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Abstract

Time difference of arrival (TDOA) localization does not require time stamping of the source signal and is playing an
increasingly important role in passive location. In addition to measurement noise, receiver position errors and
synchronization clock bias are two important factors affecting the performance of TDOA positioning. This paper
proposes a bias-reduced solution for passive source localization using TDOA measurements in the presence of
receiver position errors and synchronization clock bias. Like the original two-step weighted least-squares solution,
the new technique has two stages. In the first stage, the proposed method expands the parameter space in the
weighted least-squares (WLS) formulation and imposes a quadratic constraint to suppress the bias. In the second
stage, an effective WLS estimator is given to reduce the bias generated by nonlinear operations. With the aid of
second-order error analysis, theoretical biases for the original solution and proposed bias-reduced solution are
derived, and it is proved that the proposed bias-reduced method can achieve the Cramér–Rao lower bound
performance under moderate Gaussian noise, while having smaller bias than the original algorithm. Simulation
results exhibit smaller estimation bias and better robustness for all estimates, including those of the source position,
refined receiver positions, and clock bias vector, when the measurement noise or receiver position error increases.
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1 Introduction
The problem of passive localization has in recent decades
been of wide concern and studied intensely by scholars in
many fields, such as passive radar [1–3], wireless commu-
nication [4–6], sensor networks [7, 8], and underwater
acoustics [9, 10]. Most localization techniques use
two-step processing, in which the positioning parameters
are first extracted (or estimated) and the source position is
then determined according to these estimated parameters.
The positioning parameters are nonlinear functions with
respect to the source position and are usually the received
signal strength (RSS) [11–16], gain ratios of arrival [17,
18], time of arrival (TOA) [19, 20], time difference of ar-
rival (TDOA) [21–27], frequency difference of arrival
(FDOA) [28, 29], and angle of arrival (AOA) [30, 31].

Among these, TDOA localization is perhaps one of the
most frequently used schemes, because it has superior po-
sitioning performance and does not require the time
stamp of the source signal. This paper focuses on the
localization of a single source using TDOA measurements
obtained at spatially separated receivers.
A number of TDOA localization algorithms have been

developed during the past few decades. Many methods are
iterative owing to the highly nonlinear relationship be-
tween unknowns and TDOA measurements. The Taylor
series method begins with an initial guess and uses local
linear least-sum-square-error corrections to improve the
estimation accuracy in each iteration [24, 32]. The con-
strained total least-squares (CTLS) algorithm [22] has
been proposed and the Newton iteration applied to esti-
mate the source position. These methods have high
localization accuracy in the case of a good initial guess
close to the true value; however, such prior information of
the initial guess is not readily available in practice. It is
therefore difficult to guarantee convergence. To overcome

* Correspondence: wang_ding814@aliyun.com
1National Digital Switching System Engineering & Technology Research
Center, Zhengzhou 450002, People’s Republic of China
2Zhengzhou Information Science and Technology Institute, Zhengzhou,
Henan 450002, People’s Republic of China

EURASIP Journal on Advances
in Signal Processing

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Chen et al. EURASIP Journal on Advances in Signal Processing          (2019) 2019:7 
https://doi.org/10.1186/s13634-019-0602-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-019-0602-z&domain=pdf
http://orcid.org/0000-0001-6533-9206
mailto:wang_ding814@aliyun.com
http://creativecommons.org/licenses/by/4.0/


the drawback of iterative algorithms, several closed-form
methods using TDOAs have been proposed, such as the
total least-squares (TLS) algorithm [25] and two-step
weighted least-squares (TSWLS) positioning algorithm
[21, 29, 33]. It has been shown both theoretically and by
simulation that the above methods can achieve the
Cramér–Rao lower bound (CRLB) under small Gaussian
noise levels. Obviously, compared with iterative algo-
rithms, closed-form methods are more attractive because
they do not require an initial guess and avoid the problem
of divergence. We concentrate on the closed-form method
in this paper.
Most existing TDOA localization algorithms require the

receiver locations to be accurately known and the re-
ceivers to be strictly synchronized in sampling the re-
ceived signals, but these are unlikely to be satisfied in
practice. As examples, receivers (or sensors) are fixed on
vessels or aircraft or they are randomly arranged in a cer-
tain region, which results in the true receiver positions to
be compromised by receiver position errors. In addition,
when the receivers are far away from each other, it is diffi-
cult to achieve strict clock synchronization for all re-
ceivers. Many studies have shown that both the receiver
position errors and synchronization clock bias play im-
portant roles in TDOA localization because they deterior-
ate the positioning accuracy [29, 32, 34]. Indeed, the
problem of jointly suppressing the receiver position error
and synchronization clock bias has been intensively stud-
ied in recent years. A joint synchronization and source
localization algorithm with erroneous receiver positions
has been proposed [35], where the clock bias is assumed
to be known with random errors, whereas such prior in-
formation with respect to synchronization clock bias is
not available in practice. To overcome this drawback, a
novel closed-form solution method, in which the clock
bias is considered a deterministic parameter, has been de-
veloped and the algebraic solutions of the source location,
receiver positions, and synchronization offsets were se-
quentially obtained [36]. This method is practical and ef-
fective and not only jointly suppresses receiver position
error and synchronization clock bias but also obtains the
CRLB under low noise levels.
However, the original algorithm proposed in [36] has a

drawback in that the bias of estimates is too large owing to
the noise correlation between the regressor and regressand
in the weighted least-squares (WLS) formulation and some
nonlinear operations. Especially when the noise level is high
or the localization geometry is not good enough, the bias
becomes large and seriously affects the localization per-
formance. Moreover, in some modern applications, we can
obtain multiple independent measurements in a short time
period. The localization performance can be improved by
averaging these estimates from multiple independent mea-
surements. Nevertheless, this operation only reduces the

variance and not the bias. In tracking applications, the bias
problem remains because the measurements made at dif-
ferent instants are coherent [37]. It is therefore necessary to
reduce the bias to improve the localization performance.
Over the years, many studies have reduced the bias of an
estimator using TDOAs [38–45]. Two methods of reducing
the bias of the closed-form solution using TDOAs have
been proposed [38], but the receiver position errors and
synchronization clock bias were not taken into account.
One study [39] proposed a bias-reduced method for a
two-sensor (or two-receiver) positioning system based on
TDOA and AOA measurements in the presence of sensor
errors. The simulation validates the availability of the pro-
posed method. Moreover, an improved algebraic solution
employing new stage-2 processing for the TDOA with sen-
sor position errors has been proposed [40]. Simulation re-
sults show lower estimation bias; however, this method
only improves the stage-2 processing, and the bias intro-
duced in stage 1 needs to be further reduced.
Inspired by previous works [38–45], this paper pro-

poses a bias-reduced method of reducing the bias of es-
timates from [36] using TDOAs in the presence of
receiver position errors and synchronization clock bias.
The study begins with a bias analysis for the original
TSWLS solution. Results show that the bias of the ori-
ginal algorithm mainly comes from the noise correlation
of the WLS problem in the first stage and the nonlinear
operations in the second stage. On this basis, the
proposed method introduces an augmented matrix and
imposes a quadratic constraint in the first stage. Gener-
alized singular value decomposition (GSVD) is then used
to obtain the stage-1 solution. A new WLS estimator is
designed to correct the stage-2 solution and avoid the
use of nonlinear operations. Moreover, this paper derives
a theoretical bias for the proposed method, and perform-
ance analysis indicates that the proposed bias-reduced
method effectively reduces bias without increasing the
values in the covariance matrix. Finally, simulation re-
sults verify the validity of the theoretical derivation and
the superiority of the proposed method.
Compared with the previous works related to bias re-

duction, the major contributions of this paper are as
follows.

1. Different from most existing bias reduction
methods [38–45], the proposed method considers
both receiver position errors and synchronization
clock bias.

2. Through second-order error analysis, [38] investi-
gated the bias of the classical TSWLS method [33].
The present paper extends the bias analysis using a
more realistic positioning model [36], which con-
siders both receiver position errors and
synchronization clock bias.
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3. All previous studies [38–45] aim at reducing the bias
of the source position. We develop a bias-reduced
method that effectively reduces not only the bias of
the source position but also the bias of refined re-
ceiver positions and estimated clock bias vector.

4. Previous works [43, 44] reduced the bias, but the
estimation variance was higher than that of the
original solution. The method proposed in this
paper reduces the bias of the solution without
increasing the root mean square error (RMSE).

5. The performance of the proposed bias-reduced
method is theoretically derived and it is shown that
the proposed bias-reduced method effectively reduces
the bias without increasing the estimation variance.

The remainder of this paper is organized as follows.
The measurement model in the presence of
synchronization clock bias and the original TSWLS solu-
tion are described in Section 2. Section 3 presents the
performance analysis for the original TSWLS solution.
Section 4 develops a bias-reduced solution. In Section 5,
the theoretical bias for the proposed method is derived
with the aid of second-order error analysis. Simulation
results are presented in Section 6 while conclusions are
presented in Section 7. The main notations used in this
paper are listed in Table 1.

