
EURASIP Journal on Advances
in Signal Processing

Zhang et al. EURASIP Journal on Advances in Signal
Processing          (2019) 2019:3 
https://doi.org/10.1186/s13634-019-0601-0

RESEARCH Open Access

Distributed stochastic gradient descent
for link prediction in signed social networks
Han Zhang1, Gang Wu1 and Qing Ling2*

Abstract

This paper considers the link prediction problem defined over a signed social network, where the relationship
between any two network users can be either positive (friends) or negative (foes). Given a portion of the relationships,
the goal of link prediction is to identify the rest unknown ones. This task resorts to completing the adjacency matrix of
the signed social network, which is low rank or approximately low rank. Considering the large scale of the adjacency
matrix, in this paper, we adopt low-rank matrix factorization models for the link prediction problem and solve them
through asynchronous distributed stochastic gradient descent algorithms. The low-rank matrix factorization models
effectively reduce the size of the parameter space, while the asynchronous distributed stochastic gradient descent
algorithms enable fast completion of the adjacency matrix. We validate the proposed algorithms using two real-world
datasets on a distributed shared-memory computation platform. Numerical results demonstrate that the
asynchronous distributed stochastic gradient descent algorithms achieve nearly linear computional speedups with
respect to the number of computational threads, and are able to complete an adjacency matrix of ten billions of
entries within 10 s.

Keywords: Signed social network, Link prediction, Low-rank matrix completion, Asynchronous distributed
optimization, Stochastic gradient descent

1 Introduction
Social network analysis has received much research inter-
est in the past decade. A social network can be regarded
as a directed graph, where nodes represent users and
weights of edges represent relationships between users.
The weight of an edge (i, j) can be either positive, mean-
ing that node i treats node j as a friend, or negative,
meaning that node i treats node j as a foe. A case of par-
ticular interest is the signed social network, where the
weights are either + 1 or − 1. For example, at Epinions,
an online review website, a user can choose “trust” or
“distrust” for another user [1]. Since collecting all relation-
ships from the users’ side is often impossible, estimating
the unknown ones is critical to applications such as dis-
covering relationships, recommending friends, and iden-
tifyingmalicious users. The target of link prediction over a
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signed social network is to infer the unknown relationship
between users from the known ones.

1.1 Related works
Approaches to solving the link prediction problem over a
signed social network can be classified into local, global,
and the combination of the two. Below, we give a brief
review on these approaches.
Local approaches rely on the theory of structure balance

of signed (social) networks, which dates back to 1950s [2].
Structure balance means that the triads in a signed net-
work tend to obey the rules such as “a friend ofmy friend is
my friend” and “an enemy of my friend is my enemy.” This
observation enables link prediction at a low level. Based
on the theory of structure balance, [3] develops a trust
(or distrust) propagation framework to predict the trust
(or distrust) between pairs of nodes. A logistic regres-
sion classifier is proposed in [4], where the features come
from only local triad structures of edges. The work of [5]
uses additional features that come from longer cycles in a
signed network so as to improve the prediction accuracy.
Here, a longer cycle means a directed path from a node to

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-019-0601-0&domain=pdf
mailto: lingqing556@mail.sysu.edu.cn
http://creativecommons.org/licenses/by/4.0/


Zhang et al. EURASIP Journal on Advances in Signal Processing          (2019) 2019:3 Page 2 of 11

itself, whose length is longer than that of a triad. However,
the longer cycle method increases the number of features
exponentially with respect to the length of cycle and
brings difficulties in thecomputation [6]. All these local
methods focus on the low-level structure of a signed net-
work and ignore the high-level structure. They are unable
to leverage some global information, for example, the clus-
ter information that leads to a low-rank weight matrix
[7]. This disadvantagemotivates the introduction of global
approaches.
Global approaches are built upon the theory of weak

