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Abstract

Robust and efficient feature extraction is critical for high-resolution range profile (HRRP)-based radar automatic target
recognition (RATR). In order to explore the correlation between range cells and extract the structured discriminative
features in HRRP, in this paper, we take advantage of the attractive properties of convolutional neural networks (CNNs)
to address HRRP RATR and rejection problem. Compared with the time domain representations, the spectrogram of
HRRP records the amplitude feature and characterizes the phase information among the range cells. Thus, besides
using one-dimensional CNN to handle HRRP in time domain, we also devise a two-dimensional CNN model for the
spectrogram feature. Furthermore, by adding a deconvolutional decoder, we integrate the target recognition with
outlier rejection task together. Experimental results on measured HRRP data show that our CNN model outperforms
many state-of-the-art methods for both recognition and rejection tasks.

Keywords: Radar automatic target recognition (RATR), High-resolution range profile (HRRP), Spectrogram feature,
Outlier rejection, Convolutional neural networks (CNNs)

1 Introduction
Radar target detection and radar automatic target recog-
nition (RATR) are two active research fields of modern
radar technology. In a typical modern radar system, tar-
gets are first located at the detection stage, which aims
to estimate the target position/Doppler with high quality
[1, 2]. The high-resolution radar (HRR) is then activated
by specific targets for further identification or classifi-
cation. The echo of HRR, high-resolution range profile
(HRRP), is the amplitude of the coherent summations of
the complex time returns from target scatterers in each
range cell, which represents the projection of the complex
returned echoes from the target scattering centers onto
the radar line-of-sight (LOS), as shown in Fig. 1. Since
HRRP contains abundant target structure signatures, such
as target size and scatterer distribution, HRRP-based tar-
get recognition has received intensive attention from the
RATR community [3–25].
Feature learning is critical for RATR. Many researchers

[5–19] explore various feature (representation) learning
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methods for HRRP-based RATR. In [5, 6], RELAX-based
algorithms are employed to extract the location infor-
mation of predominant scatterers from HRRP data as
features for recognition tasks. In [7–9], the researchers
investigate the recognition methods based on spectra fea-
tures, which perform the recognition task in the learned
feature subspace via specific physical meaning. Gener-
ally, such sophisticated features perform well in practice
but they heavily rely on personal experiences and prior
knowledge.
Besides those hand-crafted feature methods, data-

driven RATR approaches have attracted increasing
attention in past years due to their ability to learn use-
ful features from the dataset automatically. In [10], the
principal components analysis (PCA)-based feature sub-
space is constructed to minimize reconstruction error for
RATR. In [11–15], the researchers employ factor analysis
(FA) model to project and recognize HRRPs in a low-
dimensional latent feature space. Considering the spar-
sity within the HRRP signals, Feng et al. [16] and Zhou
[17] apply sparse constraint on the feature vectors and
solve the problems via l0-minimization. However, all those
methods build linear and shallow architectures that limit
their capability to represent the complicated HRRP data.
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Fig. 1 Illustration of an HRRP sample from an aircraft target. The red
circles represent the scatterers of the aircraft

Recently, non-linear, deep networks have been success-
fully employed in various real-world tasks thanks to their
powerful expressive ability [26–34]. In fact, several deep
learning models have been developed for HRRP-based
RATR. Yan et al. [18] employ stacked denoising autoen-
coder (SDAE [27]) to learn the robust representation of
the original HRRP. Feng et al. [19] employ the average pro-
file as the correction terms and stack a series of Corrective
Autoencoders to extract features from HRRP. However,
these two models are based on fully connected nets and
may not capture the structural information among the
range cells of HRRP layer by layer, since HRRP reflects the
distribution of scatterers in target along the range dimen-
sion. Differently, convolutional neural networks (CNNs
[29]) explicitly exploit structural locality in the feature
space and can extract more descriptive features that exist
in signals. Furthermore, the convolutional layer alternates
with the pooling layer to learn the features, which leads
to the local invariance of translation, scaling, and shift.
They have been successfully applied to kinds of recog-
nition tasks and exhibited better performance than fully
connected networks [29–32, 35, 36].
In this paper, we first develop a one-dimensional CNN

recognition procedure for the time domain HRRP, which
represents the amplitude of projection of the target scat-
tering centers onto the radar LOS and is widely used
in RATR. In the 1-D CNN, the convolution operation
only takes place at range dimension. Nevertheless, the
time domain only characterizes the amplitude of the tar-
get signal which provides limited information for feature
learning. By contrast, the spectrogram feature is a two-
dimensional (time and frequency) representation of a
HRRP signal, which embeds the frequency domain prop-
erty of the target and reflects more phase information
[20]. Hence, targeting the properties of spectrogram, a