2 Measurement model and original TSWLS
method
2.1 TDOA measurement model in the presence of receiver
position errors and synchronization clock bias
Consider a three-dimensional localization scenario, in
which M stationary receivers at som;m ¼ 1; 2;⋯;M

receive the signal emitted from a point source whose un-
known location is to be determined, denoted by uo.
Similar to [36], receivers are separated into N groups.
Within each group, the receivers share a common local
clock. However, the local clocks for different receiver
groups are not the same, and there are thus clock offsets
among the groups. Assuming that the first n receiver
groups have Mn receivers, there are Mn −Mn − 1 receivers
in the nth group, where M0 = 0 and MN =M. The re-
ceiver grouping diagram is shown as Fig. 1.
The clock offset of group n with respect to group 1 is de-

noted as τn, n = 1, 2,… , N, where τ1 = 0. The first receiver is
chosen as the reference, and the TDOA measurement from
the receiver pair m and 1 is denoted as tm1. The relationship
with the range difference of arrival (RDOA) measurement
rm1 is rm1 = c ⋅ tm1, where c is the signal propagation speed.
For convenience, we directly discuss the RDOAs in the fol-
lowing derivation. The RDOAs can be modeled as

rm1 ¼ rom1 þ δn þ Δrm1; m ¼ Mn−1 þ 1;Mn−1 þ 2;…;

Mn; n ¼ 1; 2;…;N ;

ð1Þ
where Δrm1 represents the measurement noise, δn =

cτn (δ1 = 0), and the true value rom1 is

rom1 ¼ ‖uo−som‖−‖u
o−so1‖; m ¼ 2; 3;⋯M: ð2Þ

Rewriting (1) in vector format, we attain

r ¼ ro þ Γδþ Δr; : ð3Þ
where vectors r= [r21, r31,⋯, rM1]

T, ro ¼ ½ro21; ro31;⋯; roM1�T
and Δr = [Δr21, Δr31,⋯, ΔrM1]

T comprise all measure-
ments, true value, and measurement noise, respect-
ively. δ = [δ2, δ3,⋯, δN]

T is the clock bias vector,

which is modeled as being deterministic. Γ ¼ ½
OðM1−1Þ�ðN−1Þ

blkdiag½1M2�1 1M3�1 ⋯ 1MN�1��∈RðM−1Þ�ðN−1Þ is a column

full-rank matrix; i.e., rank[Γ] =N − 1. Assume that the
RDOA noise vector Δr follows a zero-mean Gaussian
distribution with covariance matrix Q1.
Similar to [21, 23, 24], the receiver positions are not

known exactly. The available receiver position for re-
ceiver m is expressed as

sm ¼ som þ Δsm; m ¼ 1; 2;⋯;M; ð4Þ
where Δsm represents random errors having covariance
matrix Qsm . Rewriting (4) in vector format, we have

s ¼ so þ Δs; ð5Þ

where s ¼ ½sT1 ; sT2 ;⋯; sTM�T, so ¼ ½soT1 ; soT2 ;⋯; soTM �T and Δ

s ¼ ½ΔsT1 ;ΔsT2 ;⋯;ΔsTM�T is the receiver position error
vector, which is assumed to have a zero mean and be

Table 1 Mathematical notation

Notation Explanation

OM × N M × N matrix with all-zero entries

iðlÞM M × 1 vector of zeros except for the l-th element, which
has value 1

IN N dimensional identity matrix

⊗ Kronecker product

⊙ Schur product (element-by-element multiplication)

vecd[⋅] Vector formed diagonal element of a matrix

tr{⋅} Trace

diag{⋅} Composition of the diagonal matrix

blkdiag{⋅} Composition of the block diagonal matrix

‖ ⋅ ‖ Euclidean norm of a vector

a(i : j) Subvector composed from the i-th to j-th elements

A(i : j, k :m) Submatrix composed from the i-th to j-th row and k-th
to m-th column of A

sgn(⋅) Signum function
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Gaussian distributed with covariance matrix Q2 ¼ blkdiag
fQs1 ;Qs2 ;⋯;QsMg . Measurement noise Δr and receiver
position error Δs are independent of each other.
The localization problem is to obtain an estimate of

uo, so, and δo as accurately as possible using the available
measurements r and the receiver positions s.
Remark 1: In practice, the clock-offset grouping can be

implemented according to the distance between re-
ceivers. When the receivers are close to each other,
synchronization is easily performed using a single piece
of hardware with multichannel acquisition capabilities. If
the receivers are far away, synchronous sampling will be
a big challenge [36]. Therefore, receivers that are rela-
tively close to each other are put into the same group.

2.2 Original TSWLS method
For the TDOA positioning problem in the presence of
receiver position errors and synchronization clock bias,
[36] proposed a novel computationally efficient method,
in which the algebraic solutions of the source location,
receiver positions, and synchronization clock bias are es-
timated sequentially. The method has two stages for tar-
get location estimation. The first stage introduces N
nuisance variables do

Mn−1þ1 ¼ ‖uo−sMn−1þ1‖; n ¼ 1; 2;⋯
N to get the initial solution for the source location and
these nuisance variables. In the second stage, the rela-
tionship between uo and do

Mn−1þ1 is used to improve
the precision of the estimated source position. The
final estimate of the source location is obtained by re-
mapping the stage-2 solution. Moreover, the solution
is valid when M −N ≥N + 3 (i.e., the number of equa-
tions is greater than or equal to the number of un-
knowns). The process of the algorithm is summarized
in the following, and details of the derivation can be
found in the literature [36].

Stage 1:

φ1 ¼ GT
1W1G1

� �−1
GT

1W1h1; ð6Þ

where φ1 ¼ ½u; d1; dM1þ1;⋯; dMN−1þ1�T represents the
stage-1 solution, consisting of the estimated target loca-
tion and nuisance variables, and

G1 ¼ −2

s2−s1ð ÞT r21 0 ⋯ 0
⋮ ⋮ ⋮ ⋮

sM1−s1ð ÞT rM1;1 0 ⋯ 0
⋮ ⋮ ⋱ ⋮

sMN−1þ2−sMN−1þ1ð ÞT 0 0 ⋱ rMN−1þ2;MN−1þ1

⋮ ⋮ ⋮ ⋮
sMN−sMN−1þ1ð ÞT 0 0 ⋯ rMN ;MN−1þ1

2
666666664

3
777777775

M−Nð Þ� Nþ3ð Þ

;

ð7Þ

h1 ¼

r221−s
T
2 s2 þ sT1 s1
⋮

r2M1;1−s
T
M1

sM1 þ sT1 s1
⋮

r2MN−1þ2;MN−1þ1−s
T
MN−1þ2sMN−1þ2 þ sTMN−1þ1sMN−1þ1

⋮
r2MN ;MN−1þ1−s

T
MN

sMN þ sTMN−1þ1sMN−1þ1

2
666666664

3
777777775

M−Nð Þ�1

:

ð8Þ

W1 ¼ B1AQ1A
TB1 þD1Q2D

T
1

� �−1
: ð9Þ

The compositions in (9) are expressed as

A ¼ blkdiag Z1;Z2;⋯;ZNf g
B1 ¼ 2 diag ro2; r

o
3;⋯; roM1

; roM1þ2;⋯; roM2
;⋯; roMN−1þ2;⋯; roMN

n o
D1 ¼ blkdiag D1;1;D1;2;⋯;D1;N

� �
8><
>: ;

ð10Þ
where

Fig. 1 The receiver grouping diagram
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Note that the true receiver location som in B1 can be
replaced by the noisy version sm. Additionally, both
B1 and D1 in W1 contain the true source locations,
which are unknown. To overcome this problem, W1

is first set to an identity matrix, and an initial solu-
tion is obtained from (6), say φ̂1 , from which an ap-
proximate W1 is obtained, thereby getting the stage-1
solution. The error due to the approximation of W1

is negligible [36].
Stage 2:

φ2 ¼ GT
2W2G2

� �−1
GT

2W2h2; ð12Þ
where φ2 = u⊙ u represents the stage-2 solution,

which is equal to the Schur product of the target loca-
tion estimate, and

G2 ¼
I3
1T3
⋮
1T3

2
664

3
775

Nþ3ð Þ�3

;h2 ¼ φ1⊙φ1 þ

03�1

2sT1φ1 1 : 3ð Þ−sT1 s1
2sTM1þ1φ1 1 : 3ð Þ−sTM1þ1sM1þ1

⋮
2sTMN−1þ1φ1 1 : 3ð Þ−sTMN−1þ1sMN−1þ1

2
66664

3
77775

Nþ3ð Þ�1

;

ð13Þ
W2 ¼ B−T

2 GT
1W1G1

� �
B−1
2 ; ð14Þ

in which

B2 ¼ 2

diag φ1 1 : 3ð Þf g 0 ⋯ 0
sT1 φ1 4ð Þ ⋯ 0
⋮ ⋮ ⋱ ⋮

sTMN−1þ1 0 ⋯ φ1 3þNð Þ

2
664

3
775

Nþ3ð Þ� Nþ3ð Þ

:

ð15Þ
The final source position solution is

u ¼ Π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 1 : 3ð Þ

q
; ð16Þ

where

Π ¼ diag sgn φ1 1 : 3ð Þð Þf g: ð17Þ
According to [38], the source position estimate has ap-

preciable bias for the classical TSWLS method [33]
when the noise level is high or the localization geometry
is poor. It can therefore be judged that the bias of the

original TSWLS algorithm [36] under receiver position
errors and synchronization clock bias is also large. To
solve this problem, the present paper designs a new
reduced-bias estimator for this scenario. It was previ-
ously necessary to derive the expression of the bias for
the original TSWLS algorithm.

3 Performance analysis of the original TSWLS
method
This section analyzes the performance of the original
TSWLS solution using second-order error analysis.
Two basic assumptions are made in our analysis. (1)
The noise level is not high and higher second-order
error terms can thus be ignored. (2) The source is
sufficiently far from each receiver for the performance
loss due to the approximation of W1 to be negligible.

3.1 Bias analysis for φ1

Subtracting the true value φo
1 from both sides of (6), the

estimation error in φ1 can be expressed as.

