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Abstract

In this paper, we propose an energy-efficient resource allocation (RA) algorithm in cognitive radio-enabled 5th
generation (5G) systems, where the scenario including one primary system and multiple secondary cells is considered.
Because of the high spectrum leakage of traditional orthogonal frequency division multiplexing (OFDM), alternative
modulation schemes regarded as the potential air interfaces in 5G are analyzed, e.g., filter bank-based multi-carrier
(FBMC), generalized frequency division multiplexing (GFDM), and universal filtered multi-carrier (UFMC). Our objective
is to maximize the whole energy efficiency of secondary system defined by the ratio of the capacity to the total power
consumption subject to some practical constraints. The general formulation leads to a non-convex mixed-integer
nonlinear programming problem with fractional structure, which is challenging to solve due to its intractability and
significant complexity. Therefore, we resort to an alternate optimization framework to optimize the variables of
subcarrier assignment and power allocation, where successive convex approximation (SCA) is employed so that the
general formulation is finally transformed into a solvable convex problem. Numerical results validate the effectiveness
of the proposed RA algorithm, and the comparison with some existing RA algorithms is conducted. In addition, the
performance of using different 5G candidate waveforms in the energy-efficient RA algorithm is also presented and
discussed.
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1 Introduction
With the explosive growth of various communication ser-
vices, more and more mobile terminals or users are seek-
ing for accessing the communication networks. However,
the current 4th generation (4G) communication technolo-
gies cannot meet the increasing communication demand,
which greatly drives the development of the 5th genera-
tion (5G) communication technologies [1–3]. It has been
expected that 5G not only should satisfy the great com-
munication needs but the efficient utilization of scarce
spectral resource should be also ensured. On the one
hand, the current policy of the exclusive spectrum alloca-
tion cannot maintain the supply of additional spectrum to
accommodate more mobile users, support higher capacity
and lower latency requirements, and provide ubiquitous
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connectivity of the Internet of Things. On the other hand,
the inadequate spectrum resource is not efficiently uti-
lized, and a large portion of the spectrum is idle without
being accessed by licensed systems [4, 5].
As a result, the concept of cognitive radio (CR) is put

forward to solve the problem of 5G spectrum scarcity
and improve the spectral efficiency by allowing secondary
users (SUs) to occupy the idle spectrum [6, 7]. The CR-
enabled 5G systems provide the possibility that SUs can
autonomously access the most meritorious spectrum and
gain higher network capacity [8]. Currently, how to effi-
ciently allocate spectrum resource to SUs becomes one
of the key research topics in 5G. Existing resource allo-
cation (RA) works aim at either maximizing the system
capacity orminimizing the energy consumption. The large
number of users and diverse services in 5G signify the
huge system consumption; thus, maximizing the energy
efficiency plays a critical role of performance assessment
in future communications [9–11]. This paper takes the
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system consumption into account, and focuses on the
energy-efficient multi-cell RA algorithm in CR-enabled
5G systems.

1.1 Related work
In the literature, plenty of existent works pay atten-
tions to the RA problem by assuming one primary cell
and a single secondary cell. The authors in [12] uti-
lized the spectrum holes in primary user (PU) bands
as well as active PU bands to propose a low complex-
ity suboptimal solution for orthogonal frequency division
multiplexing (OFDM) and filter bank-based multi-carrier
(FBMC) systems. Spectrum sensing and resource alloca-
tion were jointly considered in [13], and the water filling
algorithm is modified for the optimization problem. In
[14], the authors proposed an algorithm to maximize the
system capacity through exploiting the problem struc-
ture to speed up the convergence. The authors in [15]
investigated the effective capacity maximization problem
under statistical delay guarantee by the Lagrangian dual
decomposition method. An energy consumption issue
with channel uncertainty was studied in [16], and a fast
algorithm is derived to settle the quasi-convex problem.
In [17], the resource allocation problem was solved by the
Hungarian algorithm and the gradient projection method.
However, it is noteworthy that the above RA algorithms
may be not suitable for handling more complicated situa-
tions wheremultiple secondary cells are involved, which is
the practical scenario in future ultra-dense 5G networks.
It is quite difficult to solve the CR RA problem of

multi-cell due to the complicated system structure and
the existence of co-channel interference between dif-
ferent cells. To make this problem tractable, some RA
algorithms have been developed. A distributed algorithm
containing two loops [18] was designed for the weighted
sum-rate maximization problem with multi-cell uplink-
downlink throughput. An interference-limited method
was presented in [19], where the co-channel interference
is assumed to be constant and then transformed into a
constraint. In [20, 21], the non-cooperative game the-
ory was adopted to solve the problem of multi-cell, and
Nash equilibrium is guaranteed. However, less efforts have
been devoted to the research of the energy-efficient multi-
cell resource allocation. An iterative subchannel allocation
and power allocation algorithm was proposed in [22]
for joint optimization of energy and spectral efficiency.
In [23], a distributed resource allocation scheme-based
game theory, taking user fairness and priority into con-
sideration, was proposed to solve the energy-efficient
RA problem. The problem of power control jointly con-
sidering energy efficiency and delay was solved in [24]
by non-cooperative game. The energy-efficient downlink
resource allocation in heterogeneous networks was inves-
tigated in [25], where a non-concave nonlinear objective

function and nonlinear constraints are incorporated. Frac-
tional programming and branch-and-bound method are
utilized to obtain the solution. The authors in [26] consid-
ered an equivalent non-fractional form of the formulated
problem and proposed an iterative algorithm to optimize
the objective. Nevertheless, the aforementioned litera-
tures did not investigate the impact of spectral leakage of
different 5G waveforms on energy efficiency.