novel CNN model is proposed for HRRP ATR, which,
different from the conventional 2-D CNN for images, con-
siders the spectral vector at each discrete time (range cell)
as a whole and realizes the convolution operation along
time dimension.
Since most of the targets are uncooperative or even

hostile in real-world RATR task, it is not practical to
acquire complete training database. Moreover, it is unrea-
sonable to recognize a target that does not belong to
any class of the existing template database. Therefore, we
plug a decoder into the model to realize the outlier rejec-
tion. Specifically, the proposed approach uses a CNN as
encoder and a deconvolutional neural network as decoder.
By measuring the reconstruction error between the input
and the output of the decoder, the model can identify
whether a sample is an outlier or not.
The remainder of this article is organized as follows.

Brief descriptions of time domain and spectrogram fea-
ture of HRRP are introduced in Section 2. In the follow-
ing section, we will present our CNN model in detail.
The experimental results of our model with time domain
and spectrogram feature on measured HRRP data are
shown in Section 4. Finally, conclusions are addressed in
Section 5.

2 Preliminaries
In this section, we briefly review the concepts of HRRP
and CNN, following which the corresponding descrip-
tions of time domain and the spectrogram feature of
HRRP are provided.

2.1 Time domain HRRP
Generally, high-resolution radar (HRR) operates in
microwave frequency band, and for the wide band-
width of the signal, the wavelength of radar is much
smaller than the target size. Hence, for complex tar-
gets such as an aircraft, HRR can effectively divide
the object into many range “cells.” According to the
literatures [10, 14], if the radar-transmitted signal is
s(t)ejwct (s(·) is the complex envelope and wc is the
carrier angular frequency) and the returned complex
HRRP is denoted as a discrete complex vector, the
n-th complex returned echo from the l-th range cell
(l = 1, 2, ..., L) in baseband can be approximated as:

xl(t, n) ≈ xl(n)

= ejθ(n)

Vl∑

i=1
σliejφli(n)

(1)

where θ(n) = − 4π
λ
R(n) stands for the initial phase of

the n-th returned echo related to the target distance and
the radar wavelength and Vl denotes the number of target
scatterers in the l-th range cell, σli the strength of the i-
th scatterer in the l-th range cell, and φli(n) the remained



Wan et al. EURASIP Journal on Advances in Signal Processing          (2019) 2019:5 Page 3 of 17

echo phase of the i-th scatterer in the l-th range cell of the
n-th returned echo.
Then, the n-th complex HRRP can be written as

x(n) = ejθ(n)
[
x̃1(n), x̃2(n), ..., x̃L(n)

]T, where x̃l(n) =
∑Vl

i=1 σliejφli(n) with l = 1, 2, ..., L, and T denotes the trans-
pose operation. The n-th time domain HRRP xT (n) is
obtained by taking absolute value of x(n), which can be
represented as:

xT (n) = [∣∣x̃1(n)
∣∣ ,

∣∣x̃2(n)
∣∣ , ...,

∣∣x̃L(n)
∣∣]T

=
[∣∣∣∣∣

V1∑

i=1
σ1iejφ1i(n)

∣∣∣∣∣ ,
∣∣∣∣∣

V2∑

i=1
σ2iejφ2i(n)

∣∣∣∣∣ , ...,

∣∣∣∣∣∣

Vl∑

i=1
σliejφli(n)

∣∣∣∣∣∣
, ...,

∣∣∣∣∣

VL∑

i=1
σLiejφLi(n)

∣∣∣∣∣

⎤

⎦
T

(2)

where |·| means taking absolute value. The time domain
HRRP xT represents the reflected signal intensity versus
range along the radar LOS. Therefore, it is worth of note
that we only consider the corresponding amplitude profile
of the time domain HRRP and spectrogram of HRRP in
this paper, which do not vary with the initial phase [10].

2.2 Spectrogram feature of HRRP
Spectrogram analysis is a common signal processing pro-
cedure adopted in spectral analysis and other fields,
which can be readily created by calculating the short-
time Fourier transform (STFT) of the time signal. The
discrete-time STFT transform can be represented as:

STFT(m,ω) =
∞∑

n=−∞
x(n)w(n − m)e−jωn (3)

where x(n) is the signal to be transformed and w(·) is the
window function. The magnitude squared of the STFT
yields the spectrogram of x(n):

spectrogram{x(n)}(m,ω) = |STFT(m,ω)|2 (4)