Δφ1 ¼ GT
1W1G1

� �−1
GT

1W1 h1−G1φ
o
1

� �
: ð18Þ

According to the definitions of G1 in (7) and h1 in (8),
and ignoring the higher second-order error terms, h1−
G1φo

1 can be expressed as

h1−G1φ
o
1 ¼ B1AΔrþ ~D1Δsþ AΔrð Þ⊙ AΔrð Þ

þ E Δs⊙Δsð Þ−2T Δsð ÞAΔr−2R Δsð ÞAro;
ð19Þ

where

~D1 ¼ blkdiag ~D1;1; ~D1;2;⋯; ~D1;N
� �

E ¼ blkdiag E1;E2;⋯;ENf g
T Δsð Þ ¼ diag ρT1Δs1; ρ

T
2ΔsM1þ1;⋯; ρTNΔsMN−1þ1

� �
R Δsð Þ ¼ blkdiagfΔsT1P1Δs1 � IM1−1;

ΔsTM1þ1PM1þ1ΔsM1þ1 � IM2−M1−1;⋯;

ΔsTMN−1þ1PMN−1þ1ΔsMN−1þ1 � IMN−MN−1−1g
;

8>>>>>>>><
>>>>>>>>:

ð20Þ
in which

Z1 ¼ IM1−1;Z j ¼ −1M j−M j−1−1; IM j−M j−1−1
� �

; j ¼ 2; 3⋯N
rom ¼ ‖uo−som‖

D1;n ¼ 2

− uo−sMn−1þ1ð Þ þ rMn−1þ2;Mn−1þ1ρMn−1þ1

� �T
uo−sMn−1þ2ð ÞT 01�3 ⋯ 01�3

− uo−sMn−1þ1ð Þ þ rMn−1þ3;Mn−1þ1ρMn−1þ1

� �T
01�3 uo−sMn−1þ3ð ÞT ⋯ 01�3

⋮ ⋮ ⋮ ⋱ ⋮
− uo−sMn−1þ1ð Þ þ rMn;Mn−1þ1ρMn−1þ1

� �T
01�3 01�3 ⋯ uo−sMnð ÞT

2
6664

3
7775

Mn−Mn−1−1ð Þ� 3� Mn−Mn−1ð Þð Þ
ρm ¼ uo−smð Þ=‖uo−sm‖

8>>>>>>>>><
>>>>>>>>>:

ð11Þ
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Note that (19) uses the approximation rom ¼ ‖uo−som‖ ≈
‖uo−sm‖þ ρTmΔsm þ ΔsTmPmΔsm.
In (18), G1 is also the noisy version, and G1 can be

decomposed as G1 ¼ Go
1 þ ΔG1. Hence, we attain

ΔG1 ¼ −2 A2Δ~s;Λ IN � AΔrð Þð Þ½ �; ð22Þ

where A2 = blkdiag{A2, 1,A2, 2,⋯,A2, N}, Λ = [Λ1,Λ2,

⋯,ΛN]
T, and Δ~s ¼ ½Δs1;Δs2;⋯;ΔsM�T is the receiver

position error matrix, in which A2;n ¼ ½−1Mn−Mn−1−1;

IMn−Mn−1−1� and Λn ¼ blkdiagf0Mn−1−nþ1; IMn−Mn−1−1;
0M−N−Mnþng.
Letting U1 ¼ GT

1W1G1 yields

Uo
1 ¼ GoT

1 W1Go
1

ΔU1 ¼ GoT
1 W1ΔG1 þ ΔGT

1W1Go
1

	
ð23Þ

According to the Neumann expansion [46], we have

U−1
1 ≈ I−Uo−1

1 ΔU1
� �

Uo−1
1 : ð24Þ

Substituting (19), (22), and (24) into (18) yields

Δφ1 ¼ Uo−1
1 −Uo−1

1 ΔU1U
o−1
1

� �
GoT

1 þ ΔGT
1

� �
W1

ðB1AΔrþ ~D1Δsþ AΔrð Þ⊙ AΔrð Þ
þE Δs⊙Δsð Þ−2T Δsð ÞAΔr−2R Δsð ÞAroÞ

¼ H1ðB1AΔrþ ~D1Δsþ AΔrð Þ⊙ AΔrð Þ þ E Δs⊙Δsð Þ
−2T Δsð ÞAΔr−2R Δsð ÞAroÞ
þUo−1

1 ΔGT
1W1 I−Go

1H1
� �

B1AΔrþUo−1
1 ΔGT

1W1 I−Go
1H1

� �
~D1Δs−H1ΔG1H1B1AΔr−H1ΔG1H1 ~D1Δs;

ð25Þ

where H1 ¼ ðGoT
1 W1Go

1Þ
−1
GoT

1 W1 . Taking the expect-
ation for (25) yields

E Δφ1½ � ¼ H1vecd AQ1A
T

� �þH1Evecd Q2½ �−2H1 � blkdiag
ftr Qs1P1

� � � IM1−1; tr QsM1þ1
PM1þ1

n o
� IM2−M1−1;

⋯; tr QsMN−1þ1
PMN−1þ1

n o
� IMN−MN−1−1g � Aro

þ2Uo−1
1

Qs1X1 1; 1 : 3ð ÞT þQs2X1 2; 4 : 6ð ÞT
þ⋯þQsMX1 M; 3M−2 : 3Mð ÞT
tr ATΛ1W1 Go

1H1−I
� �

B1AQ1

� �
tr ATΛ2W1 Go

1H1−I
� �

B1AQ1

� �
⋮

tr ATΛNW1 Go
1H1−I

� �
B1AQ1

� �

2
66666664

3
77777775

þ2H1A2

tr X2 1 : 3; 1 : 3ð ÞQs1

� �
tr X2 1 : 3; 4 : 6ð ÞQs2

� �
⋮

tr X2 1 : 3; 3M−2 : 3Mð ÞQsM

� �
2
664

3
775

þ2H1ðΛ1AQ1A
TBT

1H1 4; :ð ÞT þ Λ2AQ1A
TBT

1H1ð5; :ÞT

þ⋯þ ΛNAQ1A
TBT

1H1ð3þ N ; :ÞTÞ;
ð26Þ

which is proved in Appendix A. X1 and X2 are given by
(A.7) in Appendix A. The first two components H1vec-
d[AQ1A

T] and H1Evecd[Q2] come from second-order
error terms due to the square operations for the measure-
ments and receiver positions in h1, respectively. The third
component comes from the second-order error term ΔsTm
PmΔsm due to the Taylor series expansion for do

Mn−1þ1 .
The remaining components come from measurement
noise and receiver position errors in regressor G1

3.2 Bias analysis for φ2

Subtracting the true value φo
2 from both sides of (12)

yields

Δφ2 ¼ GT
2W2G2

� �−1
GT

2W2 h2−G2φ
o
2

� �
: ð27Þ

According to the definitions of G2 and h2 in (13) and
ignoring the higher second-order error terms, h2−G2φo

2

can be expressed in terms of Δφ1 as

~D1;n ¼ 2

− uo−soMn−1þ1


 �
þ roMn−1þ2;Mn−1þ1ρMn−1þ1

h iT
uo−soMn−1þ2


 �T
01�3 ⋯ 01�3

− uo−soMn−1þ1


 �
þ roMn−1þ3;Mn−1þ1ρMn−1þ1

h iT
01�3 uo−soMn−1þ3


 �T
⋯ 01�3

⋮ ⋮ ⋮ ⋱ ⋮

− uo−soMn−1þ1


 �
þ roMn;Mn−1þ1ρMn−1þ1

h iT
01�3 01�3 ⋯ uo−soMn


 �T

2
6666664

3
7777775

Mn−Mn−1−1ð Þ� 3� Mn−Mn−1ð Þð Þ
En ¼ 1Mn−Mn−1−1;−IMn−Mn−1−1½ � � 1T3

Pm ¼ uo−smk k2I3− uo−smð Þ uo−smð ÞT
2 uo−smk k3

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð21Þ
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h2−G2φ
o
2 ¼ Bo

2Δφ1 þ Δφ1⊙Δφ1; ð28Þ
where

Bo
2 ¼ 2

diag uof g 0 ⋯ 0
sT1 do

1 ⋯ 0
⋮ ⋮ ⋱ ⋮

sTMN−1þ1 0 ⋯ do
MN−1þ1

2
664

3
775

Nþ3ð Þ� Nþ3ð Þ

:

ð29Þ
In (27), G2 is a constant matrix, and W2 is the noisy

version because G1 and B2 in it contain noise. According
to the definitions of B2 in (15) and Bo

2 (29), we have ΔB2

= 2 diag {Δφ1}. Adopting the Neumann expansion [46],
we have

B−1
2 ≈ Bo−1

2 −Bo−1
2 ΔB2Bo−1

2 : ð30Þ
Substituting (23) and (30) into (14), and ignoring the

higher first-order error terms yields

W2 ¼ Bo−1
2 −Bo−1

2 ΔB2B
o−1
2

� �T
Uo

1 þ ΔU1
� �

Bo−1
2 −Bo−1

2 ΔB2B
o−1
2

� �
≈ Bo−1

2 Uo
1B

o−1
2 þ Bo−T

2 ΔU1B
o−1
2 −Bo−T

2 ΔB2B
o−T
2 Uo

1B
o−1
2 −Bo−1

2 Uo
1B

o−1
2 ΔB2B

o−1
2 :

ð31Þ
Letting Wo

2 ¼ Bo−T
2 Uo

1B
o−1
2 , we have

W2 ≈ Wo
2

þ Bo−T
2 ΔU1Bo−1

2 −Bo−T
2 ΔB2Wo

2−W
o
2ΔB2Bo−1

2
¼ Wo

2 þ ΔW2: ð32Þ

Letting U2 ¼ GT
2W2G2 yields

U2 ¼ Uo
2 þ ΔU2;Uo

2 ¼ GT
2W

o
2G2andΔU2 ¼ GT

2ΔW2G2:

ð33Þ
Applying the Neumann expansion [46] again, we have

U−1
2 ≈ Uo−1

2 −Uo−1
2 ΔU2Uo−1

2 . Substituting (28) and (32) into
(27) and ignoring the higher second-order error terms
yields

Δφ2 ¼ Uo−1
2 −Uo−1

2 ΔU2U
o−1
2

� �
GT

2

Wo
2 þ ΔW2

� �
Bo
2Δφ1 þ Δφ1⊙Δφ1

� �
¼ H2 Bo

2Δφ1 þ Δφ1⊙Δφ1

� �þUo−1
2 GT

2ΔW2

I−G2H2ð ÞBo
2Δφ1

¼ H2 Bo
2Δφ1 þ Δφ1⊙Δφ1

� �þUo−1
2 GT

2

Bo−T
2 ΔU1Bo−1

2 −Bo−T
2 ΔB2Wo

2−W
o
2ΔB2Bo−1

2

� �
I−G2H2ð ÞBo

2Δφ1

¼ H2 Bo
2Δφ1 þ Δφ1⊙Δφ1

� �þUo−1
2 GT

2

Bo−T
2 ΔU1Bo−1

2 I−G2H2ð ÞBo
2Δφ1−B

o−T
2 ΔB2Wo

2 I−G2H2ð ÞBo
2Δφ1

−Wo
2ΔB2B

o−1
2 I−G2H2ð ÞBo

2Δφ1

� 

;

ð34Þ

where H2 ¼ ðGT
2W

o
2G2Þ−1GT

2W
o
2 ¼ Uo−1

2 GT
2W

o
2.

