
(
xik

)
. It is

shown in Refs. [28, 40, 46] that xik converges linearly to x∗
under Assumptions 1, 4, and 6, with a sufficiently small
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step-size, α. Note that these methods, Eqs. (1) and (2a)–
(2b), are not applicable to directed graphs as they require
doubly stochastic weights.

3.2 Algorithms using column-stochastic weights
We first consider the case when DGD in Eq. (1) is applied
to a directed graph and the weight matrix is column-
stochastic but not row-stochastic. It can be obtained
that [32]:

xk+1 = xk − αk
n

n∑

i=1
∇fi

(
xik

)
, (3)

where xk = 1
n

∑n
i=1 xik . From Eq. (3), it is clear that the

average of the estimates, xk , converges to x∗, as Eq. (3)
can be viewed as a centralized gradient method if each
local estimate xik converges to xk . However, since the
weightmatrix is not row-stochastic, the estimates of agents
will not reach an agreement [32]. This discussion moti-
vates combining DGD with an algorithm, called push-
sum, briefly discussed next, that enables agreement over
directed graphs with column-stochastic weights.

3.2.1 Push-sum consensus
Push-sum [38, 53] is a technique to achieve average con-
sensus over arbitrary digraphs. At time k, each agent
maintains two state vectors, xik , z

i
k ∈ R

p, and an auxil-
iary scalar variable, vik , initialized with vi0 = 1. Push-sum
performs the following iterations:

vik+1 =
n∑

j=1
bijv

j
k , (4a)

xik+1 =
n∑

j=1
bijx

j
k (4b)

zik+1 = xik+1
vik+1

, (4c)

where B = {
bij

}
is column-stochastic. Equation (4a) can

be viewed as an independent algorithm to asymptotically
learn the right Perron eigenvector of B; recall that the right
Perron eigenvector of B is not 1n because B is not row-
stochastic and we denote it by π c. In fact, it can be verified
that limk→∞ vi(k) = n[π c]i and that limk→∞ xi(k) =
[π c]i

∑n
i=1 xi(0). Therefore, the limit of zi(k), as the ratio

of xi(k) over vi(k), is the average of the initial values:

lim
k→∞

zik = lim
k→∞

xik
vik

= [π c]i
∑n

i=1 xi(0)
n[π c]i

=
∑n

i=1 xi0
n

.

In the next subsection, we present subgradient-push
that applies push-sum toDGD, see [32, 33] for an alternate
approach that does not require eigenvector estimation of
Eq. (4a).

3.2.2 Subgradient-push
To solve Problem P1 over arbitrary directed graphs, Refs.
[30, 31] develop subgradient-push with the following
iterations:

vik+1 =
n∑

j=1
bijv

j
k , (5a)

xik+1 =
n∑

j=1
bijx

j
k − αk∇fi

(
zik

)
, (5b)

zk+1 = xik+1
vik+1

, (5c)

initialized with vi0 = 1 and an arbitrary xi0 at each agent.
The step-size, αk , satisfies the same conditions as in DGD.
To understand these iterations, note that Eqs. (5a)–(5c)
are nearly the same as Eqs. (4a)–(4c), except that there
is an additional gradient term in Eq. (5b), which drives
the limit of zik to x∗. Under the Assumptions 2, 3, and 6,
subgradient-push converges to x∗ at the rate of O

(
log k√

k

)
.

For extensions of subgradient-push to asynchronous net-
works, see recent work [34–36]. We next describe an
algorithm that significantly improves this convergence
rate.

3.2.3 ADD-OPT/Push-DIGing
ADD-OPT [39], extended to time-varying graphs in
Push-DIGing [40], is a fast algorithm over directed
graphs, which converges at a linear rate to x∗ under the
Assumptions 2, 4, and 6, in contrast to the sublinear con-
vergence of subgradient-push. The three vectors, xik , z

i
k ,

and yik , and a scalar vik maintained at each agent i, are
updated as follows:

vik+1 =
n∑

j=1
bijv

j
k , (6a)

xik+1 =
n∑

j=1
bijx

j
k − αyik , (6b)

zik+1 = xik+1
vik+1

, (6c)

yik+1 =
n∑

j=1
bijyik + ∇fi

(
zik+1

) − ∇fi
(
zik

)
, (6d)

where each agent is initialized with vi0 = 1, yi0 = ∇fi
(
xi0

)
,

and an arbitrary xi0. We note here that ADD-OPT/Push-
DIGing essentially applies push-sum to the algorithm
in Eqs. (2a)–(2b), where the doubly stochastic weights
therein are replaced by column-stochastic weights.
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3.2.4 TheAB algorithm
As we can see, subgradient-push and ADD-OPT/Push-
DIGing, described before, have a nonlinear term that
comes from the division by the eigenvector estimation.
In contrast, the AB algorithm, introduced in [42] and
extended to ABm with the addition of a heavy-ball
momentum term in [43] and to time-varying graphs in
[54], removes this nonlinearity and remains applicable to
directed graphs by a simultaneous application of row- and
column-stochastic weights2. Each agent i maintains two
variables: xik , y

i
k ∈ R

p, where, as before, xik is the estimate
of x∗ and yik tracks the average gradient,

1
n

∑n
i=1 ∇fi

(
xik

)
.