In this paper, the spectrogram feature of n-th HRRP,
xS(n), is obtained by applying STFT and square oper-
ation on the n-th complex HRRP x(n). Specifically, we
first sequentially break up the complex HRRP x(n) into
fragments of length M. To reduce artifacts at the bound-
ary and increase the temporal dependence between frag-
ments, each fragment overlaps with its neighbors of length
M−1. For notational convenience, we replace the notation
x(n) with x, and a fragment starting from the k-th range
cell can be written as xM = [

x̃k , x̃k+1, ..., x̃k+M−1
]
, where

x̃l = ∑Vl
i=1 σliejφli with l = k, k + 1, ..., k + M − 1. Then,

performing the discrete Fourier transformation (DFT) on
xM yields its frequency domain expression, xMF , which can
be expressed as:

xMF (m) =
M−1∑

n=0
x̃n+kWmn

M

=
M−1∑

n=0

⎡

⎣
Vk+n∑

i=1
σ(k+n)iejφ(k+n)i

⎤

⎦ e
(−j 2πM mn

)
,

m = 0, 1, ...,M − 1

(5)

Taking the absolute value of xMF s and concatenating them
in sequence provides the spectrogram feature of n-th
HRRP, xS. As a result, a complex vector x ∈ R

1×L is
transformed into a matrix xS ∈ R

H×L, where the axes of
xS are frequency and time, respectively. Figure 2 presents
the time domain HRRP samples and their correspond-
ing spectrogram features from three airplane targets, i.e.,
An-26, Cessna Citation S/II, and Yark-42, where the spec-
trogram features are obtained by employing a length of 16,
windowed with a Hamming window and 32 points FFT to
STFT.
The spectrogram feature of HRRP has some distinct

advantages over time domain HRRP. First, by taking
the absolute value (2), the time domain HRRP loses
its phase information. On the contrary, the spectro-
gram exploits the phase information to characterize the
frequency domain correlation among range cells since
the DFT operation will accumulate the same frequency
component in the fragment (5). In other words, by
making use of the phase information in the complex
HRRP signal, the spectrogram feature of HRRP pro-
vides more (frequency domain) information than HRRP
in time domain. Second, the scatterers living in sev-
eral continuous range cells are relatively more robust
to the target-aspect change than those in a single
range cell.

3 HRRP target recognition and outlier rejection
based on CNN

In order to employ CNN model to HRRP recognition
task, we adopt a one-dimensional CNN model to clas-
sify the time domain HRRPs directly, while for spec-
trogram feature, the designed CNN model realizes the
convolution operation going along the time dimension.
Furthermore, by adding a deconvolutional network to
the CNN model, we integrate recognition with rejec-
tion together. Figure 3 illustrates the structure of our
model.

3.1 CNN for time domain
A deep convolutional neural network [29] consists of
multiple layers based on convolution operation and can
be viewed as a transformation from the input map to
the output map. Suppose X ∈ R

H×W×C is a multi-
channel input, where each dimension of X represents
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(a)

(b)

(c)
Fig. 2 Example representations of HRRP in time domain (left) and corresponding spectrogram features (right) of HRRP. a An-26. b Cessna Citation
S/II. c Yark-42

the height, width, and the number of channels, respec-
tively. Assume the CNN consists of L convolutional
layers, and layer l ∈ {1, ..., L} Kl filters. For the k-
th filter at layer 1, a convolution operation with stride
length r(1) applies filter W(k,1) ∈ R

h(1)×w(1)×C to X.

This yields feature map, y(k,1) = f
(
X ∗ W(k,1) + b(k,1)),

where ∗ denotes the convolutional operator, b(k,1) is
the bias for the k-th feature map, and f (·) a nonlin-
ear activation function. More specifically, the value of
a unit at position

(
i′, j′

)
, denoted as y(k,1)

i′j′ , is given by:

Fig. 3Model structure. We take three convolutional (deconvolutional) layer as an example. The black dotted functions as the encoder part, and the
brown solid block the decoder part
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y(k,1)
i′j′ =ReLU

⎛

⎝
h∑

i=1

w∑

j=1

C∑

c=1
Xi′+i,j′+j,c � W (k,1)

ijc + b(k,1)

⎞

⎠

(6)

where�means element-wise product or Hadamard prod-
uct and ReLU [37] is a nonlinear activate function,
ReLU(z) = max(0, z). Figure 4 illustrates a convolutional
layer in CNN. The computational complexity in the con-
volution layer 1 is in the order ofO(H ·W ·C ·h(1) ·w(1) ·K1),
similarly for the following convolution layers.
To increase the content covered by a convolutional

kernel and the sparsity of the hidden units, a convolu-
tional layer is usually followed by a subsampling layer.
The resolution of the feature map is reduced by pool-
ing over the local neighborhood on the feature map.
After the convolution and pooling, the k-th feature map
h(k,1) ∈ R