According to Q1 = E[ΔrΔrT], Q2 = E[ΔsΔsT], (23) and
(25), we have

E Δφ1⊙Δφ1½ � ¼ vecd E Δφ1Δφ1
T

� �� �
; ð35Þ

α ¼ E ΔU1Bo−1
2 I−G2H2ð ÞBo

2Δφ1

� �
¼ −2GoT

1 W1 Λ1AQ1X3 4; :ð ÞT þ Λ2AQ1X3ð5; :ÞT þ⋯þ ΛNAQ1X3ð3þ N ; :ÞT

 �

−2GoT
1 W1A2

tr X5 1 : 3; 1 : 3ð ÞQs1

� �
tr X5 1 : 3; 4 : 6ð ÞQs2

� �
⋮

tr X5 1 : 3; 3M−2 : 3Mð ÞQsM

� �
2
664

3
775

−2

Qs1X6 1; 1 : 3ð ÞT þQs2X6 2; 4 : 6ð ÞT
þ⋯þQsMX6 M; 3M−2 : 3Mð ÞT

tr ATΛ1W1Go
1X3Q1

� �
tr ATΛ2W1Go

1X3Q1

� �
⋮

tr ATΛNW1Go
1X3Q1

� �

2
66666664

3
77777775
;

ð36Þ

β ¼ E ΔB2W
o
2 I−G2H2ð ÞBo

2Δφ1

� �
¼ 2vecd Wo

2 I−G2H2ð ÞBo
2E Δφ1Δφ1

T
� �� �

; ð37Þ

γ ¼ E ΔB2Bo−1
2 I−G2H2ð ÞBo

2Δφ1

� �
¼ 2vecd Bo−1

2 I−G2H2ð ÞBo
2E Δφ1Δφ1

T
� �� �

; ð38Þ

where E½Δφ1Δφ1
T� ≈ ðGoT

1 W1Go
1Þ

−1 ¼ Uo−1
1 , X3 ¼ Bo−1

2 ðI−
G2H2ÞBo

2H1B1A, X4 ¼ Bo−1
2 ðI−G2H2ÞBo

2H1 ~D1, X5 =X4(1 :
3, :) and X6 ¼ AT

2W1Go
1X4.

Hence, taking the expectation for (34) yields

E Δφ2½ � ¼ H2 Bo
2E Δφ1½ � þ vecd E Δφ1Δφ1

T
� �� �� �

þUo−1
2 GT

2 Bo−T
2 α−Bo−T

2 β−Wo
2γ

� �
: ð39Þ

In summary, the first component H2Bo
2E½Δφ1� comes

from the bias in the stage-1 solution. The second com-
ponent H2vecd[E[Δφ1Δφ1

T]] is from the square oper-
ation for φ1 in h2, while the remaining components
come from measurement noise and receiver position er-
rors in G1 and Δφ1 in B2.

3.3 Bias analysis for u
According to (12), and we express φ2 ¼ φo

2 þ Δφ2 and
u = uo +Δu. The error in u can be expressed as

Δu ¼ Bo−1
3 Δφ2−Δu⊙Δuð Þ; ð40Þ

where Bo
3 ¼ 2 diagfuog . Taking the expectation for (40)

yields the bias in u as

E Δu½ � ¼ Bo−1
3 E Δφ2½ �−vecd E ΔuΔuT

� �� �� �
; ð41Þ

where E½ΔuΔuT� ≈ Bo−1
3 E½Δφ2Δφ

T
2 �Bo−1

3 ¼ Bo−1
3

ðGT
2W

o
2G2Þ−1Bo−1

3 . Substituting (26) and (39) into (41),
the bias for the source position solution can be obtained.
Note that the first component Bo−1

3 E½Δφ2� comes from
the bias in the stage-2 solution and the second compo-
nent −Bo−1

3 vecd½E½ΔuΔuT�� is from the square root oper-
ation in (16).
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4 Proposed bias-reduced method
The proposed bias-reduced technique has two stages as
follows.

4.1 Stage 1
According to the analysis in Section 3.1, the bias in the
stage-1 solution φ1 mainly comes from the noise correl-
ation between the regressor G1 and regressand h1 in the
WLS formulation. The main purpose of this stage is to
find a better φ1 with small bias. The main idea is intro-
ducing an augmented matrix and imposing a quadratic
constraint, so that the expectation of the cost function
reaches a minimum value when the unknown is equal to
the true value.
From [36], we obtain the noise matrix equation in the

first stage as ε1 ¼ B1AΔrþD1Δs ¼ h1−G1φo
1; where φo

1
is the true value of φ1. The cost function of this WLS
problem is

J ¼ h1−G1φ1ð ÞTW1 h1−G1φ1ð Þ: ð42Þ

Defining an augmented matrix A1 = [−G1, h1] and aug-

mented vector v ¼ ½φT
1 ; 1�T, (42) can be rewritten as

J ¼ vTAT
1W1A1v: ð43Þ

A1 contains measurement noise and receiver position
errors, and can be decomposed as

A1 ¼ Ao
1 þ ΔA1: ð44Þ

According to the definition of A1, after subtracting the
true value Ao

1 ¼ ½−Go
1;h

o
1� , and ignoring the

second-order noise terms, we have

ΔA1 ¼ 2 A2Δ~s;Λ IN � AΔrð Þð Þ; ~B1AΔrþ C1Δs
� �

;

ð45Þ

where A2, Δ~s, and Λ are defined below (22), and

~B1 ¼ diag Arof g ¼ fro2;1; ro3;1;⋯; roM1;1; r
o
M1þ2;M1þ1

;⋯; roM2;M1þ1;⋯; roMN−1þ2;MN−1þ1
;⋯; roMN ;MN−1þ1g;

ð46Þ

C1 ¼ blkdiag C1;1;C1;2;⋯;C1;N
� �

C1;n ¼
soTMn−1þ1 −soTMn−1þ2 0 ⋯ 0
soTMn−1þ1 0 −soTMn−1þ3 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
soTMn−1þ1 0 0 ⋯ −soTMn

2
664

3
775

Mn−Mn−1−1ð Þ� 3� Mn−Mn−1ð Þð Þ

8>>>>><
>>>>>:

ð47Þ

Substituting (44) into (43) yields the cost function

J ¼ vTAoT
1 W1A

o
1v þ vTΔAT

1W1ΔA1v þ 2vTΔAT
1W1A

o
1v:

ð48Þ
Taking the expectation yields

E J½ � ¼ vTAoT
1 W1Ao

1v þ vTE ΔAT
1W1ΔA1

� �
v: ð49Þ

The third term in (48) vanishes in the expectation be-
cause ΔA1 is zero-mean. When we minimize E[J] with
respect to v, the second term on the right-hand side of
(49) is the cause of bias, because the first term is zero at
v = vo (Ao

1v
o ¼ 0). If we impose a constraint that makes

the second term constant, E[J] will reach minimum value
at v = vo. We thus find v using

min vTAT
1W1A1v s:t: vTΩv ¼ k; ð50Þ

where Ω ¼ E½ΔAT
1W1ΔA1� , and the constant k can be

any value. We can use the Lagrange multiplier method
to solve the constrained minimization problem (50).
Using Lagrange multiplier λ, we obtain the auxiliary cost
function vTAT

1W1A1v þ λðk−vTΩvÞ . Taking the deriva-
tive with respect to v, we have

AT
1W1A1

� �
v ¼ λΩv: ð51Þ

Premultiplying both sides of (51) by vT and using the
equality constraint vTΩv = k, we attain

λ ¼ vT AT
1W1A1

� �
v=k: ð52Þ

We here find the above equation has the same form as
the objective function (50). Hence, we only need to
minimize λ. According to (51), λ is the generalized
eigenvalue of the pair ðAT

1W1A1;ΩÞ . The estimate v is
therefore the generalized eigenvector that corresponds
to the minimum generalized eigenvalue for the pair ðAT

1
W1A1;ΩÞ. The stage-1 solution can be expressed as

φ1 ¼ v 1 : 3þ Nð Þ=v 4þ Nð Þ: ð53Þ
We now derive the formula for Ω. Substituting (45)

into Ω yields

Ω ¼ E ΔAT
1W1ΔA1

� �
¼ 4

Ω1;1 03�N Ω1;3

0N�3 Ω2;2 Ω2;3

Ω3;1 Ω3;2 Ω3;3

2
4

3
5

Nþ4ð Þ� Nþ4ð Þ

; ð54Þ

where

Ω1;1 ¼ E Δ~sTAT
2W1A2Δ~s

� �
¼ f 1;1Qs1 þ f 2;2Qs2 þ⋯þ f M;MQsM ; ð55Þ

Ω1;3 ¼ E Δ~sTAT
2W1C1Δs

� �
¼ Qs1y

T
1 þQs2y

T
2 þ⋯þQsMy

T
M; ð56Þ
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Ω2;3 ¼ E Λ IN � AΔrð Þð Þð ÞTW1~B1AΔr
h i