TheAB algorithm, initialized with yi0 = ∇fi
(
xi0

)
and arbi-

trary xi0 at each agent, performs the following iterations:

xik+1 =
n∑

j=1
aijx

j
k − αyik , (7a)

yik+1 =
n∑

j=1
bijy

j
k + ∇fi

(
xik+1

) − ∇fi
(
xik

)
, (7b)

where A = {aij} is row-stochastic and B = {bij} is
column-stochastic. It is shown that AB converges lin-
early to x∗ for sufficiently small step-sizes under the
Assumptions 2, 4, and 6 [42]. Therefore,AB can be viewed
as a generalization of the algorithm in Eqs. (2a)–(2b) as
the doubly stochastic weights therein are replaced by row-
and column-stochastic weights. Furthermore, it is shown
in [43] that ADD-OPT/Push-DIGing in Eqs. (6a)–(6d) in
fact can be derived from an equivalent form ofAB after a
state transformation on the xk-update; see [43] for details.
For applications of the AB algorithm to distributed least
squares, see, for instance, [56].

4 Algorithms using row-stochastic weights
All of the aforementioned methods require at least
each agent to know its out-degree in the network in
order to construct doubly or column-stochastic weights.
This requirement may be infeasible, e.g., when agents
use broadcast-based communication protocols. Row-
stochastic weights, on the other hand, are easier to imple-
ment in a distributedmanner as every agent locally assigns
an appropriate weight to each incoming variable from
its in-neighbors. In the next section, we describe the
main contribution of this paper, i.e., a fast optimization
algorithm that uses only row-stochastic weights and unco-
ordinated step-sizes.
To motivate the proposed algorithm, we first consider

DGD in Eq. (1) over directed graphs when the weight
matrix in DGD is chosen to be row-stochastic, but not
column-stochastic. From consensus arguments and the
fact that the step-size αk goes to 0, it can be verified that
the agents achieve agreement. However, this agreement

is not on the optimal solution. This can be shown [32]
by defining an accumulation state, x̂k = ∑n

i=1[π r]i xik ,
where π r is the left Perron eigenvector of the row-
stochastic weight matrix, to obtain

x̂(k + 1) = x̂(k) − αk

n∑

i=1
[π r]i ∇fi (xi(k)) . (8)

It can be verified that the agents agree to the limit of
the above iteration, which is suboptimal since this itera-
tion minimizes a weighted sum of the objective functions
and not the sum. This argument leads to a modifica-
tion of Eq. (8) that cancels the imbalance in the gradient
term caused by the fact that π r is not a vector of all 1’s,
a consequence of losing the column-stochasticity in the
weight matrix. The modification, introduced in [44], is
implemented as follows:

yik+1 =
n∑

j=1
aijy

j
k , (9a)

xik+1 =
n∑

j=1
aijx

j
k − αk

∇fi
(
xik

)
[
yik

]
i

, (9b)

where A = {aij} is row-stochastic and the algorithm
is initialized with yi0 = ei and an arbitrary xi0 at each
agent. Equation (9a) asymptotically learns the left Per-
ron eigenvector of the row-stochastic weight matrix A,
i.e., limk→∞ yik = π r , ∀i. The above algorithm achieves
a sublinear convergence rate of O

(
log k√

k

)
under the

Assumptions 2, 3, and 5, see [44] for details.

4.1 FROST (Fast Row-stochastic Optimization with
uncoordinated STep-sizes)

Based on the insights that gradient tracking and constant
step-sizes provide exact and fast linear convergence, we
now describe FROST that adds gradient tracking to the
algorithm in Eqs. (9a)–(9b) while using constant but unco-
ordinated step-sizes at the agents. Each agent i at the kth
iteration maintains three variables, xik , z

i
k ∈ R

p, and yik ∈
R
n. At k + 1-th iteration, agent i performs the following

update:

yik+1 =
n∑

j=1
aijy

j
k , (10a)

xik+1 =
n∑

j=1
aijx

j
k − αiz

j
k , (10b)

zik+1 =
n∑

j=1
aijz

j
k +

∇fi
(
xik+1

)

[
yik+1

]

i

−
∇fi

(
xik

)

[
yik

]

i

, (10c)
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where αi’s are the uncoordinated step-sizes locally chosen
at each agent and the row-stochastic weights, A = {

aij
}
,

respect the graph topology such that:

aij =
{

> 0, j ∈ N in
i ,

0, otherwise,

n∑

j=1
aij = 1, ∀i.