H(h1)×W (h1)×1 is yielded, where H(h1) and W (h1)

are the height and width of the feature map, respectively.
After that, we have the feature maps of layer 1, H(1) ∈
R
H(h1)×W (h1)×K1 , and the computational complexity in this

layer is in the order of O (H · W · K1), which is much
smaller than that in the convolution layer and similar for
the following subsampling layers.
With this convolutional-subsampling operation repeated

in sequence for L layers, the last feature map H(L) is
obtained, which is then fed into some fully connected
nets, to produce the final feature z. In the end, the fea-
ture z goes into a softmax classifier for the recognition
task. The softmax function pc(z) = exp(θ(c)�z)∑C

j=1 exp(θ(j)�z)
is used

to perform multi-class logistic regression, where C rep-
resents the number of categories, pc(z) the probability of
z belonging to the c-th category, and θ the parameter of
the softmax classifier. Given the ground-truth class label
t of input X, we formulate the recognition loss function
Erecogn as:

Erecogn = − 1
N

N∑

n=1

C∑

c=1
t(n) ln p(n)

c (z) (7)

where N is the sample number of each mini-batch.
The time domain HRRP, xT ∈ R

1×W×1, is a real-valued
vector (W is the length of range dimension); thus, a 1-D
convolution CNNmodel, called TCNN, can be employed,
where the convolution operation only takes place at the
range dimension. For the first layer in TCNN, as shown
in Fig. 5a, convolution operations with stride length r(1)

apply K1 filters, W(1)
T ∈ R

1×w(1)×1, to xT , resulting in fea-
ture maps of layer 1, H(1)

T ∈ R
1×W (h1)×K1 . For the follow-

ing layers, convolution-subsamping operation repeatedly
apply Kl filters, W(l)

T ∈ R
1×w(l)×Kl−1 , to H(l−1)

T , as illus-
trated in Fig. 5b, gaining feature maps H(l)

T . For the final
convolutional layer L, the feature maps H(L)

T are obtained
and fed into fully connected nets, to produce the feature
vector zT . In the end, the recognition task is achieved by
feeding zT to a softmax classifier, and the loss function is
the same as (7).

3.2 CNN for spectrogram domain
As discussed in Section 2.2, the spectrogram representa-
tion (Fig. 2 right column) actually has twomerits over time
domain (Fig. 2 left column): (1) by bringing in the phase
information, the spectrogram feature containsmore infor-
mation than time domain HRRP. (2) It is more insensitive
to the variation of target aspect than time domain HRRP.
To exploit the above advantages, we devise a CNN recog-
nition model for HRRP spectrogram, denoted SCNN. Dif-
ferent from the conventional 2-D CNN for images, SCNN
treats the spectral vector at each discrete time (range cell)
as a whole, and the convolution operation goes along time
(range) dimension. Similar with the TCNN model, SCNN
model consists of L convolutional layers and several fully
connected layers.
Let xS ∈ R

H×W×1 denote the spectrogram feature
of HRRP, where H and W represent the dimensions
of frequency and time (range) domain of spectrogram,

Fig. 4 Illustration of a convolutional layer in CNN
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(a)

(b)
Fig. 5 Illustration of convolutional layer of CNN. a Vector form. b Plane form

respectively. For the i-th filter at layer 1, a convolution
operation with stride length r(1) applies filter W(i,1)

S ∈
R
H×w(1)×1 to xS. Just as the TCNN model, feature map

h(i,1)
S = f

(
H(1)

S ∗ W(i,1)
T

)
∈ R

1×W (h1)×1 is gained after
a convolution-subsampling operation, where W (h1) is the
width of feature map. We get feature maps H(1)

S ∈
R
1×W (h1)×K1 at layer 1. With this repeated in sequence for

the following convolutional layers, we obtain the last con-
volution layer’s feature maps, H(L)

S . After reshaping and
feeding H(L)

S to the fully connected nets, we acquire fea-
ture vector zS and a softmax function is applied on zS as
the final layer.

3.3 Batch normalization
Batch normalization (BN) [33] is a technique to acceler-
ate training and improve generalization, which is widely
used in kinds of deep neural networks. For these rea-
sons, we employ batch normalization in each convolu-
tion and fully connected layer in our model. For a layer
with d-dimensional input x = (

x(1), x(2), ..., x(d)
)
, the BN

operation firstly normalizes each dimension with x̂(k) =
x(k)−E

[
x(k)

]

√
Var[x(k)]+ε

, where the expectation and variance are com-
puted over the mini-batch from the training dataset, and ε

is a constant added to the mini-batch variance for numer-
ical stability. After normalizing, a pair of parameters γ (k),
β(k) is introduced to scale and shift the normalized value:

y(k) = γ (k)x̂(k) + β(k). (8)

The parameters γ (k) and β(k) are learned based on the
original model parameters. By normalizing each input
unit to have zero mean and unit variance, the batch nor-
malization layer helps deal with poor initialization prob-
lems at the training stage and contributes to gradient flow
in deeper models.