balance that characterizes the global structure of a signed
(social) network [8]. A complete signed network is weakly
balanced, if the nodes can be divided into several clusters
such that within-cluster edges are positive and between-
cluster edges are negative. It is shown in [9] that a weakly
balanced signed network has a low-rank adjacencymatrix.
Thus, the task of link prediction can be formulated as
a low-rank matrix completion problem, and many exist-
ing algorithms can be applied as solvers. Two popular
low-rank matrix completion models are rank minimiza-
tion and nuclear norm minimization, where the latter
is a convex relaxation of the former [10]. They can be
solved by singular value hard thresholding [11] and sin-
gular value soft thresholding [12] algorithms. However,
every iteration of these algorithms requires a costly singu-
lar value decomposition step on a square matrix, whose
numbers of rows and columns are the same as the num-
ber of network users. Therefore, they are not suitable for
solving large-scale problems. Instead, matrix factorization
is a proper model for large-scale low-rank matrix com-
pletion, which can be solved by alternating least squares
[13] and stochastic gradient descent [9] algorithms. At
each iteration of stochastic gradient descent, the learner
randomly selects a known weight and updates the corre-
sponding row and column of the two factorized matrices,
respectively. Hsieh et al. [9] demonstrates that stochas-
tic gradient descent is an efficient algorithm to solve the
link prediction problem defined over a large-scale signed
social network. As for the convergence, [14] declares that
for non-convex problem with strict saddle property, start-
ing from an arbitrary point, stochastic gradient descent
converges to a local minimum in a polynomial number of
steps.
Combined approaches utilize both local and global

information. For example, [15] proposes a probabilistic
matrix factorization method, where each user’s feature is
determined by its neighbors and social psychology fac-
tors. The work of [16] combines features from local triads
and global rankminimization to design classification algo-
rithms. The work of [17] builds a probabilistic prediction
model, which adaptively adjusts the estimate of adjacency
matrix through both local structure balance and global
clustering results. However, feature extraction from a

large-scale signed social network is often computationally
expensive.
This paper focuses on the matrix factorization model

for link prediction in a large-scale signed social net-
work and solves it through the celebrated stochastic
gradient descent algorithm. In particular, we take advan-
tages of asynchronous distributed computation to enable
fast completion of the large-scale adjacency matrix. On
a shared-memory computation platform, Hogwild! dis-
tributes stochastic gradient descent steps tomultiple com-
putational threads without any locking and achieves a
nearly optimal convergence rate when the optimization
problem has a sparse structure. On a master-worker com-
putation platform, [18] proposes the distributed stochas-
tic gradient descent algorithm to for large-scale matrix
factorization, which randomly splits the matrix to blocks
and assigns different blocks to different workers. To over-
come the data discontinuity problem in Hogwild! and
the block imbalance and locking problems in distributed
stochastic gradient descent, the fixed-point stochastic
gradient descent algorithm selects samples within a block
in order but randomizes the selection of blocks [19]. Also,
[20] is proposed to address the data structure issue of
Hogwild! by parallelizing the random selections of vari-
able blocks and training samples. Based on Hogwild!, [21]
proposes an asynchronous decentralized stochastic gra-
dient descent algorithm, which replaces the global model
with a set of local models kept by workers. A decentralized
token-based protocol is developed to keep the computa-
tion synchronized. In this paper, we shall consider shared-
memory computation platform, which fits for distributed
implementations of stochastic gradient descent to solve
the large-scale low-rank matrix completion problem. In
addition, linear speedup of asynchronous-parallel algo-
rithms has been recently established in both deterministic
[22] and stochastic [23] settings. We propose two asyn-
chronous distributed stochastic gradient descent algo-
rithms without locking, one is partially asynchronous and
close to Hogwild!, while the other is fully asynchronous
which both achieve nearly linear speedup.

1.2 Our contributions
(i) We consider low-rank matrix factorization models

for link prediction of a signed social network, and
solve them through asynchronous distributed
stochastic gradient descent algorithms. The low-rank
matrix factorization models effectively reduce the
size of the parameter space, while the asynchronous
distributed stochastic gradient descent algorithms
enable fast completion of the adjacency matrix.

(ii) We validate the proposed algorithms using two
real-world datasets on a distributed shared-memory
computation platform. Numerical results
demonstrate that the asynchronous distributed
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stochastic gradient descent algorithms achieve nearly
linear computational speedups with respect to the
number of computational threads and are able to
complete an adjacency matrix of ten billions of
entries within 10 s.