1.2 Contributions
In this paper, we propose an energy-efficient RA algo-
rithm for the scenario including one primary cell and
multiple secondary cells. We try to maximize the energy
efficiency of all the secondary cells subject to some prac-
tical constraints. Although the constructed expression
belongs to a mixed-integer nonlinear programming with
high computation complexity, it can be well solved by the
proposed RA algorithm. Compared to the existing works,
the contributions of the proposed RA algorithm are as
follows:

• A practical energy-efficient multi-cell RA problem in
CR-enabled 5G systems is formulated. In practice,
the interference between the primary system and the
secondary cells actually exists due to the spectral
leakage; thus, the interference vectors in [27–30] are
employed in the proposed RA formulation. To the
best of our knowledge, there are few works which
consider the quantified interference vectors to
formulate the objective function and its
corresponding constraints in 5G resource allocation
problem.

• The general formulation is a mixed-integer nonlinear
programming problem, and we propose an efficient
RA algorithm to transform the intractable
non-convex problem into a convex one. Specifically,
the variables of subcarrier assignment and power
allocation are alternately optimized. Once given the
subcarrier assignment, a novel transformation is
utilized to eliminate the fractional structure and
successive convex approximation (SCA) is adopted to
solve the power allocation. Moreover, the convergent
property can be ensured. The proposed RA algorithm
is compared with some existing algorithms, and the
simulation results show the advantages of the
proposed algorithm.

• The impacts of spectral leakage by using different
multi-carrier modulation schemes on energy
efficiency are quantitatively analyzed. Although
OFDM has been widely used in many applications,
e.g., long-term evolution (LTE), it can hardly satisfy
the need of supporting asynchronous transmission to
avoid the heavy synchronization signaling overhead
caused by massive terminals [31]. Moreover, the
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significant spectral leakage of OFDM will induce
severe adjacent channel interference. In 5G networks,
more flexible 5G waveforms [32] are required to
overcome the upcoming challenges, e.g., FBMC
[33–35], generalized frequency division multiplexing
(GFDM) [36], and universal filtered multi-carrier
(UFMC) [37]. Most of the existing RA algorithms
only take either OFDM [14–16] or OFDM/FBMC
[12, 20, 38] into account, and it still needs to make a
thorough inquiry of the specific influence about
different waveforms. In our RA algorithm, all of the
above 5G waveforms are compared by evaluating the
effect of waveforms on energy efficiency, and the
results can provide a reference base for designing and
selecting the physical waveform in 5G systems.

The remainder of this paper is organized as follows. In
Section 2, the system model is illustrated and the opti-
mization problem is formulated. Section 3 describes the
optimization frame of the proposed resource allocation

algorithm. The complexity of the proposed algorithm is
analyzed in Section 4. The simulation results are pre-
sented in Section 5. Finally, we conclude the paper in
Section 6.

2 Systemmodel and problem formulation
2.1 Systemmodel
In the context of CR-enabled 5G systems, we assume a
system scenario where a primary system and multiple sec-
ondary cells coexist, as illustrated in Fig. 1. The primary
system is located in the center of the whole system, and
it is comprised of a primary base station (PBS) and PUs.
While the secondary CR system consists of multiple sec-
ondary cells, the secondary cells are uniformly distributed
around the primary system. Let N = {1, 2, ..., n, ...,N}
denote the set of secondary cells, and in the nth cell, there
is a secondary base station (SBS) serving M SUs denoted
byMn = {1n, 2n, ...,mn, ...,Mn}.
Given the above system model, we make some assump-

tions as below:

Fig. 1 System model. CR-enabled 5G system model containing one primary system and multiple secondary cells (The solid arrow lines denote the
communication links and the dashed arrow lines denote the interference links, which include the interferences among secondary cells, secondary
cells to the primary system and vice verse)
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• Considering the downlink transmission, each user
receives signals from their own base station
respectively, and the signals from other base stations
are regarded as interference, i.e., each user is only
attached to one cell [38].

• Assuming that SUs are randomly located around their
own SBS, all base stations serve as accessing points to
their corresponding users, and single antenna is
equipped for the transmitter and receiver [20].

• It is practical to assume that the primary system and
all the secondary cells are asynchronized; thus, the
interference due to spectral leakage exists between
primary and secondary systems [27].

• All the secondary cells are synchronized, and the
spectrum sensing is assumed to be achieved by a
public sensing node. The sensing results are
transmitted to the SBSs by a common control
channel, i.e., all secondary cells share the same
sensing results.

• Since the secondary cells and primary cell are
subordinate to two different systems, generally, their
cross-gains are unaccessible. But for simplicity and
providing an interference protection to primary cell,
we only estimate the channel gains from secondary
system to primary cell.