3.4 Combine recognition with rejection
Besides the recognition, outlier rejection is another func-
tion we have to concern in the RATR system. Thus, to
integrate the outlier rejection task into our model, we
introduce a decoder network, which focuses on captur-
ing the task-general knowledge through the experience
of representing the existing targets. Specifically, the input
x is transformed into the top feature maps, H, through
the convolutional encoder net, then besides feeding H
to the classification net, we also apply the deconvolution
with stride (i.e., convolutional transpose), as the conjugate
operation of convolution, to decode the feature maps H
back to the source. As the deconvolution operation pro-
ceeds, the spatial resolution gradually increases, where the
output of the final deconvolution layer is aimed at recon-
structing the input x. The reconstruction error Erecon can
be formulated as:
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Erecon = 1
N

N∑

n=1

∥∥∥x(n) − gθ
(
H(n)

)∥∥∥
2
, (9)

where N is the size of each mini-batch and gθ is the
decoder parametrized by θ . By measuring the reconstruc-
tion error in (9), the model can identify whether a target is
an outlier or not. Specifically, we expect that the in-class
samples will get smaller reconstruction errors while the
outlier samples’ reconstruction errors are relatively larger.
Our combination model simultaneously trains a con-

volutional autoencoder and a supervised model to the
HRRP rejection and recognition problem, which is sim-
ilar to semi-supervised learning models [38, 39] except
that we do not use unlabeled data at the training phase.
Formally, via the combination of the recognition loss (7)
and the reconstruction loss (9), the final objective can be
defined as:

E = Erecogn + λErecon (10)

where parameter λ is a nonnegative regularization param-
eter used to balance the recognition loss Erecogn and the
reconstruction loss Erecon. A larger λ means the model
cares more about the rejection performance; on the oppo-
site, a smaller λ indicates the model pays more attention
to recognition performance. Particularly, our model will
degenerate into conventional CNN model if we set λ =
0. According to (10), it is worth to notice that by using
this joint training strategy, the learned feature H will be
affected by both of data representation and classification
tasks. In the following experimenting section, the detailed
analysis of the influence of λ will be provided when the
outlier rejection is functioned.

4 Results and discussion
In this section, measured HRRP data used in our exper-
iments will be introduced firstly. Then, several detailed
analysis and discussion about the recognition and rejec-
tion performance of our model are presented and studied.
Meanwhile, the influence of some model parameters are
analyzed and discussed during the experiments.

4.1 Measured data
We examine the recognition and rejection performance of
our CNN model on the three-class measured data, Yark-
42, Cessna Citation S/II, and An-26, among which Yark-42
is a large- and medium-sized jet aircraft, Cessna Citation
S/II a small-sized jet aircraft, and An-26 a medium-sized
propeller aircraft. The radar works on C-band with a
bandwidth of 400 MHz, and the range resolution is about
0.375 m. The parameters of the radar and airplane targets
are shown in Table 1, and the projections of target tra-
jectories onto the ground plane are shown in Fig. 6. With
large SNR, the effect of noise in the measured data on the
recognition can be ignored.

Table 1 Parameters of radar and planes

Radar parameters Center freq. 5520 MHz

Bandwidth 400 MHz

Planes Length (m) Width (m) Height (m)

Yark-42 36.38 34.88 9.83

An-26 23.80 26.20 9.83

Cessna Citation S/II 14.40 15.90 4.57

4.1.1 Training and test dataset selection
According to the literatures [11, 21, 22], the training and
test datasets are selected following two principles: (a) The
training dataset should cover almost all of the target-
aspect angles. (b) The elevation angles of the training and
the test dataset are different. Therefore, we select the fifth
and the sixth segments of An-26, the sixth and the sev-
enth segments of Cessna Citation S/II, and the second
and the fifth segments of Yak-42 as training samples, and
the rest of the segments are taken as test samples. More
concretely, there are totally 140,000 training samples and
5,200 test samples involved in our experiments. Further-
more, to measure the rejection performance of our model,
18,000 HRRP samples generated by the electromagnetic
simulator software, XPATCH, are used as an outlier target.

4.1.2 Preprocessing
As discussed in literature [23], it is a prerequisite for
radar target recognition to deal with the target-aspect,
time-shift, and amplitude-scale sensitivity. Similar to the
previous study [11, 23], HRRP training samples should
be aligned by the time-shift compensation techniques in
ISAR imaging [40] to avoid the influence of time-shift
sensitivity. Each HRRP sample is normalized by L2 nor-
malization algorithm to avoid the amplitude-scale sensi-
tivity. In the following experiments, all of the HRRPs are
assumed to have been aligned and normalized.