¼ ½tr ATΛ1W1~B1AQ1

� �
; tr ATΛ2W1~B1AQ1

� �
;⋯;

tr ATΛNW1~B1AQ1

� ��T;
ð58Þ

Ω3;1 ¼ E ΔsTCT
1W1A2Δ~s

� � ¼ zT1Qs1 þ zT1Qs2 þ⋯þ zT1QsM ;

ð59Þ
Ω3;2 ¼ E ΔrTAT~B1W1 Λ IN � AΔrð Þð Þð Þ� �

¼ ½tr AT~B1W1Λ1AQ1

� �
; tr AT~B1W1Λ2AQ1

� �
;⋯;

tr AT~B1W1ΛNAQ1

� ��;
ð60Þ

Ω3;3 ¼ E ΔrTAT~B1W1~B1AΔrþ ΔsTCT
1W1C1Δs

� �
¼ tr AT~B1W1~B1AQ1

� �
þ tr CT

1W1C1Q2

� �
;

ð61Þ

where F ¼ AT
2W1A2, fi, j is the ijth element of F, Y ¼ AT

2

W1C1 , yi = Y(i, 3i − 2 : 3i), Z ¼ CT
1W1A2 , and zi = Z(3i −

2 : 3i, i).
Remark 2: Both submatrices Ω2, 3 in (58) and Ω3, 2

in (60) depend on ~B1, which is unknown. To facilitate
implementation, the true values in ~B1 are replaced by
the measurements, and the performance loss due this
approximation is negligible.
Remark 3: The weight matrix W1 is also approximated

through the procedure described below (11). The loss
due to the approximation is negligible when the source
is away from each receiver. The proposed bias-reduced
method is thus more suitable for distant source
localization.

4.2 Stage 2
The performance analysis in Subsections 3.2 and 3.3
reveals that some nonlinear operations, including the
squaring and square root operations in stage 2 of the
original method increase the estimation bias. To re-
duce the use of these nonlinear operations, a new
version of stage 2 is developed in this subsection. The
main idea is of this stage is to estimate the estimation

error of the stage-1 solution û ¼ φ1ð1 : 3Þ , and cor-
rect the solution û using this estimation error.
For N nuisance variables, we expand them around û

and retaining up to the linear term of Δû,

do
Mn−1þ1 ¼ ‖uo−sMn−1þ1‖ ≈ ‖û−sMn−1þ1‖−~ρTMn−1þ1Δû; n

¼ 1; 2;⋯N ;

ð62Þ

where ~ρMn−1þ1 ¼ ðû−sMn−1þ1Þ=‖û−sMn−1þ1‖ and û ¼ uo

þΔû. Let d̂Mn−1þ1 ¼ φ1ð3þ nÞ;n ¼ 1; 2;⋯;N. Substitut-
ing (62) into

d̂Mn−1þ1 ¼ do
Mn−1þ1 þ Δd̂Mn−1þ1 yields

d̂Mn−1þ1 ¼ ‖û−sMn−1þ1‖−~ρTMn−1þ1Δû

þ Δd̂Mn−1þ1⇒Δd̂Mn−1þ1

¼ d̂Mn−1þ1−‖û−sMn−1þ1‖

þ ~ρTMn−1þ1Δû; n
¼ 1; 2;⋯N : ð63Þ

Similar to the analysis in [40], Δφ1 ¼ φ1−φ
o
1 is ap-

proximately zero-mean. Following Sorenson’s method
[47], we have

03�1 ¼ Δû−Δû: ð64Þ

Combining (64) and the second equation in (63) gives

−Δû
Δd̂1

Δd̂M1þ1

⋮
Δd̂MN−1þ1

2
66664

3
77775 ¼ −I3 0

0 IN

� � Δû
Δd̂1

Δd̂M1þ1

⋮
Δd̂MN−1þ1

2
66664

3
77775 ¼ ~B2Δφ1

¼

03�1

d̂1−‖û−s1‖
d̂M1þ1−‖û−sM1þ1‖

⋮
d̂MN−1þ1−‖û−sMN−1þ1‖

2
66664

3
77775−

I3
−~ρT1

−~ρTM1þ1
⋮

−~ρTMN−1þ1

2
66664

3
77775Δû ¼ ~h2−~G2Δû;

ð65Þ

where

Ω2;2 ¼ E Λ IN � AΔrð Þð Þð ÞTW1 Λ IN � AΔrð Þð Þð Þ
h i

¼
tr ATΛ1W1Λ1AQ1

� �
tr ATΛ1W1Λ2AQ1

� �
⋯ tr ATΛ1W1ΛNAQ1

� �
tr ATΛ2W1Λ1AQ1

� �
tr ATΛ2W1Λ2AQ1

� �
⋯ tr ATΛ2W1ΛNAQ1

� �
⋮ ⋮ ⋱ ⋮

tr ATΛNW1Λ1AQ1

� �
tr ATΛNW1Λ2AQ1

� �
⋯ tr ATΛNW1ΛNAQ1

� �
2
664

3
775
N�N

;
ð57Þ
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Δφ1 ¼

Δû
Δd̂1

Δd̂M1þ1

⋮
Δd̂MN−1þ1

2
66664

3
77775

Nþ3ð Þ�1

; ~B2

¼ −I3 0
0 IN

� �
; ~h2

¼

03�1

d̂1−‖û−s1‖
d̂M1þ1−‖û−sM1þ1‖

⋮
d̂MN−1þ1−‖û−sMN−1þ1‖

2
66664

3
77775

Nþ3ð Þ�1

; ~G2

¼

I3
−~ρT1

−~ρTM1þ1
⋮

−~ρTMN−1þ1

2
66664

3
77775

Nþ3ð Þ�3

: ð66Þ

It is worth emphasizing that Δφ1 represents the esti-
mation error of the stage-1 solution.
Then, using the WLS formulation, the desired estimate

of Δû can be obtain as

~φ2 ¼ ~G
T
2
~W2 ~G2


 �−1
~G
T
2
~W2

~h2; ð67Þ

where ~W2 ¼ ~B
−T
2 ðE½Δφ1Δφ1

T�Þ−1~B−1
2 ¼ ~B

−1
2 ðGoT

1 W1Go
1Þ

~B
−1
2 and the expression of E[Δφ1Δφ1

T] is derived in (80).
The final solution can be obtained by subtracting ~φ2

from the stage-1 solution û:

u ¼ û−~φ2: ð68Þ

The proposed bias-reduced method using TDOAs in
the presence of receiver position errors and
synchronization clock bias is summarized in Algorithm 1.

Remark 4: Although the proposed bias-reduced
method only improves the source position solution, it
can still reduce the bias for subsequent estimates

including receiver positions and the synchronization
clock bias vector.

4.3 Complexity analysis
This subsection investigates the computational complex-
ity of the proposed bias-reduced method in terms of the
number of multiplications. The numerical complexity is
summarized in Table 2.
We next compare the computational complexity of

the proposed bias-reduced method with that of the ori-
ginal TSWLS method [36]. Through analysis, the total
computational complexity of original TSWLS method
is O((M −N)3) +O((N + l)3) +O(l3) + (M −N)M2l2 + (M
−N)2Ml + 2(M −N)2(M − 1) + (M −N)(M − 1)2 + (M −
N)3 + 3(N + l) ⋅ (M −N)2 + 3(N + l)2(M −N) + (N + l)(M
−N) + 2(N + l)3 + 2l2(N + l) + 2l(N + l)2 + l(N + l) + 2Nl2

+Ml +M + l. The main computational complexities of
the proposed method and the original TSWLS algo-
rithm are respectively O((M −N)3) +O((N + l + 1)3) +
O(l3) and O((M −N)3) +O((N + l)3) +O(l3). By compari-
son, we find that the computational complexity of the
proposed bias-reduced method is comparable to
(slightly larger than) that of the original TSWLS
algorithm.

5 Performance analysis of the proposed bias-
reduced method
This section analyzes the theoretical performance of the
proposed bias-reduced method. The bias and covariance
matrix of the solution are derived according to
second-order error analysis. The same two assumptions
described in Section 3 are made.

5.1 Stage 1
We denote the solution of (50) as v. The stage-1 solution
of the proposed method is φ1 = v(1 : 3 +N)/v(4 +N)..
The equation error A1v can be expressed as

A1v ¼ −G1;h1½ � � φ1
1

� �
� v 4þ Nð Þ

¼ −Go
1φ1 þ h1−ΔG1φ1

� � � v 4þ Nð Þ: ð69Þ

Letting A
^

1 ¼ ½−Go
1;h1−ΔG1φ1� , we have A

^

1v ¼ A1v .
The optimization problem (50) is therefore equivalent to

min vTA
^

1W1A
^

1v s:t: vT Ω
^

v ¼ k; ð70Þ

where Ω
^¼ E½ΔA^

T

1W1ΔA
^

1� , ΔA
^

1 ¼ A
^

1−A
^o

1 and A
^o

1 ¼ ½−
Go

1;h
o
1�. Similar to the solution of problem (50), the solu-

tion of (70) satisfies
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A
^T

1W1A
^

1

� 

v ¼ λ Ω

^
v: ð71Þ

According to the definition of h1 in (8), we have Δh1

¼ h1−ho
1 ¼ ~B1AΔrþ C1Δsþ ðAΔrÞ⊙ðAΔrÞ þ EðΔs⊙ΔsÞ

,

where A, ~B1 , C1, and E are respectively defined by
(10), (46), (47), and (20).