After receiving the sensing results, the SBS allocates
the available frequency resource to its attached SUs. The
sketch map of possible sensing results is depicted in Fig. 2.
The whole frequency band is divided into some subcarri-
ers, where the set of available and occupied subcarriers is
denoted asF = {1, . . . , f , . . . , F} and L = {1, . . . , l, . . . , L},
respectively. The index difference between the fth available
subcarrier and the lth unavailable subcarrier is π(f , l) =
∣
∣F(f ) − L(l)

∣
∣. Denote the power on the fth available subcar-

rier accessed by the mth SU of the nth cell as pnf , and the
channel gain from the nth SBS to themth SU is denoted as

gnfnm. Therefore, the corresponding signal to interference
plus noise ratio (SINR) is expressed as:

�
nf
m = pnf gnfnm

σ 2 + Ips + Iss
, (1)

where σ 2 means additive white Gaussian noise power,
Ips denotes the interference from primary system which
is induced by the asynchronization transmission, and Iss
denotes co-channel interference between secondary cells.
The power variable pnf is gathered into the matrix P with
size N × F .
According to the aforementioned assumptions, the

asynchronous interference only exists between the pri-
mary and secondary systems. In order to compute the
interference Ips, we resort to the interference vector model
for quantifying the asynchronization transmission inter-
ference between primary and secondary systems. The
interference vectors of different candidate waveforms in
5G are shown in Table 1, where the value of the cases
of perfect synchronization (PS), OFDM, and FBMC is
cited from [27] while the value of the cases of UFMC
and GFDM is cited from [30]. Supposing that a single
complex symbol is transmitted with unit power and unit
channel gain in a subcarrier, each element of one interfer-
ence vector corresponds to the quantity of the out of band
radiation, i.e., V means the spilled power from the inter-
ferer subcarrier with unit power and unit channel gain
to the victim subcarrier. And the quantities of interfer-
ence less than 10−3 are all ignored. It is noted in Table 1
that each subcarrier will introduce interference to its eight
adjacent subcarriers for OFDM (if the spectral distance is
larger than 8, the interference will be less than 10−3 and
ignored), and the first adjacent subcarrier suffers from the
severest interference with amount of 8.94E − 2. For the

Fig. 2 The diagram of subcarriers. The ones filled with slash are occupied by PUs and the others can be allocated to SUs
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Table 1 Interference vector table of different candidate waveforms in 5G

π(f , l) = 1 π(f , l) = 2 π(f , l) = 3 π(f , l) = 4 π(f , l) = 5 π(f , l) = 6 π(f , l) = 7 π(f , l) = 8

VPS 0 0 0 0 0 0 0 0

VOFDM 8.94E − 2 2.23E − 2 0.995E − 2 0.560E − 2 0.359E − 2 0.250E − 2 0.184E − 2 0.112E − 2

VFBMC 8.81E − 2 0 0 0 0 0 0 0

VUFMC 12.27E − 2 0 0 0 0 0 0 0

VGFDM 4.80E − 2 4.18E − 2 0.140E − 2 0 0 0 0 0

case of FBMC, it can be seen that the number of sub-
carriers interfered due to spectral leakage is 1. Intuitively,
FBMC can achieve better interference protection to pri-
mary system due to its slight spectral leakage compared
to OFDM. The analogous conclusion can be drawn for the
cases of UFMC and GFDM.
Consequently, the interferences of Ips and Iss can be

respectively defined as follows:

Ips =
L

∑

l=1
Plph

nmf
ps Vπ(f ,l), (2)

Iss =
N

∑

n′∈N ,n′ �=n
pn

′f gn
′f

nm, (3)

where Plp denotes the power on the lth subcarrier occupied
by PU, hnmf

ps denotes the channel gain from PBS to themth

SU of the nth cell on the fth available subcarrier, and gn
′f

nm
denotes the channel gain from the n′

th SBS to the mth SU
of the nth cell on the fth available subcarrier.

2.2 Problem formulation
According to Shannon capacity formula, the sum capacity
of all SUs is formulated as:

N
∑

n=1

M
∑

m=1

F
∑

f=1
θnmf log2

(

1 + �
nf
m

)

, (4)

where θnmf denotes the indicator of subcarrier assignment,
i.e., θnmf = 1 means the fth available subcarrier is allocated
to the mth SU of the nth cell, otherwise θnmf = 0. Define θθθ

as the set of θnmf . As discussed earlier, the system objective
of this paper is to improve the energy efficiency; therefore,
we aim to maximize the ratio of the sum capacity to the
sum power consumption as below:

N∑

n=1

M∑

m=1

F∑

f=1
θnmf log2

(

1 + �
nf
m

)

N∑

n=1

(

Pdp + Psp +
F∑

f=1
ξpnf

) , (5)

where the first term Pdp in the denominator denotes the
dynamic power consumption, e.g., power radiation of cir-
cuit blocks in radio frequency chain, while the second

term Psp is the static power employed for cooling system
and power supply, and ξ in the last termmeans the inverse
of power amplifier efficiency [39, 40].
In wireless communication networks, the optimization

problem of resource allocation generally involves some
constraints. Some practical constraints considered in this
work are listed as follows:

F∑

f=1
pnf ≤ Pth, ∀n; (6a)

0 ≤ pnf ≤ Psub, ∀n, f ; (6b)
θnmf ∈ {0, 1}, ∀n,m, f ; (6c)

M∑

m=1
θnmf = 1, ∀n, f . (6d)

The constraint (6a) is the sum power budget of each
secondary cell, where the sum power of all available sub-
carriers in each cell should be no more than Pth. The
constraint (6b) limits the power level on each subcar-
rier, which should not exceed Psub. The last two con-
straints (6c) and (6d) indicate that each subcarrier must be
accessed at most one user at a given time.
As a CR-enabled 5G system, the constraint keeping the

interference from secondary cells to primary system must
be considered. Denote hnfsp as the real channel gain from
the nth SBS to PU on the fth available subcarrier. According
to the last item in the assumptions, hnfsp is unknown and
needs to be estimated.
The works in [41, 42] give a real propagation model

of the channel, which decomposes hnfsp into Lnfsp for large
scale fading and Snfsp for small scale fading respectively,
i.e., hnfsp = LnfspS

nf
sp . The Lnfsp is only decided by shadowing

and distance between the communicating parties. The Snfsp
can be described as the product of two conjugate circu-
lar symmetric complex Gaussian variables with zero mean
and unit variance. Thus Snfsp has a Gamma distribution
with unit shape parameter and unit scale parameter, i.e.,
Snfsp ∼ �(1, 1).
By introducing a channel estimated margin Smar, we can

use h̃nfsp = Lnfsp (1 + Smar) as the estimation of hnfsp . Define
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the case if hnfsp is larger than h̃nfsp as the outage. The outage
probability can be represented as:

Pout = Pro
(

hnfsp > h̃nfsp
)

= Pro
(

Snfsp > (1 + Smar)
)

.