2 Problem statement
Consider a signed social network with n users, where a
user can either like or dislike another user. It can be rep-
resented as a directed graph G = (V , E ,A), where V is the
node set whose cardinality is |V| = n, E is the edge set
whose cardinality is |E | = m = n2 − n, and A ∈ R

n×n is
the signed adjacency matrix of G. The (i, j)-th entry of A,
denoted as aij, is given by

aij =
{
1 user i likes user j,
−1 user i dislikes user j. (1)

With particular note, the diagonal entries aii are often
set to 1, for all i = 1, · · · , n.
The network operator can collect a portion of the rela-

tionships from the users’ side, but is very likely unable to
collect all of them. Denote � as the set containing the
indexes of the known entries of A. That is, for any (i, j) ∈
�, aij is known to the network operator. It is of practical
importance for the network operator to infer the unknown
entries of A from known ones for the sake of discovering
relationships of users, recommending friends, identifying
malicious users, etc. This link prediction task is essentially
a special matrix completion problem, where all the matrix
entries are either 1 or − 1.

2.1 Rank and nuclear normminimization models
The fact that the adjacency matrix of the signed social
network is low rank or approximately low rank motivates
the use of low-rank matrix completion techniques in solv-
ing the link prediction problem [9]. A commonly used
formulation is

min rank(Z), (2)
s.t. zij = aij, ∀(i, j) ∈ �,

zij ∈ {1,−1}, ∀i, ∀j,
where Z ∈ R

n×n is the low-rank matrix to be recov-
ered and rank(Z) denotes the rank of Z. The constraint
zij = aij, ∀(i, j) ∈ � enforces all known entries in A which
exactly appear at the corresponding locations in Z. The
constraint zij ∈ {1,−1}, ∀i, ∀j guarantees that the recov-
ered Z is indeed an adjacency matrix of a signed network.
Since rank(Z) is a highly non-convex cost function, it is
often replaced by the nuclear norm of Z, denoted by ‖Z‖∗.
Thus, (2) is relaxed to

min ‖Z‖∗, (3)
s.t. zij = aij, ∀(i, j) ∈ �,

zij ∈ {1,−1}, ∀i, ∀j,

Without the discrete constraint zij ∈ {1,−1}, ∀i, ∀j, (2)
and (3) can be solved by singular value hard thresholding
[11] and singular value soft thresholding [12] algorithms,
respectively. Every iteration of these algorithms runs a
singular value decomposition step on the intermediate
estimate of Z, followed by hard or soft thresholding on
the singular values. Since the complexity of singular value
decomposition isO

(
n3

)
, these algorithms are not applica-

ble to the link prediction problem as n is often large in a
social network.

2.2 Matrix factorization models
Besides the rank minimization and nuclear minimization
models, matrix factorization models are also popular in
low-rank matrix completion, especially when the matrix
to be completed is of a large scale. It is known that any
matrix Z ∈ R

n×n with rank up to r can be decomposed
into a matrix product Z = XTY , where X ∈ R

r×n and Y ∈
R
r×n. Since the upper bound of the rank is often known

or can be estimated in advance, it is natural to introduce a
matrix factorization model for link prediction, as

min
∑

(i,j)∈�

loss
(
aij, xTi yj

)
+ λ

2

∥∥∥∥X
∥∥∥∥2F + λ

2

∥∥∥∥Y
∥∥∥∥
2

F
,

s.t. xTi yj ∈ {1,−1}, ∀i, ∀j. (4)

Here, xi is the i-th column ofX, yj is the j-th column of Y,
and xTi yj is the (i, j)-th entry of thematrix to be completed.
For a given user i, the elements of xi measure the extent of
interest that user i has in other users on some factors. For a
given user j, the elements of yj measure the extent to which
user j possesses these factors [13]. The distance of aij and
xTi yj is measured by the loss function loss(·). We expect
xTi yj to be close to aij for all (i, j) ∈ �, leading to the mini-
mization of

∑
(i,j)∈� loss

(
aij, xTi yj

)
. On the other hand, the

Frobenius regularization term λ
∥∥X ∥∥2

F + λ
∥∥Y∥∥2

F , where
λ > 0 is a regularization parameter, is used to avoid
over-fitting by penalizing the magnitudes of the matrices
X and Y.
The matrix factorization model (4) has 2rn parame-

ters. In comparison, the rank minimization model (2) and
the nuclear norm minimization model (3) both have n2
parameters.When thematrix to be completed is low rank,
we have r � n. Therefore, the low-rank matrix factoriza-
tion models effectively reduce the size of the parameter
space. This advantage motivates us to apply the matrix
factorization model in solving the link prediction problem
defined over a large-scale signed social network.
In the matrix factorization model (4), the loss function