The algorithm is initialized with an arbitrary xi0, y
i
0 = ei,

and zi0 = ∇fi
(
xi0

)
. We point out that the initial condition

for Eq. (10a) and the divisions in Eq. (10c) require each
agent to have a unique identifier. Clearly, Assumption 5 is
applicable here. Note that Eq. (10c) is a modified gradient
tracking update, first applied to optimization with row-
stochastic weights in [45], where the divisions are used to
eliminate the imbalance caused by the left Perron eigen-
vector of the (row-stochastic) weight matrix A. We note
that the algorithm in [45] requires identical step-sizes at
the agents and thus is a special case of Eqs. (10a)–(10c).
For analysis purposes, we write Eqs. (10a)–(10c) in a

compact vector-matrix form. To this aim, we introduce
some notation as follows: let xk , yk , and ∇f(xk) collect
the local variables xik , y

i
k , and ∇fi

(
xik

)
in a vector in R

np,
respectively, and define

Yk = [
y1k , · · · , ynk

]� ,
Yk = Yk ⊗ Ip,
Ỹk = diag (Yk) ,
A = A ⊗ Ip,
α = [α1, · · · ,αn]� ,
D = diag{α} ⊗ Ip.

Since the weight matrix A is primitive with positive
diagonals, it is straightforward to verify that Ỹk is invert-
ible for any k. Based on the notation above, Eqs. (10a)–
(10c) can be written compactly as follows:

Yk+1 = A Yk , (11a)
xk+1 = Axk − Dzk , (11b)
zk+1 = Azk + Ỹ−1

k+1∇f
(
xk+1

) − Ỹ−1
k ∇f (xk) , (11c)

where Y 0 = In, z0 = ∇f0, and x0 is arbitrary. We
emphasize that the implementation of FROST needs
no knowledge of agent’s out-degree anywhere in the
network in contrast to the earlier related work in
[30–33, 37, 39, 40, 42, 43]. Note that Refs. [22, 23] also use
row-stochastic weights but require an additional locally
balanced assumption and are only applicable to undi-
rected graphs.

5 Convergence analysis
In this section, we present the convergence analysis of
FROST described in Eqs. (11a)–(11c). We first define a
few additional variables as follows:

Y∞ = lim
k→∞

Yk ,

Ỹ∞ = diag (Y∞) ,

∇f(x∗) =
[
∇f1(x∗)�, · · · ,∇fn(x∗)�

]�
,

τ = ∥∥A − Inp
∥∥
2 ,

ε = ∥∥Inp − Y∞
∥∥
2 ,

α = max
i

{αi},
y = sup

k
‖Yk‖2 ,

ỹ = sup
k

∥∥∥Ỹ−1
k

∥∥∥
2
.

Since A is primitive and row-stochastic, from the
Perron-Frobenius theorem [49], we note that Y∞ =(
1nπ�

r
) ⊗ Ip, where π�

r is the left Perron eigenvector of A.

5.1 Auxiliary relations
We now start the convergence analysis with a key
lemma regarding the contraction of the augmented weight
matrix A under an arbitrary norm.

Lemma 1 Let Assumption 2 hold and consider the aug-
mented weight matrix A = A ⊗ Ip. There exists a vector
norm, ‖ · ‖, such that ∀a ∈ R

np,

‖Aa − Y∞a‖ ≤ σ ‖a − Y∞a‖ ,
where 0 < σ < 1 is some constant.

Proof It canbeverified thatAY∞ = Y∞ and Y∞Y∞ = Y∞,
which leads to the following relation:

Aa − Y∞a = (A − Y∞) (a − Y∞a) .

Next, from the Perron-Frobenius theorem, we note
that [49]

ρ (A − Y∞) = ρ
(
A − 1nπ�

r

)
< 1;

thus, there exists a matrix norm, ‖ · ‖, with ‖A − Y∞‖ < 1
and a compatible vector norm, ‖ · ‖, see Chapter 5 in [49],
such that

‖Aa − Y∞a‖ ≤ ‖A − Y∞‖ ‖a − Y∞a‖ ,
and the lemma follows with σ = ‖A − Y∞‖.

As shown above, the existence of a norm in which the
consensus process with row-stochastic matrix A is a con-
traction does not follow the standard 2-norm argument
for doubly stochastic matrices [28, 40]. The ensuing argu-
ments built on this notion of contraction under arbitrary
norms were first introduced in [39] for column-stochastic
weights and in [45] for row-stochastic weights; these argu-
ments are harmonized later to hold simultaneously for
both row- and column-stochastic weights in [42, 43].
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The next lemma, a direct consequence of the contrac-
tion introduced in Lemma 1, is a standard result from
consensus and Markov chain theory [57].

Lemma 2 Consider Yk, generated from the weight
matrix A. We have:

‖Yk − Y∞‖2 ≤ rσ k , ∀k,
where r is some positive constant and σ is the contraction
factor defined in Lemma 1.