4.2 Recognition
4.2.1 Experimental setup
To evaluate the recognition performance of our model,
in this subsection, the parameter λ in (10) is set to 0. As
shown in Fig. 2, the time domain HRRP is a 1 × 256 real-
valued vector while its corresponding spectrogram feature
is a 32×256 (32 represents frequency domain while 256 is
the length of time domain) matrix. Each of the TCNN and
SCNN model consists of several convolutional layers and
a single fully connected layer with 300 units, each layer
combined with BN and ReLU non-linearity. For notational
convenience, we denote TCNNL or SCNNL to represent
a TCNN or SCNN model with L convolutional layers.
Models are optimized using RMSProp with a learning rate
of 0.00001 and a mini-batch size of 100. The recogni-
tion results shown in this paper are obtained by averaging
classification rates from each category. All experiments
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(a)

(b) (c)
Fig. 6 Projections of target trajectories onto the ground plane. a An-26. b Cessna Citation S/II. c Yark-42

are performed on a desktop computer equipped with an
Intel Core i7 4770 CPU, 32 GB RAM, and a graphics card
NVIDIA GeForce GTX 1070.

4.2.2 Impact of model parameters
In this subsection, we analyze the effect of some model
parameters on the recognition performance, including
STFT window length, the kernel size, and the number of
convolutional layers of CNN.

STFT window length The spectrogram feature of HRRP
is obtained by calculating STFT of the aligned and nor-
malized time domain signal, where the window length
of STFT is a critical parameter which could be selected
according to the radar range resolution and target sizes,
since it determines the frequency resolution, which can
separate the close frequency components and the time
resolution, which can describe the frequency changing.
As shown in Fig. 7, different STFT window lengths appar-
ently produce different spectrogram features. Detailedly,
in our measured data, since the radar range resolution is
about 0.375 m, a window with length of 32 corresponds
to the actual size of 12 m, which, compared with the
lengths/widths of the targets falling in (14, 40) meters,
makes the correlation between neighboring vectors too

high and leads to the target spectrogram representations
ambiguous, while that of 4 (1.5 m) is too short to depict
the effective structures of the targets. By contrast, from
the spectrograms with the window length of 8 and 16, we
can find the relatively clear and descriptive textures of the
target. To further investigate its effect on the recognition
performance, we also list the average classification accu-
racies based on those spectrograms with four different
window lengths, where the representations with window
lengths of 8 and 16 outperform those with 4 and 32 as
shown in Fig. 8. Therefore, in the following experiments,
we use a length of 16, windowed with a Hamming window
and 32 points DFT to STFT to calculate the spectrogram
feature.

Kernel size Since the HRRP echo embodies the physical
composition of the target, the kernel size of CNNs actu-
ally reflects how much content a convolutional kernel is
able to capture. Several first layer kernel sizes are cho-
sen for the TCNN3 and SCNN3 (for time saving, we only
take the first layer as an example), and the recognition
results are shown in Fig. 9. In both TCNN3 and SCNN3,
we find slightly longer kernel sizes, i.e., 1 × 9, 1 × 15 in
TCNN3 and 32×6, 32×10 in SCNN3, perform better. We
attribute this to a shorter kernel not being able to grasp
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(a)

(b)
Fig. 7 The representations of an An-26 HRRP example in different domains. a Time domain. b Spectrogram with different STFT window lengths

the effective structural features that exist in signals. With-
out loss of generality, in the following experiments, we fix
the first layer kernel size of SCNN as 32×6, and the higher
layers of SCNN and all layers of TCNN use kernel sizes
of 1 × 9.

Fig. 8 Average recognition rates of SCNN3 model with different
spectrogram features

The number of CNN layer We conduct several
experiments with different numbers of convolutional
layers as shown in Fig. 10. The two-layer models contain
two convolutional layers, both of which have 32 output
channels, termed as 32-32. Similarly, the three-layer
models and four-layer models have the structure of 32-
32-64 and 32-32-64-128, respectively. According to the
recognition results, for both SCNN and TCNN models,
the best results are achieved at the structure of three
convolutional layers. The two-layer models have relatively
poor performance, since they do not have enough capac-
ity of arbitrary nonlinear expressiveness. However, the
performance does not benefit from enlarging the depth
of the model, as the recognition rates of the four-layer
models are worse than the three-layer models. Because
a deeper model brings more parameters to learn which
makes the representations in the higher layers excessive
and overfit the training set, after all, we test it on only
three types of targets. Consequently, we choose SCNN3
and TCNN3 for further comparisons in the following
experiments.
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Fig. 9 Average recognition rates of TCNN3 (blue bars) and SCNN3 (green bars) models with different first layer kernel sizes