loss(·) has several choices. A commonly used one is the
square loss

loss
(
aij, xTi yj

)
=

(
aij − xTi yj

)2
, (5)
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which enforces xTi yj to be as close to aij as possible, for
all (i, j) ∈ �. However, in the link prediction problem, we
often allow xTi yj to be biased from aij in magnitude and
care more about the consistency of their signs. This con-
sideration motivates the introduction of sigmoid loss or
squared hinge loss, which penalize the inconsistency of
signs [9]. The sigmoid loss and the squared hinge loss are
defined as

losssigmoid
(
aij, xTi yj

)
= 1/

(
1 + exp

(
aijxTi yj

))
, (6)

losshinge
(
aij, xTi yj

)
=

(
max

(
0, 1 − aijxTi yj

))2
, (7)

respectively.

3 Methods
Based on the matrix factorization model (4), in this
section, we develop asynchronous distributed stochastic
gradient descent algorithms to solve the link prediction
problem defined over a large-scale signed social network.
We first overview the classical stochastic gradient descent
algorithm and then discuss its asynchronous distributed
implementations on a shared-memory computation
platform.

3.1 Stochastic gradient descent
Consider the cost function of (4). Its full (sub)gradients
with respect to xi and yj are

Gxi =
∑

j:(i,j)∈�

∂loss
(
aij, xTi yj

)
∂xi

+ λxi,

Gyj =
∑

i:(i,j)∈�

∂loss
(
aij, xTi yj

)
∂yj

+ λyj,

respectively. Observe that Gxi (or Gyj ) are decoupled
across i (or j). Thus, a straightforward approach to solv-
ing (4) is running a gradient descent algorithm using the
full gradients Gxi and Gyj to update all xi and yj, fol-
lowed by projecting the products xTi yj onto the binary
set {−1, 1}. However, every iteration of this full gradi-
ent descent algorithm requires to evaluate multiple partial
gradients ∂loss/∂xi and ∂loss/∂yj so as to sum them up.
This is time-consuming when the cardinalities of the sets
{j : (i, j) ∈ �} and {i : (i, j) ∈ �} are large.
Stochastic approximation [24] and machine learning

theories [25] suggest us to apply the stochastic gradient
descent method to handle this issue, through replacing
the full gradients by stochastic gradients. To be specific, at
every iteration only a random pair of xi and yj are updated
using their stochastic gradients

gxi = ∂loss
(
aij, xTi yj

)
∂xi

+ λxi, (8)

gyj = ∂loss
(
aij, xTi yj

)
∂yj

+ λyj. (9)

Observe that the stochastic gradients gxi and gyj
are approximations to the full gradients Gxi and Gyj ,
respectively.
The stochastic gradient descent algorithm has been

applied to solve the link prediction problem in [9], as
listed in Algorithm 1. The non-negative step size η is
often set to be diminishing; otherwise, the gradient noise,
which stands for the gap between the full gradient and the
stochastic gradient, could prevent the iterate from being
convergent.

Algorithm 1 Stochastic gradient descent (SGD)
Require: Set �, parameter λ

Require: Training set {aij, (i, j) ∈ �}, initial values X
and Y
while not converged do

Uniformly randomly choose (i, j) ∈ �, and pick a
step size η

Calculate stochastic gradients gxi and gyj as in (8)
and (9)

Update xi ← xi − ηgxi and yj ← yj − ηgyj
end while
For all (i, j) /∈ �, project xTi yj onto {−1, 1}

Though the stochastic gradient descent algorithm is
proven to be a computationally lightweight approach
to solving the link prediction problem, completing a
large-scale adjacency matrix is still time-consuming.
As we shall see in the numerical experiments, for a
signed social network of around 100,000 users, com-
pleting the adjacency matrix of ten billion entries by
stochastic gradient descent takes a couple of min-
utes. Thus, for time-sensitive applications, it is neces-
sary to speed up the optimization process. Below, we
shall develop asynchronous distributed implementations
of stochastic gradient descent, which take advantages
of multi-thread computing and significantly reduce the
running time.