Proof Note that Yk = Ak ⊗ Ip = Ak from Eq. (11a), and

Yk−Y∞ = Ak−Y∞ = (A−Y∞)(Ak−1−Y∞) = (A−Y∞)k .

From Lemma 1, we have

‖Yk − Y∞‖ =
∥∥∥(A − Y∞)k

∥∥∥ ≤ σ k .

The proof follows from the fact that all matrix norms are
equivalent.

As a consequence of Lemma 2, we next estab-
lish the linear convergence of the sequences

{
Ỹ−1
k

}

and
{
Ỹ−1
k+1 − Ỹ−1

k

}
.

Lemma 3 The following inequalities hold ∀k :
(a)

∥∥∥Ỹ−1
k − Ỹ−1∞

∥∥∥
2

≤ √
nr̃y2σ k;

(b)
∥∥∥Ỹ−1

k+1 − Ỹ−1
k

∥∥∥
2

≤ 2
√
nr̃y2σ k.

Proof The proof of (a) is as follows:
∥∥∥Ỹ−1

k − Ỹ−1∞
∥∥∥
2

=
∥∥∥Ỹ−1

k (Ỹ∞ − Ỹk)Ỹ−1∞
∥∥∥
2
,

≤
∥∥∥Ỹ−1

k

∥∥∥
2

∥∥Ỹk − Ỹ∞
∥∥
2
∥∥Ỹ−1∞

∥∥
2 ,

≤ ỹ2
∥∥diag (Yk − Y∞)

∥∥
2

≤ √
nr̃y2σ k ,

where the last inequality uses Lemma 2 and the fact
that ‖X‖F ≤ √

n‖X2‖,∀X ∈ R
n×n. The result in (b) is

straightforward by applying (a), i.e.,
∥∥∥Ỹ−1

k+1 − Ỹ−1
k

∥∥∥
2

≤
∥∥∥Ỹ−1

k+1 − Ỹ−1∞
∥∥∥
2
+

∥∥∥Ỹ−1∞ − Ỹ−1
k

∥∥∥
2
,

≤√
nr̃y2σ k+1 + √

nr̃y2σ k ,

which completes the proof.

The next lemma presents the dynamics that govern
the evolution of the weighted sum of zk ; recall that zk ,
in Eq. (11c), asymptotically tracks the average of local
gradients, 1

n
∑n

i=1 ∇fi
(
xik

)
.

Lemma 4 The following equation holds for all k:

Y∞zk = Y∞Ỹ−1
k ∇f(xk). (12)

Proof Recall that Y∞A = Y∞. We obtain from Eq. (11c)
that

Y∞zk = Y∞zk−1 + Y∞Ỹ−1
k ∇f(xk) − Y∞Ỹ−1

k−1∇f(xk−1).

Doing this iteratively, we have

Y∞zk = Y∞z0 + Y∞Ỹ−1
k ∇f(xk) − Y∞Ỹ−1

0 ∇f(x0).

Withthe initial conditions that z0 = ∇f(x0) and Ỹ0 = Inp,
we complete the proof.

The next lemma, a standard result in convex optimiza-
tion theory from [58], states that the distance to the
optimal solution contracts in each step in the centralized
gradient method.

Lemma 5 Let μ and l be the strong convexity and
Lipschitz continuity constants for the global objective func-
tion, F(x), respectively. Then ∀x ∈ R

p and 0 < α < 2
l , we

have
∥∥x − α∇F(x) − x∗∥∥

2 ≤ σF
∥∥x − x∗∥∥

2 ,

where σF = max (|1 − αμ| , |1 − αl|).

With the help of the previous lemmas, we are ready to
derive a crucial contraction relationship in the proposed
algorithm.

5.2 Contraction relationship
Our strategy to show convergence is to bound ‖xk+1 −
Y∞xk+1‖, ‖Y∞xk+1 − 1n ⊗ x∗‖2, and ‖zk+1 − Y∞zk+1‖
as a linear function of their values in the last iteration
and ∇f(xk); this approach extends the work in [28] on
doubly stochastic weights to row-stochastic weights. We
will present this relationship in the next lemmas. Before
we proceed, we note that since all vector norms are equiv-
alent in R

np, there exist positive constants c, d such that:
‖ · ‖2 ≤ c‖ · ‖, ‖ · ‖ ≤ d‖ · ‖2. First, we derive a bound
for ‖xk+1 − Y∞xk+1‖, the consensus error of the agents.

Lemma 6 The following inequality holds, ∀k:
‖xk+1 − Y∞xk+1‖ ≤ σ‖xk − Y∞xk‖ + αdε‖zk‖2,

(13)

where d is the equivalence-norm constant such that ‖ · ‖ ≤
d‖ · ‖2 and α is the largest step-size among the agents.