(7)

The cumulative distribution function of Snfsp is the reg-
ularized Gamma function, and Eq. (7) can be further
formulated as:

1 − Pout = γ (1, 1 + Smar)

�(1)
, (8)

where γ (·) is the lower incomplete Gamma function. For
a given outage probability Pout, we have:

Smar = loge
(

1
Pout

)

− 1. (9)

Through the prescribed Pout, the estimated channel gain
h̃nfsp can be obtained. The critical interference constraint
can be formulated as:

F
∑

f=1
pnf h̃nfspVπ(f ,l) ≤ Ilth, ∀n, l, (10)

where Ilth in (10) is the interference threshold and pre-
scribed by the guarantee coefficient β of PU capacity,
which is defined as:

log2

(

1 + Plpglpp
σ 2 + Ilth

)

= β log2

(

1 + Plpglpp
σ 2

)

, (11)

where glpp is the channel gain from PBS to the PU occupy-
ing the lth unavailable subcarrier. The larger the value of β
is, the lower the interference threshold is.
Based on the abovementioned analysis, we express the

optimization problem asQ1:

max
pnf ,θnmf

N∑

n=1

M∑

m=1

F∑

f=1
θnmf log2

(

1 + �
nf
m

)

N∑

n=1

(

Pdp + Psp +
F∑

f=1
ξpnf

) , (12)

s.t. (6a) ∼ (6d), (10).

3 Optimizationmethod via alternate way
It is noted that Q1 in (12) is a mixed-integer nonlinear
programming problem, which is quite difficult to solve.
Firstly, the integer indicator variable θnmf equals to 1 or
0, and the real variable pnf is involved. Both discrete and
continuous variables will give rise to high complexity.
Secondly, the ratio of a non-convex function to a linear
function in (5) is also a non-convex structure. Finally, the
co-channel interferencemight also induce the non-convex
property. In this section, an efficient optimization scheme
based on alternate optimization and SCA is proposed to

transformQ1 into a solvable problem, and for a clear illus-
tration, it is summarized in Algorithm 1, which includes
the procedures of subcarrier assignment and power allo-
cation. In the following, these two parts will be described
in details.

Algorithm 1 Proposed algorithm based on alternate opti-
mization and SCA
Initialization: Set t1 = 0, initialize Pt1 with a feasible

power, ε1;
1: repeat
2: t1 = t1 + 1;
3: Updating θθθ t1 according to (13)
4: Set t2 = 0, initialize

{

P̃t2 , x̃t2 , ỹt2
}

and ε2
5: repeat
6: t2 = t2 + 1;
7: Approximate the constraints (15d) and (15e)

according to (16) and (20);
8: Use CVX to solve P4 and obtain

{

P′, x, y
}

;
9: Set P̃t2 = exp

(

P′), x̃t2 = x, ỹt2 = y;
10: until

∥
∥xt2+1 − xt2

∥
∥ ≤ ε2

11: Set Pt1 = P̃t2
12: until

∥
∥Pt1+1 − Pt1

∥
∥ ≤ ε1

Output: θθθ , P

3.1 Heuristic subcarrier assignment
In order to solve the optimization problem Q1, the
subcarrier assignment indicator θnmf should be firstly
excluded from the objective function and constraints.
Because the problem Q1 will generate MNF possible sub-
carrier allocation schemes, which is prohibitively expen-
sive especially in a high-dimensional system. To avoid the
unbearable complexity, a heuristic subcarrier assignment
is employed by means of an alternate manner.
For a given power allocation, the problemQ1 is equiva-

lent to maximizing the total system capacity subject to the
constraints (6c) and (6d). Generally, it is not sufficient to
assign subcarriers to one user with the best channel gain.
In this context, the co-channel interference and the power
on subcarriers are not taken into account. To realize the
maximal capacity of communication networks, subcar-
riers can be allocated by employing the maximal SINR
criterion [43]. In our work, we assume an initial feasi-
ble power distribution is given1 , and then the subcarrier
assignment proceeds on the basis of the maximal SINR
criterion.
The initial power distribution Pt1 (t1 is the index of

alternate optimization) can be obtained by allocating lit-
tle power on each subcarrier, and each SU selects their
subcarriers according to:
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θnm
′

f = 1, m′ = arg max
m=1,2,...,M

(

pnf
)

t1 g
nf
nm

σ 2 + Ips + Iss
. (13)

After accomplishing subcarrier allocation (i.e., the inte-
ger variable is excluded), and the residual problem in Q1
is reformulated asQ2:

max
pnf

N∑

n=1

F∑

f=1
log2

(

1 + pnf gnfnm
σ 2+Ips+Iss

)

N∑

n=1

(

Pdp + Psp +
F∑

f=1
ξpnf

) (14)

s.t.