3.2 Distributed stochastic gradient descent
We propose two asynchronous distributed stochastic gra-
dient descent algorithms to solve the link prediction prob-
lem defined over a large-scale signed social network. Both
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algorithms run on a shared-memory system, where train-
ing data (aij, (i, j) ∈ �) and optimization variables (xi and
yj, ∀i, ∀j) are stored in the memory, while multiple com-
putational threads asynchronously pick up the training
data and the optimization variables, perform stochastic
gradient descent, and save the updated optimization vari-
ables in the memory. This shared-memory structure is
particularly fit for the link prediction task due to its high
throughput and low latency. In our workstation whose
detailed specifications shall be given in Section 4, each
computational thread can read and write a contiguous
physical memory at a speed of over 4 GB/s with latency in
tens of nanoseconds, and ordinal multiple hard disks can
load data into the memory at a speed of over 500 MB/s.
Since each stochastic gradient descent step for link pre-
diction is also lightweight, the reading, computation, and
writing procedures are all efficient. In comparison, if we
use themaster-worker structure that is also popular in dis-
tributed computing, each master shall store a portion of
the training data and handle a portion of the optimization
variables. According to the stochastic gradient descent
algorithm for link prediction, in this case, masters have to
frequently read training data from others, which is slow in
the master-worker structure.
A key common feature of the two proposed asyn-

chronous distributed stochastic gradient descent
algorithms is lock-free updating, which is also adopted in
Hogwild! [26]. To be specific, when a computational
thread is assigned to update xi and yj, it reads aij and the
current xi and yj from the memory to run a stochastic
gradient step, followed by writing the updated xi and yj to
the memory, even when another computational thread is
using the current xi or yi. This inconsistency in updating
the same optimization variable wastes the computational
power and may cause errors, especially when the number
of computational threads increases. Fortunately, to solve
the link prediction problem, each stochastic gradient
descent step only modifies a very small part of the opti-
mization variables, such that memory overwrites are rare.
Therefore, the lock-free scheme remains to be efficient
due to the sparse data access pattern.
The proposed distributed algorithms are partially

asynchronous and fully asynchronous, as outlined in
Algorithms 2 and 3, and their processes are depicted in
Figs. 1 and 2, respectively. Their difference is as follows.
In the partially asynchronous algorithm, computations
are split into rounds and every round processes all the
training data indexed by �. Within each round, every
computational thread handles one split of the training
data in an asynchronous manner. In comparison, the fully
asynchronous algorithm does not have the concept of
“round.” The computational threads simply sample from
� and run stochastic gradient descent steps without any
coordination.

Algorithm 2 Partially asynchronous distributed SGD
Require: Set �, parameter λ

Require: Training set {aij, (i, j) ∈ �}, initial values X
and Y
while not converged do

Computational thread 0
Permute elements in �

Equally divide the elements to M subsets
�1, · · · ,�M

Computational thread m = 1, · · · ,M asyn-
chronously

Choose (i, j) ∈ �m in order
Read aij, xi and yj from memory and pick a step

size η

Calculate stochastic gradients gxi and gyj as in (8)
and (9)

Update xi ← xi − ηgxi and yj ← yj − ηgyj
Write xi and yj to memory

end while
Computational thread 0
For all (i, j) /∈ �, project xTi yj onto {−1, 1}

Algorithm 3 Fully asynchronous distributed SGD
Require: Set �, parameter λ

Require: Training set {aij, (i, j) ∈ �}, initial values X
and Y
while not converged do

Computational thread m = 1, · · · ,M asyn-
chronously

Uniformly randomly choose (i, j) ∈ �

Read aij, xi and yj from memory, and pick a step
size η

Calculate stochastic gradients gxi and gyj as in (8)
and (9)

Update xi ← xi − ηgxi and yj ← yj − ηgyj
Write xi and yj to memory

end while
Computational thread 0
For all (i, j) /∈ �, project xTi yj onto {−1, 1}

Suppose that there are M computational threads. In
the partially asynchronous distributed stochastic gradi-
ent algorithm, the shared memory stores the training set{
aij, (i, j) ∈ �

}
, as well as the initial values of X and Y. Any

one of theM computational threads, which we number as
0, knows the set �. The parameter λ is known to all the
computational threads. In the beginning of every round,
computational thread 0 permutes the elements in �,
equally divides the elements into M subsets �1, · · · ,�M,
and assigns them to computational threadsm = 1, · · · ,M,
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Fig. 1 Illustration of partially asynchronous distributed SGD. At each iteration, thread 0 permutes elements in � and equally divides the elements
into �1,�2, and �3. Then the threads process the corresponding subsets in parallel

respectively. After that, the computational threads han-
dle their training subsets asynchronously. Computational
threadm chooses index (i, j) ∈ �m in order, read the train-
ing sample aij and the current values of xi and yj from the
shared memory, and then calculates the stochastic gradi-
ents gxi and gyj as in (8) and (9). With xi, yj, gxi and gyj
at hand, computational threadm picks a diminishing step
size η, updates xi ← xi − ηgxi and yj ← yj − ηgyj through
stochastic gradient descent, and then writes the new xi
and yj to the sharedmemory.When a certain stopping cri-
terion is met, computational thread 0 projects xTi yj onto{−1, 1} for all (i, j) /∈ �, which are the estimates to the
unknown elements of the adjacency matrix.
In the fully asynchronous distributed stochastic descent

algorithm, the shared memory stores the training set
{aij, (i, j) ∈ �}, as well as the initial values of X and Y. The
index set� and the parameter λ are known to all the com-
putational threads, which asynchronously run stochastic
gradient descent steps. Every computational threadm uni-
formly randomly chooses an index from the full-index
set, namely, (i, j) ∈ �. Then, it reads aij, xi and yj, cal-
culates stochastic gradients gxi and gyj , updates xi and
yj, and then writes xi and yj to the memory. This pro-
cedure repeats when a certain stopping criterion is met,
without any synchronous coordination. Finally, one of the
computational threads, which is numbered as 0, projects
xTi yj onto {−1, 1} for all (i, j) /∈ �.
The two proposed asynchronous algorithms differ in

the way of using the training data. In every round

of the partially asynchronous algorithm, the computa-
tional threads use all of the training data. In the fully
asynchronous algorithm, it is possible that one training
sample is not used while another one has been used for
several times. The partially asynchronous algorithm may
waste time in the synchronization step, if the computa-
tional threads have imbalanced computational powers, or
the training set is not evenly partitioned. These issues
can be addressed if the shared-memory system is prop-
erly configured. On the other hand, the imbalanced use
of training samples may delay the optimization process
of the fully asynchronous algorithm. Nevertheless, when
the training data are large scale, we observe that the fully
asynchronous algorithm performs well. Indeed, both algo-
rithms demonstrate nearly linear computational speedup
with respect to the number of computational threads, as
we shall show in the numerical experiments.

4 Results and discussion
In the numerical experiments, we validate the effective-
ness of the proposed asynchronous distributed stochastic
gradient descent algorithms in link prediction on two real-
world datasets, Slashdot, and Epinions [1]. The algorithms
are coded in C++ and run in a shared-memory system on a
workstation using pthread. The workstation has a 128 GB
RAM, a 3.2TB hard disk and a dual Xeon E5-2630 CPUs.
Each CPU has 10 cores and each core has maximally 2
computational threads. Thus, the maximum number of
computational threads is 40.

Fig. 2 Illustration of fully asynchronous distributed SGD. Each thread randomly selects the elements in � and applies SGD asynchronously
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4.1 Datasets
Slashdot is a technology-related news platform. Users in
Slashdot can tag each other as friend (positive) or foe (neg-
ative). They can also write news articles and other users
make comments on these articles. Epinions is a who-trust-
whom consumer review site, in which users can decide
to trust (positive) or distrust (negative) other users. They
can also post reviews for products and other users express
opinions on these reviews with their ratings.
Table 1 shows the statistics of these two datasets, from

which we observe that (i) the matrices to be completed
are of a large scale, with billions of entries; (ii) the known
entries in the adjacency matrices are very sparse and most
of the known edges are positive.