Proof Note that Y∞A = Y∞. Using Eq. (11b) and
Lemma 1, we have:

‖xk+1 − Y∞xk+1‖
= ‖Axk − Dzk − Y∞ (Axk − Dzk)‖ ≤ σ‖xk − Y∞xk‖ + αdε‖zk‖2,

which completes the proof.
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Next, we derive a bound for ‖Y∞xk+1 − 1n ⊗ x∗‖2, i.e.,
the optimality gap between the accumulation state of the
network, Y∞xk+1, and the optimal solution, 1n ⊗ x∗.

Lemma 7 If π�
r α < 2

nl , the following inequality
holds, ∀k:

‖Y∞xk+1 − 1n ⊗ x∗‖2
≤ αnlc‖xk − Y∞xk‖ + λ‖Y∞xk − 1n ⊗ x∗‖2

+ αyc‖zk − Y∞zk‖ + α
√
nrỹy2σ k ‖∇f(xk)‖2 , (14)

where λ = max
(∣∣1 − nπ�

r αμ
∣∣ ,

∣∣1 − nπ�
r αl

∣∣) and c is the
equivalence-norm constant such that ‖ · ‖2 ≤ c‖ · ‖.

Proof Recalling that Y∞ = (
1nπ�

r
)⊗Ip and Y∞A = Y∞,

we have the following:

‖Y∞xk+1 − 1n ⊗ x∗‖2
= ∥∥Y∞ (Axk − Dzk + (D − D)Y∞zk) − 1n ⊗ x∗∥∥

2 ,
≤ ∥∥Y∞xk − Y∞DY∞zk − 1n ⊗ x∗∥∥

2 + αyc‖zk − Y∞zk‖.
(15)

Since the last term in the inequality above matches the
second last term in Eq. (14), we only need to handle the
first term. We further note that:

Y∞DY∞ =
((

1nπ�
r

)
⊗ Ip

) (
diag{α} ⊗ Ip

) ((
1nπ�

r

)
⊗ Ip

)
=

(
π�
r α

)
Y∞.

Now, we derive a upper bound for the first term in
Eq. (15)

‖Y∞xk − Y∞DY∞zk − 1n ⊗ x∗‖2
≤

∥∥∥(1n ⊗ Ip)
((

π�
r ⊗ Ip

)
xk−x∗ − n(π�

r α)∇F
((

π�
r ⊗ Ip

)
xk

))∥∥∥
2

+
∥∥∥n(π�

r α)(1n ⊗ Ip)∇F
((

π�
r ⊗ Ip

)
xk

)
−

(
π�
r α

)
Y∞zk

∥∥∥
2
,

:= s1 + s2.
(16)

If π�
r α < 2

nl , according to Lemma 5

s1 ≤ λ‖Y∞xk − 1n ⊗ x∗‖2, (17)

where λ = max
(∣∣1 − nπ�

r αμ
∣∣ ,

∣∣1 − nπ�
r αl

∣∣).
Next we derive a bound for s2

s2 =
(
π�
r α

) ∥∥∥n(1n ⊗ Ip)∇F
((

π�
r ⊗ Ip

)
xk

)
− Y∞zk

∥∥∥
2
,

≤α

∥∥∥n(1n ⊗ Ip)∇F
((

π�
r ⊗ Ip

)
xk

)
−(1n ⊗ Ip)

(
1�
n ⊗ Ip

)
∇f(xk)

∥∥∥
2
,

+ α

∥∥∥(1n ⊗ Ip)
(
1�
n ⊗ Ip

)
∇f(xk) − Y∞zk

∥∥∥
2

:= s3 + s4,

(18)

where it is straightforward to bound s3 as

s3 ≤ αnlc‖xk − Y∞xk‖. (19)

Since Y∞Ỹ−1∞ = (
1n1�

n
)⊗Ip and Y∞zk = Y∞Ỹ−1

k ∇f(xk)
from Lemma 4, we have:

s4=α

∥∥∥Y∞Ỹ−1∞ ∇f(xk) − Y∞Ỹ−1
k ∇f(xk)

∥∥∥
2

≤ α
√
nrỹy2σ k ∥∥∇f(xk)

∥∥
2 ,

(20)

where we use Lemma 3. Combining Eqs. (15)–(20), we
finish the proof.

Next, we bound ‖zk+1 − Y∞zk+1‖, the error in gradient
estimation.

Lemma 8 The following inequality holds, ∀k
‖zk+1 − Y∞zk+1‖
≤ ε̃ylτcd‖xk − Y∞xk‖ + σ‖zk − Y∞zk‖ + αε̃yld‖zk‖2

+ 2d
√
nrε̃y2σ k‖∇f(xk)‖2.

Proof According to Eq. (11c) and Lemma 1, we have:

‖zk+1 − Y∞zk+1‖
≤ σ ‖zk − Y∞zk‖ +

∥∥∥
(
Ỹ−1
k+1∇f(xk) − Ỹ−1

k ∇f(xk)
)

− (
Y∞zk+1 − Y∞zk

)∥∥∥ .

(21)

Note that Y∞zk = Y∞Ỹ−1
k ∇f(xk) from Lemma 4.