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F∑

f=1
pnf ≤ Pth, ∀n; (14a)

0 ≤ pnf ≤ Psub, ∀n, f ; (14b)
F∑

f=1
pnf h̃nfspVπ(f ,l) ≤ Ilth, ∀n, l. (14c)

Once the solution of Q2 is obtained, the subcarrier
assignment will be executed until convergence. The pro-
cedures of this alternate optimization are summarized in
line 2 ∼ 12 of Algorithm 1.
The convergence property can be derived with the fol-

lowing idea. For a given power allocation Pt1 , the maximal
SINR criteria maximize the objective within the feasible
subcarrier assignment θθθ t1+1. And for a fixed θθθ t1 , Pt1 is
the optimal solution of maximizing the objective within
the feasible power distribution. In other words, the arbi-
trary optimization of θθθ and P will improve the objective
during the alternate process. Therefore, Algorithm 1 is
convergent.

3.2 Power optimization
3.2.1 An equivalent transformation
It is observed that the objective function in Q2 has
a ratio structure consisting of a non-convex function
and a linear function, which is known as a fractional
programming problem. Generally, the routine method
[25, 26, 38] of solving such problem is to transform the
objective function into a parametric subtracted form. It
needs to update the parameter of the ratio iteratively
according to the Dinkelbach algorithm reported in [44] or
bisection method [45].
While in this paper, we do not invoke the Dinkelbach

procedure to make the subtracted transformation and
iteratively update the ratio. Inspired by [39], we solve the
problem with the ratio structure by means of a novel
equivalent transformation which can directly acquire the
optimal value of the ratio. Let us introduce some auxiliary
variables x, y, and η. Define the following problemQ3:

max
pnf ,η,x,y

η (15)

s.t.

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F∑

f=1
pnf ≤ Pth, ∀n; (15a)

0 ≤ pnf ≤ Psub, ∀n, f ; (15b)
F∑

f=1
pnf h̃nfspVπ(f ,l) ≤ Ilth, ∀l; (15c)

y2
x ≥ η; (15d)
N∑

n=1

F∑

f=1
log2

(

1 + pnf gnfnm
σ 2+Ips+Iss

)

≥ y2; (15e)

N∑

n=1

(

Pdp + Psp +
F∑

f=1
ξpnf

)

≤ x. (15f )

In Q3, η is applied to approximate the original ratio,
and x and y are used to approximate the denominator and
numerator of the objective function in Q2 respectively.
ForQ3, we have the following theorem.
Theorem:Q3 is an equivalent substitute of Q2.
Proof : The equivalency can be proved by contradic-

tion. Assuming that at the optimal point (x∗, y∗, η∗,P∗),
the inequality constraints of (14d), (14e), and (14f) do not
hold; therefore, there must exist a point (x◦, y◦, η◦,P◦)
which improves the optimal value, i.e., η◦ > η∗. And this
contradicts the initial assumption. Thus, we can conclude
that the inequality constraints of (14d), (14e), and (14f)
must be active at the optimality, i.e., all of (14d), (14e), and
(14f) must be equality constraints, and it indicates that
Q2 can be substituted by Q3. In the subsequent subsec-
tion, we mainly concentrate on how to solve the power
allocation problemQ3.

3.2.2 Power allocation based on SCA
On the basis of theorem, we can find the solution of Q3
instead of solving Q2 with fractional structure. However,
it is clear that solving Q3 directly is still troublesome due
to the non-convexity of constraints (15d) and (15e). The
constraint (15d) has a relatively simpler structure than
(15e), so we firstly show how to deal with (15d).
Note that the left side of (15d) is a quadratic over linear

function which is convex if x ≥ 0. For a given approxi-
mated point

{

P̃t2 , x̃t2 , ỹt2
}

, the following inequality holds
true:

y2

x
≥ 2

ỹt2
x̃t2

y −
(
ỹt2
x̃t2

)2
x. (16)

Define Ω (x, y) = 2 ỹt2
x̃t2

y −
( ỹt2
x̃t2

)2
x, and bring it into

(15d). The constraint (15d) can be represented as:

Ω (x, y) ≥ η, (17)

and it can be found that the constraint (17) is convex.



Lv et al. EURASIP Journal on Advances in Signal Processing          (2019) 2019:4 Page 8 of 17

As for (15e) in Q3, the case is more complicated than
that of (15d). We rewrite the constraint (15e) as:

N
∑

n=1

F
∑

f=1
log2

(

δ2 +
N

∑

n′=1
pn

′f gn
′f

nm

)

− y2

−
N

∑

n=1

F
∑

f=1
log2

⎛

⎝δ2 +
N

∑

n′=1,n′ �=n
pn

′f gn
′f

nm

⎞

⎠ ≥ 0, (18)

where σ 2 + Ips is simplified as δ2. The left side of (18)
can be seen as the sum of three terms. The term −y2
approximates the capacity which is a concave function of
y, and the other two terms originate from the formula of
capacity. The expression (18) leads to a non-convex feasi-
ble area; thus, the critical situation lies in how to construct
a convex set from (18) on the given approximated point
{

P̃t2 , x̃t2 , ỹt2
}

.
Based on the fact that the value of arithmetic mean is

greater than or equal to the value of geometric mean, the
following inequality holds true:

a1b1 + a2b2 + · · · + aibi ≥ ba11 ba22 . . . baii , (19)

where bi > 0, ai ≥ 0 and
∑

i
ai = 1. The inequality in

(19) holds with equality if and only if ai = aibi∑

i
aibi ,∀i. For

the sake of convenience, denote δ2 +
N∑

n′=1
pn′f gn

′f
nm in (18)

as φ(P). φ(P) has the form of arithmetic mean shown in
the left of (19). Given point

{

P̃t2 , x̃t2 , ỹt2
}

, the geometric
mean approximation can be utilized to approximate φ(P)

if taking φ(P) as the left part of (19). The corresponding
approximated inequality (20) is shown at the top of this
page, and the right part of (20) is defined as φ̃(P) which is
the counterpart of φ(P).