We next derive the expressions for A
^T

1W1A
^

1 and Ω
^

as

A
^T

1W1A
^

1 ¼ −Go
1;h1−ΔG1φ1

� �T
W1 −Go

1;h1−ΔG1φ1

� �
¼ GoT

1 W1G
o
1 −GoT

1 W1 h1−ΔG1φ1ð Þ
− h1−ΔG1φ1ð ÞTWGo

1 h1−ΔG1φ1ð ÞTW h1−ΔG1φ1ð Þ
� �

;

ð72Þ

Ω
^¼ E ΔA

^T

1W1ΔA
^

1

� �

¼ 0 Nþ3ð Þ� Nþ3ð Þ 0 Nþ3ð Þ�1

01� Nþ3ð Þ �f g1�1

� �
: ð73Þ

From (72) and (73), we find that A
^T

1W1A
^

1 and Ω
^

have
the same partition. Substituting (72) and (73) into (71)
yields ½GoT

1 W1Go
1;−G

oT
1 W1ðh1−ΔG1φ1Þ�v ¼ 0 . Dividing

both sides of the equation by v(4 +N) yields

GoT
1 W1Go

1φ1−G
oT
1 W1 h1−ΔG1φ1ð Þ ¼ 0: ð74Þ

According to (19), h1 −ΔG1φ1 can be expressed as

h1−ΔG1φ1 ¼ G1φ
o
1 þ B1AΔrþ ~D1Δsþ AΔrð Þ⊙ AΔrð Þ
þE Δs⊙Δsð Þ−2T Δsð ÞAΔr−2R Δsð Þ
Aro−ΔG1φ1

¼ G0
1φ

o
1−ΔG1Δφ1 þ B1AΔrþ ~D1Δs
þ AΔrð Þ⊙ AΔrð Þ þ E Δs⊙Δsð Þ
−2T Δsð ÞAΔr−2R Δsð ÞAro;

ð75Þ

where Δφ1 ¼ φ1−φ
o
1 represents the error in φ1. Substitut-

ing (75) into (74) and expressing φ1 as φo
1 þ Δφ1 yields

GoT
1 W1G

o
1Δφ1−G

oT
1 W1 −ΔG1Δφ1 þ B1AΔrþ ~D1Δs

�
þ AΔrð Þ⊙ AΔrð Þ
þ E Δs⊙Δsð Þ−2T Δsð ÞAΔr−2R Δsð ÞAroÞ
¼ 0: ð76Þ

With some algebraic manipulations, we have the
equality relationship

IþH1ΔG1ð ÞΔφ1 ¼ H1 B1AΔrþ ~D1Δsþ AΔrð Þ⊙ AΔrð Þ�
þ E Δs⊙Δsð Þ−2T Δsð ÞAΔr−2R Δsð ÞAroÞ;

ð77Þ

where H1 is defined below (25). When the noise level is
small, Δφ1 can be expressed as

Δφ1¼ I−H1ΔG1ð ÞH1 B1AΔrþ ~D1Δsþ AΔrð Þ⊙ AΔrð Þ�
þE Δs⊙Δsð Þ−2T Δsð ÞAΔr−2R Δsð ÞAroÞ

¼ H1 B1AΔrþ ~D1Δsþ AΔrð Þ⊙ AΔrð Þ�
þE Δs⊙Δsð Þ−2T Δsð ÞAΔr−2R Δsð ÞAroÞ
−H1ΔG1H1B1AΔr−H1ΔG1H1 ~D1Δs:

ð78Þ

According to (A.1)–(A.7) in Appendix A, the bias
E[Δφ1] can be obtained as

Table 2 Complexity of proposed method

Computational
unit

Complexity for each unit Total computational complexity

A1 M − N +Ml OððM−NÞ3Þ þ OððN þ l þ 1Þ3Þ þ Oðl3Þ þ ðN2 þ 2N þ 1Þ
�½3ðM−1ÞðM−NÞ2 þ ðM−1Þ2ðM−NÞ þ ðM−1Þ3�
þ2ðM−NÞ2ðM−1Þ þ ðM−NÞðM−1Þ2 þ 2ðM−NÞM2 l2

þðM−NÞ2Ml þ ðM−NÞ3 þM3 l3 þ ðM−NÞMl þMl2

þ2Ml þ ðN þ l þ 1ÞðM−NÞ2 þ ðN þ l þ 1Þ2ðM−NÞ
þ2ðN þ lÞ3 þ ðN þ lÞ2ðM−NÞ þ ðN þ lÞðM−NÞ2
þ2l2ðN þ lÞ þ 2lðN þ lÞ2 þ lðN þ lÞ þMþ N þ 2l
(where M denotes the number of receivers, N is the grouping
number and l represents the l dimensional localization scenario)

W1 OððM−NÞ3Þ þ ðM−NÞM2 l2

þðM−NÞ2Ml þ 2ðM−NÞ2ðM−1Þ
þðM−NÞðM−1Þ2 þ ðM−NÞ3

Ω ðN2 þ 2N þ 1Þ � ½3ðM−1ÞðM−NÞ2
þðM−1Þ2ðM−NÞ þ ðM−1Þ3�
þM3 l3 þM2 l2ðM−NÞ þMlðM−NÞ
þMl2 þMl

φ1 OððN þ l þ 1Þ3Þ þ ðN þ l þ 1ÞðM−NÞ2
þðN þ l þ 1Þ2ðM−NÞ þ N þ l

~B
−1
2

N + l

~W2 2(N + l)3 + (N + l)2(M − N) + (N + l)(M − N)2

~φ2 O(l3) + 2l2(N + l) + 2l(N + l)2 + l(N + l)
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E Δφ1½ � ¼ H1vecd AQ1A
T

� �þH1Evecd Q2½ �−2H1

� diag tr Qs1P1
� �

; tr QsM1þ1
PM1þ1

n on
;⋯; tr QsMN−1þ1

PMN−1þ1

n o
g �Aro

þ 2H1 Λ1AQ1A
TBT

1H1 4; :ð ÞT þ Λ2AQ1A
TBT

1H1ð5; :ÞT



þ⋯þ ΛNAQ1A
TBT

1H1ð3þ N ; :ÞTÞ

þ2H1A2

tr X2 1 : 3; 1 : 3ð ÞQs1

� �
tr X2 1 : 3; 4 : 6ð ÞQs2

� �
⋮

tr X2 1 : 3; 3M−2 : 3Mð ÞQsM

� �
2
664

3
775:

ð79Þ

If we keep the first-order error terms, multiplying (78)
by its transpose and taking the expectation yields the co-
variance matrix

E Δφ1Δφ
T
1

� �
≈ E H1 B1AΔrþ ~D1Δs

� �� �
H1 B1AΔrþ ~D1Δs

� �� �Th i
¼ H1 B1AQ1A

TB1 þ ~D1Q2
~D
T
1


 �
HT

1 ¼ GoT
1 W1Go

1

� �−1
:

ð80Þ
5.2 Stage 2
Subtracting the true value ~φo

2 from both sides of (67) yields

Δ~φ2 ¼ ~G
T
2
~W2 ~G2


 �−1
~G
T
2
~W2

~h2−~G2~φ
o
2

� �
: ð81Þ

According to the definitions of ~h2 and ~G2 in (66), we attain

~h2−~G2~φ
o
2 ¼ ~B2Δφ1: ð82Þ

In (81), ~W2 is the noisy version because G1 in it contains
measurement noise and receiver position error. Using (23)
and the definition of ~W2 used for (67), we have

W2 ¼ ~B
−1
2 U1~B

−1
2 ¼ ~B

−1
2 Uo

1 þ ΔU1
� �

~B
−1
2 ¼ ~W

o
2 þ Δ ~W2;

ð83Þ

where ~W
o
2 ¼ ~B

−1
2 Uo

1
~B
−1
2 and Δ ~W2 ¼ ~B

−1
2 ΔU1~B

−1
2 . Letting

~U2 ¼ ~G
T
2
~W2 ~G2 yields

~U2 ¼ ~U
o
2 þ Δ~U2; ~U

o
2 ¼ ~G

T
2
~W

o
2
~G2 and Δ~U2 ¼ ~G

T
2Δ ~W2 ~G2:

ð84Þ

Adopting the Neumann expansion [46], we have the

approximation ~U
−1
2 ≈ ~U

o−1
2 −~U

o−1
2 Δ~U2 ~U

o−1
2 . Substituting

(82) and (83) into (81) and ignoring the higher
second-order error terms yields

Δ~φ2 ¼ ~U
o−1
2 −~U

o−1
2 Δ~U2 ~U

o−1
2


 �
~G
T
2

~W
o
2 þ Δ ~W2

� �
~B2Δφ1

¼ ~H2~B2Δφ1 þ ~U
o−1
2

~G
T
2
~B
−1
2 ΔU1~B

−1
2 I−~G2 ~H2
� �

~B2Δφ1;

ð85Þ

where ~H2 ¼ ð~GT
2
~W

o
2
~G2Þ

−1
~G
T
2
~W

o
2 ¼ ~U

o−1
2

~G
T
2
~W

o
2 . With

some algebraic manipulations, we have

~α¼ E ΔU1~B
−1
2 I−~G2 ~H2
� �

~B2Δφ1

h i
¼ −2GoT

1 W1 Λ1AQ1
~X3 4; :ð ÞT þ Λ2AQ1

~X3ð5; :ÞT



þ⋯þ ΛNAQ1
~X3ð3þ N ; :ÞTÞ

−2GoT
1 W1A2

tr ~X5 1 : 3; 1 : 3ð ÞQs1

� �
tr ~X5 1 : 3; 4 : 6ð ÞQs2

� �
⋮

tr ~X5 1 : 3; 3M−2 : 3Mð ÞQsM

� �
2
664

3
775

−2

Qs1
~X6 1; 1 : 3ð ÞT þQs2

~X6 2; 4 : 6ð ÞT
þ⋯þQsM

~X6 M; 3M−2 : 3Mð ÞT
tr ATΛ1W1G

o
1
~X3Q1

� �
tr ATΛ2W1G

o
1
~X3Q1

� �
⋮

tr ATΛNW1G
o
1
~X3Q1

� �

2
66666664

3
77777775
;

ð86Þ

where ~X3 ¼ ~B
−1
2 ðI−~G2 ~H2Þ~B2H1B1A; ~X4 ¼ ~B

−1
2 ðI−~G2 ~H2Þ

~B2H1 ~D1; ~X5 ¼ X4ð1 : 3; :Þ and ~X6 ¼ AT
2W1Go

1X4 . Tak-
ing the expectation for (85) and using (86) yields

E Δ~φ2½ � ¼ ~H2~B2E Δφ1½ � þ ~U
o−1
2

~G
T
2
~B
−1
2 ~α: ð87Þ

If we keep the first-order error terms, multiplying (85)
by its transpose and taking the expectation yields the co-
variance matrix of ~φ2 as

E Δ~φ2Δ~φT
2

h i
≈ E ~H2~B2Δφ1

� �
~H2~B2Δφ1

� �Th i
¼ ~H2~B2E Δφ1Δφ

T
1

� �
~B2 ~H

T
2 ¼ ~G

T
2
~W

o
2
~G2


 �−1
; ð88Þ

where E½Δφ1Δφ
T
1 � ¼ ðGoT

1 W1Go
1Þ

−1
is derived in (80).