Therefore,
∥∥∥
(
Ỹ−1
k+1∇f(xk) − Ỹ−1

k ∇f(xk)
)

− (
Y∞zk+1 − Y∞zk

)∥∥∥
2

=
∥∥∥
(
Inp − Y∞

) (
Ỹ−1
k+1∇f(xk) − Ỹ−1

k ∇f(xk)
)∥∥∥

2
,

≤ ε

∥∥∥Ỹ−1
k+1∇f(xk) − Ỹ−1

k+1∇f(xk)
∥∥∥
2
+ε

∥∥∥Ỹ−1
k+1∇f(xk) − Ỹ−1

k ∇f(xk)
∥∥∥
2
,

≤ ε̃yl
∥∥xk+1 − xk

∥∥
2 + 2

√
nrε̃y2σ k ∥∥∇f(xk)

∥∥
2 ,

(22)

where in the last inequality, we use Lemma 3. We now
bound ‖xk+1 − xk‖2.

∥∥xk+1 − xk
∥∥
2 ≤ ∥∥(A − Inp)xk

∥∥
2 + α ‖zk‖2 ,

≤ ∥∥(A − Inp) (xk − Y∞xk)
∥∥
2 + α ‖zk‖2 ,

≤τ ‖xk − Y∞xk‖2 + α ‖zk‖2 , (23)

where in the second inequality, we use the fact that
(A − Inp)Y∞ is a zero matrix. Combining Eqs. (21)–(23),
we obtain the desired result.

The last step is to bound ‖zk‖2 in terms of ‖xk −Y∞xk‖,
‖Y∞xk − 1n ⊗ x∗‖2, and ‖zk − Y∞zk‖. Then, we can
replace ‖zk‖2 in Lemmas 6 and 8 by this bound in order to
develop a LTI system inequality.

Lemma 9 The following inequality holds, ∀k:
‖zk‖2 ≤cnl‖xk − Y∞xk‖ + nl‖Y∞xk − 1n ⊗ x∗‖2

+ c‖zk − Y∞zk‖ + √
nrỹy2σ k‖∇f(xk)‖2.

(24)
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Proof Recall that Y∞Ỹ−1∞ = (1n ⊗ Ip)
(
1�
n ⊗ Ip

)

and Y∞zk = Y∞Ỹ−1
k ∇f(xk) from Lemma 4. We have the

following:
‖zk‖2 ≤ ‖zk − Y∞zk‖2 + ‖Y∞zk‖2

≤c‖zk−Y∞zk‖+‖Y∞Ỹ−1
k ∇f(xk)−Y∞Ỹ−1∞ ∇f(xk)‖2

+‖Y∞Ỹ−1∞ ∇f(xk)−(1n ⊗ Ip)
(
1�
n ⊗ Ip

)
∇f(x∗)‖2,

≤ c‖zk − Y∞zk‖ + √
nlỹy2σ k‖∇f(xk)‖2

+ nl‖xk − 1n ⊗ x∗‖2,
≤ cnl‖xk − Y∞xk‖ + nl‖Y∞xk − 1n ⊗ x∗‖2

+ c‖zk − Y∞zk‖ + √
nrỹy2σ k‖∇f(xk)‖2,

(25)

where in the second inequality, we use the fact that(
1�
n ⊗ Ip

) ∇f(x∗) = 0, which is the optimality condition
for Problem P1.

Before the main result, we present an additional lemma
from nonnegative matrix theory that will be helpful in
establishing the linear convergence of FROST.

Lemma 10 (Theorem 8.1.29 in [49]) Let X ∈ R
n×n be

a nonnegative matrix and x ∈ R
n be a positive vector.

If Xx < ωx, then ρ(X) < ω.

5.3 Main results
With the help of the auxiliary relationships developed in
the previous subsection, we now present the main results
as follows in Theorems 1 and 2. Theorem 1 states that the
relationships derived in the previous subsection indeed
provide a contraction when the largest step-size, α, is
sufficiently small. Theorem 2 then establishes the linear
convergence of FROST.

Theorem 1 If π�
r α < 2

nl , the following LTI system
inequality holds:

tk+1 ≤ Jαtk + Hksk , ∀k, (26)

where tk , sk ∈ R
3, and Jα ,Hk ∈ R

3×3 are defined as
follows:

tk =
⎡

⎣
‖xk − Y∞xk‖
‖Y∞xk − 1n ⊗ x∗‖2
‖zk − Y∞zk‖

⎤

⎦ ,

Jα =
⎡

⎣
σ + a1α a2α a3α
a4α λ a5α

a6 + a7α a8α σ + a9α

⎤

⎦ ,

Hk =
⎡

⎣
αdε

√
nrỹy2 0 0

α
√
nrỹy2 0 0

d
√
nrε̃y2 (2 + αrỹy) 0 0

⎤

⎦ σ k ,

sk =
⎡

⎣
‖∇f(xk)‖2

0
0

⎤

⎦ ,

and the constants ai’s are

a1 = cdεnl, a4 = cnl a7 = cdnl2ε̃y
a2 = dεnl, a5 = yc, a8 = dnl2ε̃y
a3 = d2ε, a6 = ε̃ylτcd, a9 = d2ε l̃y.