4.2.3 Recognition performance
The recognition accuracies and training time of SCNN3
and TCNN3 versus the size of training dataset are
shown in Fig. 11. Here, we utilized six training datasets:
140,000, 70,000, 35,000, 17,500, 8750, and 4375, where
8750 presents 8750 samples randomly selected from a
total of 140,000 training samples, similarly for other
data sizes. From Fig. 11, we can see that SCNN3 per-
forms better than TCNN3 by more than 2% but requires
three times longer training time in each training dataset.
The reason is that the spectrogram is a more infor-
mative and complex representation of HRRP, which
provides more information, but also consumes more
computing resources in feature learning. Furthermore,
larger training dataset yields better recognition rates,
but it also means a huger computational burden, as the
training time increases linearly with the training data
size. Therefore, in a real application, we need to con-
sider the system resource and strike an appropriate bal-
ance between recognition performance and computation
burden.

According to literature [13], the noises in the inphase
and quadrature echoes of aircraft-like targets under a
look-up scenario can be assumed as Gaussian white
noises. To evaluate the effect of noises on the proposed
method, we add simulated white noises to the inphase and
quadrature component of the high signal-to-noise ratio
(SNR) raw test data. The SNR is defined as:

SNR = 10 × log10
(

Px
PNoise

)

= 10 × log10

( ∑L
l=1 Pxl

L × PNoise

) (11)

where Px and Pxl respectively denote the average power of
HRRP and the power of the original echo per range cell,
L denotes the number of range cells (here L = 256), and
PNoise denotes the power of noise. For SCNN3, the noisy
spectrogram is derived from the corresponding noisy time
domain HRRP. Figure 12 depicts the average recogni-
tion rates versus SNR, in which we compare our TCNN3,
SCNN3 models with several existing HRRP recognition

Fig. 10 Average recognition rates of TCNN and SCNN with various number of convolutional layers. The blue and red bars illustrate the recognition
rates of TCNN and SCNN models, respectively
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Fig. 11 Average recognition accuracies (bars) and training time (curves) of the SCNN3 and TCNN3 versus the size of training dataset

methods, including (1) maximum correlation coefficient
(MCC) [9], (2) adaptive Gaussian classifier (AGC) [11], (3)
linear support vector machine (LSVM) [28, 41], (4) lin-
ear discriminant analysis + LSVM (LDA), (5) principal
component analysis + LSVM (PCA), (6) stacked denois-
ing autoencoders (SDAE) [27], and (7) stacked corrective
autoencoders + LSVM (SCAE) [19]. Here, “+” denotes
two-stage model. MCC and AGC are two classic statis-
tical recognition methods. LSVM is an efficient machine
learning algorithm aimed at minimizing structural risk for
good generalization performance. In LDA + LSVM and
PCA + LSVM, LDA and PCA are only used to extract
features. SDAE and SCAE are two deep fully connected
neural network models. Since the three-layer SDAE and
SCAE models achieve better classification accuracy in
[19], we only exhibit the results of these models with three

hidden layers. It should be noted that all the models are
trained with 140,000 training dataset and they take the
time domainHRRP as input except SCNN3. Generally, the
recognition performance of all methods decreases with
the increasing noise. When SNR ≥ 15 dB, TCNN3 and
SCNN3 outperform other models; when SNR < 15 dB,
four deep models SDAE, SCAE, TCNN3, and SCNN3
obtain the similar performance and are superior to shal-
low models. We also list the average recognition rates
and computational time of these models on the raw test
dataset in Table 2. In the case of time domain HRRP,
the TCNN3 outperforms other shallow or deep models,
while SCNN3 delivers the best performance, since it uses
the spectrogram as the HRRP representations. Although
the computation costs of TCNN3 and SCNN3 in training
phase are pretty expensive, they can be ignored for an off-

Fig. 12 Variation of the recognition performance with SNR, via five shallow models: MCC, AGC, LSVM, LDA, and PCA, and four deep models: SDAE,
SCAE, SCNN3, and TCNN3
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Table 2 Average recognition rates, training time, and test time of
the proposed model (denoted TCNN3, SCNN3) with comparisons
to several methods from the literature [19]

Method Accuracy(%) Training time (s) Test time (s)