φ(P)|P=P̃t2
≥

(

δ2 +
N

∑

n′=1

(

p̃n
′f
)

t2
gn

′f
nm

)
δ2

δ2+
N∑

n′=1

(

p̃n′ f )
t2
gn

′ f
nm

N
∏

n′=1

(

pn′f
(

p̃n′f )
t2

×
(

δ2 +
N

∑

n′=1

(

p̃n
′f
)

t2
gn

′f
nm

))

(

p̃n
′ f

)

t2
gn

′ f
nm

δ2+
N∑

n′=1

(

p̃n′ f )
t2
gn

′ f
nm

� φ̃(P) (20)

On the surface, the manipulation of (20) expresses the
linear function of power variable φ(P) with a multiplica-
tive function of power variable φ̃(P). But essentially, the
manipulation constructs a convex set from a non-convex

set on the approximated point
{

P̃t2 , x̃t2 , ỹt2
}

. As a con-
sequence, the original constraint (15e) in Q3 is approxi-
mately written as:

N
∑

n=1

F
∑

f=1
log2

(

φ̃ (P)
)

−
N

∑

n=1

F
∑

f=1
log2

⎛

⎝δ2 +
N

∑

n′=1,n′ �=n
pn

′f gn
′f

nm

⎞

⎠ − y2 ≥ 0.

(21)

By introducing a logarithmic manipulation P =
exp

(

P′) and bringing it into (21), then the final opti-
mization problem after approximation is formulated
asQ4:

max
p′nf ,η,x,y

η (22)

s.t.
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F∑

f=1
exp

(

p′nf ) ≤ Pth, ∀n; (22a)

exp
(

p′nf ) ≤ Psub, ∀n, f ; (22b)
F∑

f=1
exp

(

p′nf ) h̃nfspVπ(f ,l) ≤ Ilth, ∀n, l; (22c)

Ω (x, y) ≥ η; (22d)
N∑

n=1

F∑

f=1
log2

(

φ̃
(

exp
(

P′)))

−
N∑

n=1

F∑

f=1
log2

(

ψ
(

exp
(

P′)))

− y2 ≥ 0; (22e)

N∑

n=1

(

Pdp + Psp +
F∑

f=1
ξ exp

(

p′nf )
)

≤ x, (22f )

where ψ
(

exp
(

P′))

� δ2 +
N∑

n′ �=n,n′∈N
exp

(

p′n′f
)

gn
′f

nm.

For the above problem inQ4, we have the following two
propositions.

Proposition 1 Q4 is a convex optimization problem.
Proof Firstly, the sum of exponential functions is con-

vex, so the constraints (22a) ∼ (22c) and (22f) are all
convex sets. The constraint (22d) is a linear constraint

which is also convex. Lastly,
N∑

n=1

F∑

f=1
log2

(

φ̃
(

exp
(

P′)))

is a linear function of P′ , and it has been proved that the
log-sum-exp function is convex [46], so we can find that
the left side of (22e) in Q4 is the sum of linear functions
and two concave functions, which implies (22e) is also a
convex set. Therefore, the convexity of the constraint sets
is verified, i.e.,Q4 is a convex problem.
The problemQ4 can be efficiently solved by the existing

convex optimization algorithms [46], or the optimization
toolbox CVX [47]. However, the solution ofQ4 subject to
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constraints only corresponds to initial approximate point
{

P̃t2 , x̃t2 , ỹt2
}

. In order to produce an improvement point
compared to

{

P̃t2 , x̃t2 , ỹt2
}

, herein, the SCA in [48, 49] for
constraints is employed. Once we obtain the solution of
Q4, it will take the place of the previous approximated
point according to (16) and (20), and the iteration proce-
dure goes on until convergence. The iterative procedure is
summarized in line 4 ∼ 10 of Algorithm 1.
Proposition 2 Each iteration of SCAmakes an improve-

ment compared to the previous iteration and the iteration
procedure is convergent.
Proof It is assumed that the optimal solution obtained

at the iteration t2 is
{

P∗
t2 , y

∗
t2 , x

∗
t2
}

, which is also feasible
and satisfies the constraints of Q3 for the next approxi-
mation. This mainly results from the fact that the approx-
imated parts of the constraints (22d) and (22e) are less
than the original corresponding parts of constraints (15d)
and (15e). It indicates that the iteration sequences of
the objective are non-decreasing. In addition, the con-
straints are bounded. Therefore, the process of successive
convex approximation finally converges, which proves
Proposition 2.
Moreover, in order to make the iterative sequences stop

at or converge to Karush-Kuhn-Tucker (KKT) point, the
following conditions are needed for the successive convex
approximation [48]:

⎧

⎨

⎩

�(α) ≥ �̃(α)

�(α)
∣
∣
α=α̃ = �̃(α)

∣
∣
α=α̃∇�(α)

∣
∣
α=α̃ = ∇�̃(α)

∣
∣
α=α̃

(23)

where � is a function of variable α.
It can be verified that the approximation of (16) and

(20) satisfies the above three conditions. In (23), the first
condition guarantees the approximation is tightening the
constraints of (15d) and (15e), and the solution of approxi-
mated problem is also a feasible point for the next approx-
imation; the second condition ensures the improvement
of the objective during each iteration; the last condition
ensures the satisfaction of the KKT conditions after a
series of iteration approximation.