4.2 Experimental settings
In the numerical experiments, we compare the follow-
ing three algorithms: stochastic gradient descent in [9],
partially asynchronous distributed stochastic gradient
descent, and fully asynchronous distributed stochastic
gradient descent. For the two asynchronous distributed
algorithms proposed in this paper, we vary the number
of computational threads to quantify their computational
speedups. Particularly, when the number of computa-
tional threads is 1, the fully asynchronous distributed
stochastic gradient descent algorithm reduces to the clas-
sic stochastic gradient descent algorithm. In the matrix
factorization model (4), we test the square loss in (5), the
sigmoid loss in (6), and the squared hinge loss in (7).
The performance of the three algorithms is evaluated by

the prediction accuracy. We randomly sample 90% of the
data as the training set and the remaining 10% as the test
set. The estimates are compared with the values in the test
set, and the accuracy is defined as the percentage of the
correct estimates. We run all the experiments for 10 times
and average the results to ensure reliability.
In the numerical experiments, the initial values of X and

Y are randomly generated and every entry follows a stan-
dard Gaussian distribution. The step size η is set to be
η0/(1 + k)0.1, where η0 is the initial step size and hand
tuned to be the best, and k is the number of epochs. By one
epoch, we mean that |�| samples have been used during
that period. Note that in the partially asynchronous dis-
tributed algorithm, one epoch corresponds to one round
where every sample is used for one time. However, in one

Table 1 Statistics of the Slashdot and Epinions datasets

Slashdot Epinions

Number of users 77,357 131,828

Number of known edges 516,575 841,372

Percentage of positive known edges 76.7% 85.3%

Percentage of negative known edges 23.3% 14.7%

0

Fig. 3 Accuracy on Slashdot using sigmoid loss. TOP: partially
asynchronous. Bottom: fully asynchronous

Fig. 4 Accuracy on Slashdot using squared hinge loss. TOP: partially
asynchronous. Bottom: fully asynchronous
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Fig. 5 Accuracy on Slashdot using square loss. TOP: partially
asynchronous. Bottom: fully asynchronous

Fig. 6 Accuracy on Epinions using sigmoid loss. TOP: partially
asynchronous. Bottom: fully asynchronous

Fig. 7 Accuracy on Epinions using squared hinge loss. TOP: partially
asynchronous. Bottom: fully asynchronous

Fig. 8 Accuracy on Epinions using square loss. TOP: partially
asynchronous. Bottom: fully asynchronous
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Fig. 9 Sensitivity to the rank estimate r. The loss function is squared
hinge, the number of computational threads isM = 10, and the
regularization parameter is λ = 0.2

epoch of the classic stochastic gradient descent algorithm
and the fully asynchronous distributed algorithm, some
samples may be used for more than one time, while some
other samples may be never used. We vary the estimated
rank r of the adjacency matrix and the regularization
parameter λ in the numerical experiments.

4.3 Comparisons on accuracies
Figures 3, 4, and 5 depict the prediction accuracies of
the algorithms on the Slashdot dataset using sigmoid
(λ = 0.01), squared hinge (λ = 0.4), and square (λ = 0.4)
losses, respectively. Observe that as long as the number
of epochs is fixed, increasing the number of computa-
tional threads does not change the accuracy too much.
The partially asynchronous and fully asynchronous algo-
rithms also perform similarly. After 100 epochs, the three
losses yield similar accuracies, though the curves of the

Fig. 10 Sensitivity to the regularization parameter λ. The loss function
is squared hinge, the number of computational threads isM = 10,
and the rank estimate is r = 30

Fig. 11 Computational speedup of the partially asynchronous
distributed stochastic gradient descent algorithm

sigmoid loss are not as steady as those of the square loss
and the squared hinge loss.
On the Epinions dataset, we also show the predic-

tion accuracies using sigmoid (λ = 0.01), squared hinge
(λ = 0.4), and square (λ = 0.4) losses in Figs. 6, 7,
and 8, respectively. Similar to the results of the Slash-
dot dataset, the prediction accuracies with respect to the
number of epochs are not sensitive in the partially or fully
asynchronous algorithms, the number of computational
threads, as well as the choice of loss function. Different
to the results of the Epinions dataset, the curves of the
squared hinge loss and the squared loss are steady, while
those of the sigmoid loss are slightly fluctuant. The steady-
state prediction accuracy of the Epinions dataset is around
0.945, higher than that of the Slashdot dataset, which is
around 0.875. Our conjecture is that, the percentage of
positive known edges in the Slashdot dataset is 76.7% and

Fig. 12 Computational Speedup of the fully asynchronous
distributed stochastic gradient descent algorithm
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that in the Epinions dataset is 85.3%, such that estimat-
ing an unknown edge to be positive is a quite safe choice
in the Epinions dataset. Therefore, it is relatively easier
to achieve a higher prediction accuracy in the Epinions
dataset.