Let [π r]− be the smallest element in π r. When the largest
step-size, α, satisfies

0 < α < min
{

δ1(1 − σ)

a1δ1 + a2δ2 + a3δ3
,

(1 − σ)δ3 − δ1a6
a7δ1 + a8δ2 + a9δ3

,
1
nl

}
,

(27)

with positive constants δ1, δ2, δ3 such that

δ3 > 0, δ1 <
(1 − σ)δ3

a6
, δ2 >

a4δ1 + a5δ3
μn[π r]−

, (28)

then the spectral radius of Jα is strictly less than 1.

Proof Combining Lemmas 6–9, one can verify that
Eq. (26) holds if π�

r α < 2
nl . Recall that λ =

max
(∣∣1 − μnπ�

r α
∣∣ ,

∣∣1 − lnπ�
r α

∣∣). When π�
r α < 1

nl , λ =
1 − μnπ�

r α, since μ ≤ l [59]. In order to make π�
r α < 1

nl
hold, it is suffice to require α < 1

nl . The next step is
to find an upper bound, α̂, on the largest step-size such
that ρ(Jα) < 1 when α < α̂. In the light of Lemma 10, we
solve for the range of the largest step-size, α, and a positive
vector δ = [δ1, δ2, δ3]� from the following:

⎡

⎣
σ + a1α a2α a3α
a4α 1 − μn(π�

r α) a5α
a6 + a7α a8α σ + a9α

⎤

⎦

⎡

⎣
δ1
δ2
δ3

⎤

⎦ <

⎡

⎣
δ1
δ2
δ3

⎤

⎦ ,

(29)

which is equivalent to the following set of inequalities:
⎧
⎨

⎩

(a1δ1 + a2δ2 + a3δ3)α < δ1(1 − σ),
(a4δ1 + a5δ3)α − δ2μnπ�

r α < 0,
(a7δ1 + a8δ2 + a9δ3)α < (1 − σ)δ3 − δ1a6.

(30)

Since the right hand side of the third inequality in
Eq. (30) has to be positive, we have that:

0 < δ1 <
(1 − σ)δ3

a6
. (31)

In order to find the range of δ2 such that the second
inequality holds, it suffices to solve for the range of δ2 such
that the following inequality holds:

(a4δ1 + a5δ3)α − δ2μn[π r]− α < 0,

where [_r]− is the smallest entry in π r . Therefore, as
long as

δ2 >
a4δ1 + a5δ3
μn[π r]−

, (32)

the second inequality in Eq. (30) holds. The next step is to
solve the range of α from the first and third inequalities in
Eq. (30). We get
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Fig. 1 A strongly connected and unbalanced directed graph

α < min
{

δ1(1 − σ)

a1δ1 + a2δ2 + a3δ3
,

(1 − σ)δ3 − δ1a6
a7δ1 + a8δ2 + a9δ3

}
,

where the range of δ1 and δ2 is given in Eqs. (31) and (32),
respectively, and δ3 is an arbitrary positive constant and
the theorem follows.

Note that δ1, δ2, δ3 are essentially adjustable parame-
ters that are chosen independently from the step-sizes.
Specifically, according to Eq. (28), we first choose an
arbitrary positive constant δ3 and subsequently choose a
constant δ1 such that 0 < δ1 <

(1−σ)δ3
a6 and finally we

choose a constant δ2 such that δ2 > a4δ1+a5δ3
μn[π r]− .

Theorem 2 If the largest step-size α follows the bound in
Eq. (27), we have:

∥∥xk − 1n ⊗ x∗∥∥ ≤ m (max {ρ (Jα) , σ } + ξ)k ,

where ξ is an arbitrarily small constant, σ is the contrac-
tion factor defined in Lemma 1, and m is some positive
constant.

Noticing that ρ (Jα) < 1 when the largest step-size, α,
follows the bound in Eq. (27) and that Hk linearly decays
at the rate of σ k , one can intuitively verify Theorem 2. A
rigorous proof follows from [45].