4 Complexity analysis
In this section, the computational complexity of the pro-
posed algorithm is analyzed. The optimization toolbox
CVX is applied to solve Q4 via the interior point method
(IPM), which dominates the main complexity of the whole
algorithm. In IPM, by contaminating the objective and
inequality constraints, a logarithmic barrier function is
constructed and optimized along a central path through
Newton method. With self-concordance for this func-
tion, the number of Newton steps is proportional to the
square root of the number of inequality constraints, and
the complexity of each Newton increases cubically with
the number of inequality constraints [46, 50].

The analogous means of [50] can be adopted to
transform the constraints with log-sum-exp into a set
of equivalent constraints with self-concordance. The
total number of equivalent constraints is 6FN + N +
2FLN + L + 2FN2. Therefore, the whole complexity
is O

(

T1T2
(

FLN + FN2)3.5
)

after eliminating the multi-
plicative factors and non-dominant terms, where T1 and
T2 are the numbers of alternate optimization and succes-
sive convex approximation, respectively.

5 Simulation results and discussions
In this section, numerical results of the proposed RA algo-
rithm by Monte Carlo are conducted and compared with
two algorithms [19, 23].Moreover, the impacts of different
5G waveforms and system dimensions are also simulated
and analyzed. To be more specific, the simulation results
are divided into three parts: The first part presents the
efficiency including the convergence and the performance
comparison between the proposed algorithm and the two
existing algorithms in [19, 23]; the second part exhibits
the performance of four potential 5G waveforms in terms
of different parameter settings; and the last part evaluates
the impact of different system dimensions on the energy
efficiency. The simulation parameters are presented in
Table 2, and the ones which are changed will be declared.
Considering the CR-enabled 5G system shown in Fig. 1,

where the PBS lies in the center of the primary system, the
PUs are randomly located around the PBS within the cell
range. We firstly investigate the efficiency of the proposed
algorithm. The convergence of alternate optimization and
SCA is shown in Figs. 3 and 4. According to the conver-
gence behavior in Fig. 3, we can find that the alternate
optimization of subcarrier assignment and power alloca-
tion converges after several operations. It is interesting
to note that no matter what initial power allocation is
given for the subcarrier assignment, the results converge
to the same solution even if an infeasible power allocation

Table 2 Simulation parameters

Parameters Value

Cell range 0.1∼ 2 km

Total subcarrier, Ftot 12

Number of cells, N 4

Number of users,M 3

Number of available subcarrier, F 8

Inverse of drain efficiency, ξ 5

Pdp 3.1 W

Psp 1.9 W

Pathloss (dB) 128.1+37.6log10(d)

Bandwidth 15 KHz

σ 2 − 174 dBm/Hz
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Fig. 3 The convergence of alternate optimization. Convergence behavior of alternate optimization with different initial power allocation
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Fig. 4 The convergence of SCA. Convergence behavior of SCA under different Pdp
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is initialized. This is because it can introduce a feasible
power allocation for the subcarrier assignment induced by
the infeasible initial power allocation. Figure 4 exhibits the
convergence of SCA given the subcarrier assignment. The
procedure of successive convex approximation of updat-
ing η converges within 10 iterations. Thus, the practical
applicability of SCA can be verified.
Besides, in order to illustrate the superiority, the pro-

posed algorithm is compared with two algorithms, i.e.,
IILA in [19] and DPGA in [23], as shown in Fig. 5. For
the sake of fairness, all algorithms are compared on the
basis of energy efficiency. Here, we only consider the case
of FBMC in Table 1. The capacity guarantee coefficient β

associated with the level of interference threshold is set
to 0.8. As the sum power budget augments, it is seen that
all of the curves in Fig. 5 firstly increase and then slowly
approach a constant. It can be explained that the numera-
tor in (8) has a logarithmic structure with power variable,
while the power consumption in the denominator is linear.
The value of energy efficiency initially increases because
the incremental portion of capacity plays the dominant
role relative to the increment of power consumption, and
the energy efficiency finally remains constant because
the opposite situation follows. Therefore, a turning point
must exist in line with the point firstly approaching the
constant. For the proposed algorithm, the turning point is
achieved at 16 dBm.

In Fig. 5, we also observe that the proposed algo-
rithm achieves higher energy efficiency in both cases of
either low-power budget or high-power budget. With the
same power consumption, the proposed algorithm has the
largest capacity, i.e., our algorithm needs the least con-
sumption to achieve the same capacity. The reason is that
a linear pricing factor is required to impose the penalty
for the DPGA in [23], which is avoided in the proposed
algorithm. For IILA in [19], the co-channel interference
is assumed to be constant, while the proposed algorithm
makes an improvement for the co-channel interference by
using the successive convex approximation.
In the second parts of the experiments, the impacts of

the proposed algorithm with different system parameters
on energy efficiency by using various 5G waveforms are
presented. The first three figures are obtained under ideal
channel gain, and the last one is obtained under estimated
channel gain.
Figure 6 shows the relation between the energy effi-

ciency of waveforms with power budget of each cell. It is
seen that all curves have the same tendency and almost
the same turning point. The difference among these wave-
forms is that these waveforms have different levels of
spectral leakage. The case of PS provides a theoretic upper
bound and is viewed as the benchmark because the spec-
tral leakage is not involved. Note that FBMC achieves the
highest energy efficiency and is the closest to the case
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Fig. 5 Comparison of algorithms. The performance comparison of the proposed algorithm with some existing ones versus different sum power
budgets
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Fig. 6 Energy efficiency versus power budget. The performance of the proposed algorithm using various modulation schemes versus different sum
power budgets