4.4 Rank estimate and regularization parameter
Now we analyze the sensitivity of the proposed asyn-
chronous distributed algorithms to the rank estimate
and the regularization parameter. We only consider the
squared hinge loss in this set of experiments.
In Fig. 9, we show the impact of rank estimate r on

the prediction accuracy. The number of computational
threads is M = 10, and the regularization parameter is
λ = 0.2. For both partially and fully asynchronous algo-
rithms and both Slashdot and Epinion datasets, the pre-
diction accuracies are not sensitive to the choice of r, and
r � 30 yields the best results. This makes sense because
a small r is insufficient to recover the high-dimensional
adjacency matrix, while a large r lacks the generalization
ability.
As depicted in Fig. 10, the prediction accuracy is also

insensitive to the regularization parameter λ. A moder-
ate value of λ � 0.2 helps both algorithms reach the best
accuracies in both datasets.

4.5 Nearly linear computational speedups
In the last set of the numerical experiments, we shall
show that the proposed asynchronous distributed algo-
rithms are computationally efficient, in the sense that
they achieve nearly linear computational speedups with
respect to the number of computational threads.
Figures 11 and 12 demonstrate the computational

speedups of the partially and fully asynchronous
distributed stochastic gradient descent algorithms,
respectively. In both datasets, both algorithms are
able to achieve nearly linear computational speedups.

When the number of computational threads is 10, the
speedup is around 5 for the partially asynchronous
algorithm and around 6 for the fully asynchronous
algorithm. When the number of computational threads
is 40, the speedup becomes around 9 and around 10
for the partially and fully asynchronous algorithms,
respectively. The Hogwild! style partially asynchronous
distributed stochastic gradient descent algorithm
requires coordination before every round, which
results in the additional cost in terms of computa-
tional time. In comparison, the fully asynchronous
distributed stochastic gradient descent algorithm,
though may suffer from the imbalanced use of train-
ing samples, still performs well for over the large-scale
datasets.
Table 2 gives the running times of the asynchronous dis-

tributed algorithms for 100 epochs on the two datasets.
When the number of computational threads is M = 1,
the fully asynchronous distributed stochastic gradient
descent algorithm degenerates to the classic stochastic
gradient descent algorithm, which needs around 1 min on
the Slashdot dataset and around 2 min on the Epinions
dataset. In comparison, when the number of computa-
tional threads increases toM = 40, the running times are
around 7 s and 10 s, respectively. These significant savings
show that the proposed algorithms are particularly fit for
time-sensitive applications.

5 Conclusions
This paper proposes two asynchronous distributed
stochastic gradient descent algorithms to solve the link
prediction problem defined over a large-scale signed net-
work. The link prediction problem is formulated a matrix
factorization model, which aims to complete the low-rank
adjacency matrix. The two proposed distributed stochas-
tic gradient descent algorithms, one is fully asynchronous
and the other is partially asynchronous, are shown to

Table 2 Running times of the asynchronous distributed Algorithms for 100 epochs in seconds

Partially asynchronous Fully asynchronous

Sigmoid Square Squared hinge Sigmoid Square Squared hinge

Slashdot, M = 1 72.66 68.44 63.80 70.97 68.38 64.59

Slashdot, M = 10 15.43 14.35 13.71 12.40 12.33 11.18

Slashdot, M = 20 11.14 10.56 10.40 8.72 8.48 7.63

Slashdot, M = 30 8.10 7.83 7.60 7.43 7.23 6.77

Slashdot, M = 40 7.42 7.47 6.69 6.85 6.99 6.56

Epinions, M = 1 118.61 108.68 104.60 112.40 108.65 103.60

Epinions, M = 10 23.30 22.41 20.44 19.98 18.79 18.05

Epinions, M = 20 17.20 16.60 15.13 14.54 13.92 12.99

Epinions, M = 30 15.26 14.47 12.74 12.21 11.97 11.18

Epinions, M = 40 12.20 11.69 11.27 11.65 11.29 10.97
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be powerful tools to solve this problem on a shared-
memory computation platform. Numerical experiments
on two real-world large-scale datasets demonstrate that
the two proposed asynchronous distributed algorithms
have nearly linear computational speedups, and are able
to complete an adjacency matrix of ten billions of entries
within 10 s.
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