The estimation error in the final solution u can be
expressed as

Δu ¼ u−uo ¼ û−~φ2−u
o ¼ û− φo

2 þ Δ~φ2

� �
−uo ¼ −Δ~φ2; ð89Þ

where the equation û−φo
2 ¼ uo is used. The bias and co-

variance matrix of u are therefore

E Δu½ � ¼ −E Δ~φ2½ �
¼ − ~H2~B2E Δφ1½ � þ ~U

o−1
2

~G
T
2
~B
−1
2 ~α


 �
; ð90Þ

E ΔuΔuT
� � ¼ E Δ~φ2Δ~φT

2

h i
¼ ~G

T
2
~W

o
2
~G2


 �−1
; ð91Þ

respectively. We now state the following equation that
is proved in Appendix B:

E ΔuΔuT
� � ¼ ~G

T
2
~W

o
2
~G2


 �−1

¼ Bo−1
3 GT

2W
o
2G2

� �−1
Bo−1
3

¼ E ΔuΔuT
� �

: ð92Þ
The following conclusions can be drawn from the

above performance analysis.

1. Comparing the bias (79) in stage 1 of the proposed
method with that of the original algorithm (26), we
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find that the proposed method removes the bias
terms (A.4) and (A.5) generated by the noise
correlation between G1 and h1. According to the
discussion following Eq. (26), the proposed method
does not completely decorrelate the noise from G1

and h1, and retains the small bias terms (A.6) and
(A.7). Moreover, the removed terms represent most
of the bias caused by the noise correlation between
G1 and h1.

2. The bias of final source position estimate is
obtained by combining (79) and (90). Compared
with the bias of the original algorithm (41), the bias
expression in (90) is more concise because our
method avoids the use of nonlinear operations in
stage 2, including squaring and square root
operations.

3. From (92), we see that the proposed method has the
same covariance matrix as the original algorithm,
which indicates that under moderate noise, the
proposed bias-reduced method can achieve the CRLB
like the original algorithm. The proposed method
therefore reduces the bias of the solution without in-
creasing values in the covariance matrix.

Remark 5: For the proposed bias-reduced method, the
main idea in stage 1 is introducing an augmented matrix
and imposing a quadratic constraint, so that the

expectation of the cost function E[J] (ideal bias) reaches
a minimum value of zero at v = vo. Stage-2 designs an ef-
fective WLS estimator with which to further reduce the
bias. The remaining parts of the bias are therefore negli-
gible compared with the removed parts of the bias. This
is verified in the following simulation.

6 Simulation results and discussion
This section conducts several simulation experiments to
verify the superiority of the proposed bias-reduced algo-
rithm and the validity of the theoretical derivation. We
conduct L = 10000 Monte Carlo (MC) experiments and
evaluate the localization accuracy in terms of the RMSE,

RMSEðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

P
l¼1

L
kûðlÞ−uok2;

r
and the bias, biasðuÞ ¼ k

P
l¼1

L
ðûðlÞ−uoÞk=L . Note that the RMSE and bias for the re-

ceiver position and clock bias vector are defined in the
same manner.

6.1 Comparison of localization performance with the
original TSWLS method
The experiment considers a three-dimensional
localization scenario. We assume there are 17 available
receivers having the positions listed in Table 3. The
source is placed at uo = [15, 16, 17]T km. The localization

Table 3 Location of the receivers (units: m)

Receiver no. 1 2 3 4 5 6 7 8 9 10

xoi − 1000 − 1600 − 1800 − 1700 − 2100 − 2300 1900 2000 1700 2100

yoi 1000 2100 1800 1600 1700 1500 − 1400 − 1900 −1800 − 1600

zoi 1000 1900 1600 1900 2000 2200 1300 1500 1900 1700

Receiver no. 11 12 13 14 15 16 17

xoi 1500 2200 1900 − 1200 −1400 − 1700 −2300

yoi 1600 1800 1700 − 1500 −1700 1900 2100

zoi −1700 −2300 − 2000 1900 2100 − 1800 − 1700

Group 5Group 2Group 1

u

1s 2s

4s 5s 6s

7s 8s

9s 10s
16s 17s

3s

Fig. 2 The localization geometry
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geometry is shown in Fig. 2. Moreover, the receivers are
separated into five groups according to differences in
local clocks; group 1 comprises receivers 1–6, group 2
comprises receivers 7–10, group 3 comprises receivers
11–13, group 4 comprises receivers 14–15, and group 5
comprises receivers 16–17. The following simulation

results show the RMSEs and biases for the proposed
bias-reduced method (see Section 4) and the original
TSWLS method [36]. To verify the theoretical analysis
presented in the text, the following graphs also show the
theoretical bias curves of the two algorithms (see
Sections 3 and 5) and the corresponding CRLBs.

Fig. 3 The RMSE of the source position as measurement noise varies

Fig. 4 The RMSE of receiver position vector as measurement noise varies
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Assume that the RDOAs and receiver positions are
contaminated by zero-mean Gaussian noise with covari-
ance matrices Q1 ¼ σ2RDOA

~I and Q2 ¼ σ2s I , where ~I has
diagonal elements equal to unity and off-diagonal ele-
ments of 0.5. σRDOA and σs respectively represent the
noise level of the RDOAs and receiver positions. We
first set the clock bias vector δ = [40 60 80 100]T m

and the receiver position noise level σs = 2 m. Let σRDOA

vary from 0.6 to 12 m in intervals of 0.6 m. The RMSEs
of the source position, receiver position, and clock bias
vector versus σRDOA are presented in Figs. 3, 4, and 5
while the biases of these estimates are shown in Figs. 6, 7,
and 8. We next assume δ = [40 60 80 100]T m and
σRDOA = 2 m, and let σsvary from 0.2 to 4 m in

Fig. 5 The RMSE of clock bias vector as measurement noise varies

Fig. 6 The bias of the source position as measurement noise varies
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intervals of 0.2 m. The simulation results are depicted
in Figs. 9, 10, 11, 12, 13, and 14.
We draw the following conclusions from Figs. 9, 10,

11, 12, 13, and 14.

1. The RMSEs of all estimates (including the source
position, receiver position, and clock bias vector)

for both the proposed bias-reduced method and ori-
ginal TSWLS algorithm can achieve the corre-
sponding CRLBs at low noise levels, which verifies
the theoretical derivation in Section 5.

2. As the measurement noise or receiver position
error increases, the original TSWLS algorithm
gradually deviates from the CRLB after the

Fig. 7 The bias of receiver position vector as measurement noise varies

Fig. 8 The bias of clock bias vector as measurement noise varies
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thresholding effect occurs. However, the noise
endurance threshold of the proposed method is
always higher than that of the original TSWLS
algorithm, which indicates that the proposed
method is more robust to high noise levels than
the original TSWLS algorithm.

3. The bias of the source position solution for both
the proposed bias-reduced method and original

TSWLS algorithm coincides with the corresponding
theoretical value under moderate noise levels,
which validates the theoretical derivation in
Sections 3 and 5.

4. Figures 6, 7, 8, 12, and 14 show that the proposed
bias-reduced method can effectively reduce not only
the bias of the source position but also the bias of
the refined receiver positions and clock bias vector.

Fig. 9 The RMSE of the source position as receiver position error varies

Fig. 10 The RMSE of receiver position vector as receiver position error varies
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5. With an increase in measurement noise or receiver
position error, the bias reduction of the proposed
method is superior to that of the original TSWLS
algorithm. Figure 6 shows that the bias of the source
position estimated using the proposed method
reduces by 288 m relative to the bias in the original
TSWLS solution when σs = 2 (m) and σRDOA = 6 (m).

6.2 Study of localization performance for different source
ranges
According to the analysis in Remark 3, the proposed
bias-reduced method is more effective for a far-field source.
In this section, we examine the localization performance of
the proposed method for different source ranges from the
receivers. We fix the measurement noise level and receiver

Fig. 11 The RMSE of clock bias vector as receiver position error varies

Fig. 12 The bias of the source position as receiver position error varies
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position error level as σRDOA = 2 m and σs = 2 m, respect-
ively. Let source position u ¼ μuo , where μ represents the
distance factor that varies from 0.1 to 2. The other simula-
tion conditions are the same as described in Subsection 6.1.
The simulation results for the RMSE and bias are shown in
Figs. 15, 16, 17, 18, 19, and 20.