Fig. 2 (Left) Each curve represents the linear convergence of FROST when the corresponding agent uses a positive step-size, optimized manually,
while every other agent uses zero step-size. (Right) Convergence comparison across different algorithms
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Fig. 3 Directed graphs with n = 50 nodes and increasing sparsity: G1,G2, and G3

In Theorems 1 and 2, we establish the linear conver-
gence of FROST when the largest step-size, α, follows
the upper bound defined in Eq. (27). Distributed opti-
mization (based on gradient tracking) with uncoordinated
step-sizes have been previously studied in [26, 46, 47],
over undirected graphs with doubly stochastic weights,
and in [48], over directed graphs with column-stochastic
weights. These works rely on some notion of heterogene-
ity of the step-sizes, defined respectively as the relative
deviation of the step-sizes from their average, ‖(In−U)α‖2‖Uα‖2 ,
where U = 1n1�

n /n, in [26, 46], and as the ratio of the
largest to the smallest step-size, maxi{αi}

mini{αi} , in [47, 48]. The
authors then show that when the heterogeneity is small
enough and when the largest step-size follows a bound
that is a function of the heterogeneity, the proposed algo-
rithms converge to the optimal solution. It is worth noting
that sufficiently small step-sizes cannot guarantee suffi-
ciently small heterogeneity in both of the aforementioned
definitions. In contrast, the upper bound on the largest
step-size in this paper, Eqs. (27) and (28), is indepen-
dent of any notion of heterogeneity and only depends
on the objective functions and the network parameters3.
Each agent therefore locally picks a sufficiently small step-
size independent of other step-sizes. Besides, this bound
allows the agents to choose a zero step-size as long as at
least one of them is positive and sufficiently small.

6 Numerical results
In this section, we use numerical experiments to support
the theoretical results. We consider a distributed logistic
regression problem. Each agent i has access to mi train-
ing data, (cij, yij) ∈ R

p × {−1,+1}, where cij contains p
features of the jth training data at agent i and yij is the cor-
responding binary label. The network of agents coopera-
tively solves the following distributed logistic regression
problem:

min
w∈Rp ,b∈R

F(w, b) =
n∑

i=1

mi∑

j=1
ln

[
1 + exp

(
−

(
w�cij + b

)
yij

)]
+ nλ

2
‖w‖22,

with each private loss function being

fi(w, b) =
mi∑

j=1
ln

[
1 + exp

(
−

(
w�cij + b

)
yij

)]
+ λ

2
‖w‖22,

(33)

where λ
2‖w‖22 is a regularization term used to pre-

vent overfitting of the data. The feature vectors, cij’s,
are randomly generated from some Gaussian distri-
bution with zero mean. The binary labels are ran-
domly generated from some Bernoulli distribution. The
network topology is shown in Fig. 1. We adopt a
simple uniform weighting strategy to construct the row-
and column-stochastic weights when needed: aij =
1/|N in

i |, bij = 1/|N out
j |, ∀i, j. We plot the aver-

age of residuals at each agent, 1
n

∑n
i=1 ‖xi(k) − x∗‖2.

In Fig. 2 (left), each curve represents the linear conver-
gence of FROST when the corresponding agent uses a
positive step-size, optimized manually, while every other
agent uses zero step-size.
In Fig. 2 (right), we compare the performance of FROST,

with ADD-OPT/Push-DIGing [39, 40], see Section 3.2.3,
and with the AB algorithm in [42, 43], see Section 3.2.4.
The step-size used in each algorithm is optimized. For
FROST, we first manually find the optimal identical step-

Fig. 4 Influence of network sparsity on the performance of FROST
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size for all agents, which is 0.07 in our experiment,
and then randomly generate uncoordinated step-sizes of
FROST from the uniform distribution over the inter-
val [ 0, 0.07] (therefore, the convergence speed of FROST
shown in this experiment is conservative). The numeri-
cal experiments thus verify our theoretical finding that
as long as the largest step-size of FROST is positive and
sufficiently small, FROST linearly converges to the opti-
mal solution.
In the next experiment, we show the influence of the

network sparsity on the convergence of FROST. For this
purpose, we use three different graphs each with n = 50
nodes, where G1 has roughly 10% of total edges, G2 has
roughly 13% of total edges, and G3 has roughly 16% of
total edges. These graphs are shown in Fig. 3, and the
performance of FROST over each one of them is shown
in Fig. 4.

7 Conclusions
In this paper, we consider distributed optimization appli-
cable to both directed and undirected graphs with row-
stochastic weights and when the agents in the network
have uncoordinated step-sizes. Most of the existing algo-
rithms are based on column-stochastic weights, which
may be infeasible to implement in many practical sce-
narios. Row-stochastic weights, on the other hand, are
straightforward to implement as each agent locally deter-
mines the weights assigned to each incoming information.
We propose a fast algorithm that we call FROST (Fast
Row-stochastic Optimization with uncoordinated STep-
sizes) and show that when the largest step-size is positive
and sufficiently small, FROST linearly converges to the
optimal solution. Simulation results further verify the
theoretical analysis.

Endnotes
1 EXTRA [21] is another related algorithm, which uses

the difference between two consecutive DGD iterates to
achieve linear convergence to the optimal solution.

2 See [32, 33] for related work with sublinear rate based
on surplus consensus [55].

3 The constants δ1, δ2, and δ3 in Eqs. (27) and (28)
are tunable parameters that only depend on the network
topology and objective functions.

Abbreviations
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