of PS, while OFDM has the worst performance among
all the waveforms due to its significant spectral leakage.
Although the first element of GFDM in Table 1 is less than
that of FBMC, the remaining elements of GFDM are larger
than those of FBMC, which explains the worse perfor-
mance of GFDM than FBMC. At last, FBMC and UFMC
have similar performance due to their similar interference
vectors. As a conclusion, the less the spectral leakage is,
the higher energy efficiency can be achieved.
Figure 7 displays the relation between the energy effi-

ciency of waveforms with power limits on each subcarrier.
The power budget of each cell is set to 16 dBm. The energy
efficiency firstly increases and then maintains a constant
when the power limit increases from 1 to 10 mW. In Fig. 7,
we can see that the most appropriate power limit of sub-
carrier is about 6 mW, where the value of energy efficiency
firstly approaches the maximum. The reason is that the
large power limit of subcarriers enlarges the capacity until
the energy efficiency achieves the maximum, and sub-
sequently, the other constraints restrict the growing of
capacity.
We also investigate the impacts of different waveforms

under different interference thresholds, as shown in Fig. 8,
where the maximal power consumption of each cell and
power limit of each subcarrier are 16 dBm and 5 mW,
respectively. Except for the PS case (interference to PU

does not exist), all other curves increase as the value of
1−β augments. If a large interference threshold from sec-
ondary cells to PUs is permitted, the SBS will transmit
more power to its corresponding SUs. This explains the
rise of the curves in Fig. 8 when the interference threshold
increases. In addition, the same conclusion as in Fig. 6 is
made, i.e., FBMC has the highest energy efficiency under
the same interference threshold.
The impact of estimated channel gain is depicted in

Fig. 9. Since the case of PS does not introduce inter-
ference due to spectral leakage, the constraint (10) loses
efficacy, which induces the horizontal curve of PS (like
the case in Fig. 8). As the outage probability increases
uniformly, the estimated margin decreases rapidly firstly
and then decreases slowly. It implies that the transmis-
sion power can enlarge rapidly first which induces sig-
nificant co-channel interference and power consumption,
thus the energy efficiency declines, and subsequently, the
transmission power increases slowly, the co-channel inter-
ference and power consumption strengthen slowly too,
which results in the rising tendency of energy efficiency.
In the last part of the experiments, the impacts of two

important parameters about system dimensions on energy
efficiency are shown in Figs. 10 and 11, where we con-
sider the influence of the number of secondary cells and
the number of SUs per cell respectively, and FBMC is
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Fig. 7 Energy efficiency versus power limits. The performance of the proposed algorithm using various modulation schemes versus different power
limits on subcarriers
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Fig. 8 Energy efficiency versus interference thresholds. The performance of the proposed algorithm using various modulation schemes versus
different interference thresholds
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Fig. 9 Energy efficiency versus outage probability. The performance of the proposed algorithm using various modulation schemes versus different
outage probability
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Fig. 10 Energy efficiency versus number of secondary cells. The performance of the proposed algorithm with different number of secondary cells
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Fig. 11 Energy efficiency versus number of SUs. The performance of the proposed algorithm with different number of SUs per cell

selected as the waveform. In Fig. 10, the number of SUs
is fixed to 3, and the number of secondary cells is set
to 2, 3, 4, and 5. Observe that the number of cells has a
negative effect on the system performance, i.e., an energy-
efficient system should pay attention to the number of
cells. Because a large-cell structure will inevitably gener-
ate significant co-channel interference among cells and
result in the capacity degradation for each cell, although
the whole system capacity increases. From the perspec-
tive of spectral efficiency, the more the number of cells is,
the higher the capacity is. When the energy efficiency is
concerned, the increasing number of cells will cause lower
energy efficiency. Consequently, we need to make a trade-
off between energy efficiency and spectral efficiency if the
future 5G system considers a large number of cognitive
cells.
In Fig. 11, the number of cells is fixed to 3, and the num-

ber of SUs is set to 2, 3, 4, 5, and 6. According to Fig. 11,
it can be found that the number of the SUs will bring
higher energy efficiency. This results from the fact that the
increasing number of the SUs enlarges the system capac-
ity when the system power budget remains constant, i.e.,
the ratio of capacity to consumption is increased. There-
fore, more SUs benefit the energy efficiency performance.
However, we also can forecast that under the conditions of
given number of subcarriers, more SUs means less access-
ing opportunity and worse quality of service (QoS). The

trade-off of the system energy efficiency and the QoS of
SUs also need to be considered.

6 Conclusions
This paper proposes an energy-efficient resource allo-
cation algorithm aiming at solving the awkward non-
convex problem involving multiple cells with multiple SUs
per cell. The heuristic subcarrier assignment and convex
approximation are adopted to sequentially transform the
non-convex form into a convex one. Numerical results
validate the superiority of the proposed algorithm for
achieving higher energy efficiency compared with some
existing algorithms. Furthermore, the impacts of poten-
tial modulation schemes in 5G on energy efficiency are
also investigated, and we reach the conclusion that the
waveform with less spectral leakage is more suitable for
energy-efficient 5G systems.

Endnote
1Generally, it makes no difference whether the initial

power is feasible or not, which will be demonstrated by
the subsequent simulation.
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