As expected, the improved bias of the proposed method
is not obvious when the source is close to the receivers or
even inside them (i.e., the distance factor μ is small). How-
ever, as the distance factor μ increases, the superiority of
the proposed algorithm for bias reduction is gradually re-
vealed. Moreover, the RMSE and bias of the source

Fig. 13 The bias of receiver position vector as receiver position error varies

Fig. 14 The bias of clock bias vector as receiver position error varies
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position solution for the proposed method coincide well
with the corresponding CRLB and theoretical value, re-
spectively, which again verifies the theoretical derivation
in Section 5.

6.3 Study of localization performance for different source
positions
To highlight the superiority of the proposed
bias-reduced method, this subsection examines the

localization performance for 30 randomly placed
sources. Assume that the source is randomly placed
in a cubic region of 5 × 5 × 5 (km × km × km) around
the point [15, 15, 15]T km. Fix the clock bias vector δ
= [40 60 80 100]T m and the receiver position
noise level σs = 2 m. Let σRDOA vary from 0.6 to 6 m
with 0.6 m intervals. The receiver positions and
grouping situation are the same as described in Sub-
section 6.1. Figures 21, 22, and 23 show the boxplots

Fig. 15 The RMSE of the source position as distance factor varies

Fig. 16 The RMSE of receiver position vector as distance factor varies
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[48] of the bias calculated using 30 random source
positions. For each source, we conduct L = 10000 MC
experiments.
These simulation results again validate that the

proposed method has a smaller bias than the ori-
ginal algorithm for all estimates including the source
position, refined receiver positions, and clock bias

vector. Moreover, this improvement in reducing bias
does not depend on the localization geometry.

7 Conclusions
This paper proposes a bias-reduced version for the
well-known TSWLS solution using TDOAs in the pres-
ence of receiver position errors and synchronization

Fig. 17 The RMSE of clock bias vector as distance factor varies

Fig. 18 The bias of the source position as distance factor varies
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clock bias. The new technique has two stages. In stage 1,
through introducing an augmented matrix and imposing
a quadratic constraint, the proposed method reduces the
bias caused by the noise correlation of the WLS prob-
lem. Stage 2 develops an effective WLS estimator to cor-
rect the stage-1 solution, thereby avoiding the use of

nonlinear operations that increase the bias in the ori-
ginal algorithm. Subsequently, the theoretical perform-
ance of the proposed method is derived via
second-order error analysis, demonstrating theoretically
the effectiveness of the proposed method in reducing
the bias and achieving the CRLB under moderate noise

Fig. 19 The bias of receiver position vector as distance factor varies

Fig. 20 The bias of clock bias vector as distance factor varies
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for the far-field source. Finally, several simulation experi-
ments are conducted to verify the superiority of the pro-
posed method and the validity of the theoretical derivation.
Several important conclusions can be drawn from the
simulation results. (i) The RMSEs of all estimates (includ-
ing the source position, receiver position, and clock bias
vector) for the proposed method can achieve the corre-
sponding CRLBs under moderate noise levels. (ii) The pro-
posed method can reduce the bias of solution while not
increasing the RMSE. (iii) The proposed method effectively
reduces not only the bias of the source position but also
the bias of the refined receiver positions and estimated

clock bias vector. (iv) As the source range increases, the
bias reduction of the proposed method is more obvious.
(v) The improvement of the proposed method in terms of
reducing bias does not depend on the localization
geometry.
Currently, the proposed method only uses TDOA in-

formation of the emitted signal from a single target. Our
future work will extend the proposed bias-reduced
method to the following aspects:

1. Hybrid TDOA/FDOA localization
2. Localization in the multiple source scenario

(a) (b)
Fig. 21 The bias of source position for 30 randomly placed sources as measurement noise varies. a The original algorithm. b The proposed method

(a) (b)
Fig. 22 The bias of receiver position vector for 30 randomly placed sources as measurement noise varies. a The original algorithm. b The proposed method

Chen et al. EURASIP Journal on Advances in Signal Processing          (2019) 2019:7 Page 23 of 26



8 Appendix A
According toQ1 = E[ΔrΔr

T],Q2 = E[ΔsΔs
T] and (22), we have

E H1 AΔrð Þ⊙ AΔrð Þ½ � ¼ H1vecd AQ1A
T

� � ðA:1Þ
E H1E Δs⊙Δsð Þ½ � ¼ H1Evecd Q2½ � ðA:2Þ
E ‐2H1R Δsð ÞAro½ � ¼ −2H1 � blkdiag tr Qs1P1

� ��
�IM1−1; tr QsM1þ1

PM1þ1

n o
�IM2−M1−1;⋯; tr QsMN−1þ1

PMN−1þ1

n o
�IMN−MN−1−1g � Aro

ðA:3Þ

E Uo−1
1 ΔGT

1W1 I−Go
1H1

� �
B1AΔr

� �

¼ 2Uo−1
1

03�1

tr ATΛ1W1 Go
1H1−I

� �
B1AQ1

� �
tr ATΛ2W1 Go

1H1−I
� �

B1AQ1

� �
⋮

tr ATΛNW1 Go
1H1−I

� �
B1AQ1

� �

2
66664

3
77775

ðA:4ÞE Uo−1
1 ΔGT

1W1 I−Go
1H1

� �
~D1Δs

� �
¼ 2Uo−1

1 E Δ~sTAT
2W1 Go

1H1−I
� �

~D1Δs
0N�1

� �

¼ 2Uo−1
1 ½Qs1X1 1; 1 : 3ð ÞT þQs2X1 2; 4 : 6ð ÞT

þ⋯þQsMX1 M; 3M−2 : 3Mð ÞT0N�1
�

ðA:5Þ

E −H1ΔG1H1B1AΔr½ �

¼ 2H1E ½A2Δ~s;Λ IN � AΔrð Þð Þ�H1B1AΔr½ �

¼ 2H1
Λ1AQ1A

TBT
1H1 4; :ð ÞT þ Λ2AQ1A

TBT
1H1 5; :ð ÞT

þ⋯þ ΛNAQ1A
TBT

1H1 3þ N ; :ð ÞT
� 


ðA:6Þ

E −H1ΔG1H1 ~D1Δs
� � ¼ 2H1E A2Δ~sH1 1 : 3; :ð Þ~D1Δs

� �

¼ 2H1A2

tr X2 1 : 3; 1 : 3ð ÞQs1

� �
tr X2 1 : 3; 4 : 6ð ÞQs2

� �
⋮

tr X2 1 : 3; 3M−2 : 3Mð ÞQsM

� �
2
664

3
775
ðA:7Þ

where X1 ¼ AT
2W1ðGo

1H1−IÞ~D1 and X2 ¼ H1ð1 : 3; :Þ~D1.
Using (A.1)–(A.7) and taking the expectation for (25)
yields the bias (26) of φ1.

9 Appendix B
According to the definitions of ~W

o
2 and Uo

1 in below (83)
and (23), we have

E ΔuΔuT
� � ¼ ~G

T
2
~W

o
2
~G2


 �−1

¼ ~G
T
2
~B
−1
2 Uo

1
~B
−1
2
~G2


 �−1

¼ ~G
T
2
~B
−1
2 GoT

1 W1Go
1

� �
~B
−1
2
~G2


 �−1
ðB:1Þ

Using the definitions of Wo
2 and Uo

1 in below (31) and
(23), E[ΔuΔuT] can be reformulated as

E ΔuΔuT
� � ¼ Bo−1

3 GT
2W

o
2G2

� �−1
Bo−1
3

¼ Bo
3G

T
2B

o−T
2 GoT

1 W1Go
1

� �
Bo−1
2 G2Bo

3

� �−1
ðB:2Þ

We now derive the expressions of ~G
T
2
~B
−1
2 and Bo

3G
T
2

Bo−T
2 as follows. Using the definition of ~G2 and ~B2 in

(66), we have

(a) (b)
Fig. 23 The bias of clock bias vector for 30 randomly placed sources as measurement noise varies. a The original algorithm. b The proposed method
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~G
T
2
~B
−1
2 ¼ I3;−~ρ1;−~ρM1þ1;⋯;−~ρMN−1þ1

� �
� −I3 0

0 IN

� �
¼ − I3; ~ρ1; ~ρM1þ1;⋯; ~ρMN−1þ1

� � ðB:3Þ

Applying the partitioned matrix inversion formula [49]
and the definition of Bo

2 in (29), we attain

Bo−1
2 ¼ 1

2

diag uof gð Þ−1 0 ⋯ 0

−
sT1 diag uof gð Þ−1

do
1

1
do
1

⋯ 0

⋮ ⋮ ⋱ ⋮

−
sTMN−1þ1 diag uof gð Þ−1

do
MN−1þ1

0 ⋯
1

do
MN−1þ1

2
66666664

3
77777775
ðB:4Þ

Using (B.4), the definition of G2 in (13) and definition
of Bo

3 in below (40), Bo
3G

T
2B

o−T
2 can be reformulated as

Bo
3G

T
2B

o−T
2 ¼ 2 diag uof g � I3; 13;⋯; 13½ �

� 1
2

diag uof gð Þ−1 −
diag uof gð Þ−1s1

do
1

⋯ −
diag uof gð Þ−1sMN−1þ1

do
MN−1þ1

0
1
do
1

⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

do
MN−1þ1

2
666666664

3
777777775

¼ I3;
uo−s1
do
1

;
uo−sM1þ1

do
M1þ1

;⋯;
uo−sMN−1þ1

do
MN−1þ1

" #

≈ I3; ~ρ1; ~ρM1þ1;⋯; ~ρMN−1þ1

� � ¼ −~G
T
2
~B
−1
2

ðB:5Þ

Substituting (B.5) into (B.2) yields

E ΔuΔuT
� � ¼ ~G

T
2
~B
−1
2 GoT

1 W1Go
1

� �
~B
−1
2
~G2


 �−1

¼ E ΔuΔuT
� � ðB:6Þ

This completes the proof.
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