MCC 62.42 0.13 0.86

AGC 85.63 0.84 13.1

LSVM 86.70 0.93 0.06

LDA 81.30 0.09 0.01

PCA 83.81 0.14 0.11

SDAE 90.42 3.1/epoch 0.13

SCAE 92.03 2.7/epoch 0.13

TCNN3 92.57 13.8/epoch 0.10

SCNN3 95.31 56.6/epoch 0.65

line learning (or training) system and it is more important
to evaluate the computation cost in the test phase. For test
time, TCNN3 is faster than most shallow or deep mod-
els, and it is acceptable that SCNN3 provides significant
performance improvement over a slightly longer period of
time (0.65 s).
In addition, to offer an insight into the performance of

the TCNN3 and SCNN3 on different targets, their con-
fusion matrixes are listed on Tables 3 and 4. Obviously,
the SCNN3 benefits mainly from the decreasing misclas-
sification of Cessna to An-26. We analyze that An-26 is a
propeller-driven aircraft and its HRRPs are unstable due
to the modulability of the propellers, which results in that
some samples of the Cessna and An-26 are quite similar
in time domain, after all, the representation of each range
cell in time domain is a scalar. However, this similarity can
be reduced by the spectrogram feature as it introduces
the phase information to represent the signal. As shown
in Fig. 13, the spectrogram representation of two highly
similar time domain HRRPs can be very different, where
we select two test samples which the TCNN3 misclassified
while the SCNN3 correctly classified.
We also show the first two principal components of the

three aircrafts based on different features in Fig. 14. Com-
pared to TCNN3 (Fig. 14b), the features extracted from
SCNN3 (Fig. 14c) are more separable, which supports
again that the spectrogram is an informative representa-
tion of HRRP.

Table 3 Confusion matrix of TCNN

Time domain feature

An-26 C.C. S/II Yark-42 Total

An-26 0.9495 0.0215 0.029 1.0

C.C. S/II 0.115 0.8655 0.0195 1.0

Yark-42 0.0308 0.0108 0.9538 1.0

Avg. accuracy rate (%) 92.29%

Table 4 Confusion matrix of SCNN

Spectrogram feature

An-26 C.C. S/II Yark-42 Total

An-26 0.9515 0.012 0.0365 1.0

C.C. S/II 0.043 0.9485 0.0085 1.0

Yark-42 0.0242 0.001 0.9658 1.0

Avg. accuracy rate (%) 95.19%

4.2.4 Feature visualization
Besides the numerical results, it is of interest to examine
what the networks “learn” at different layers. We can visu-
alize the first-layer filters directly. Each higher layer filter
can be visualized as a weighted linear combination of the
lower layer filters [34, 41]. Specifically, assume the CNN
model consists of L layers, a filter k at layer l > 1 cor-
responds to a set of max-pooled feature maps from layer
l − 1. One may sequentially map a filter from any layer
l > 1 to a set of feature maps below, until at the low-
est level the feature maps correspond to a segment in the
input. We treat the segment in the input as the feature of
filter k.
Several learned filters of three-layer TCNN and SCNN

at layer l(l = 1, 2, 3) are exhibited in Figs. 15 and 16,
respectively. For each learned filter, we show ten segments
from the test samples with the highest activations on the
feature maps. We can find that for both the models, filters
at layer 1 (Figs. 15a and 16a) learn the specific structural
features that exist in signals. Since the higher layer learns
to combine the lower layer features, compared to the fil-
ters at layer 1, the layer 2 and 3 are more complex and have
a small translation (Figs. 15b, c and 16b, c).

4.3 Combine recognition with rejection
The target rejection problem is taken into consideration
in this section, and we add a three-layer deconvolution
decoder to a three-layer SCNN to represent the data, and
the kernel sizes of decoder correspond to those of the
encoder, 1×9, 1×9, and 32×6. As mentioned before, the
rejection function of our model is realized by measuring
the error between input xs and its corresponding recon-
struction signal x̃s. Specifically, after training, we expect
the in-class targets will have smaller reconstruction errors
while the outlier targets produce larger ones. By setting
an error threshold Te, the rejection task can be trans-
formed to a two-class calcification problem. Then, we use
the area under a receiver operation characteristic (ROC)
curve (AUC) to evaluate the rejection performance [42].
In the experiment, three airplane targets are regarded

as in-class targets, while the simulated data contain-
ing 18,000 truck HRRP samples are considered as out-
liers. A histogram of reconstruction errors of our model(
λ = 10−6) between the three airplanes and the outlier
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(a) (b)

(c) (d)
Fig. 13 Comparison of the test sample’s time domain and its corresponding spectrogram representations from different targets. a, c An-26. b, d
Cessna Citation S/II

(a)

(b) (c)
Fig. 14 Visualizations of the first two principal components of the test HRRP samples and their corresponding features from different models. a The
original time domain. b TCNN. c SCNN
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(a)

(c)

(b)

Fig. 15 Visualization of filters learned from a three-layer TCNN where each column represents a type of filter. a Layer 1. b Layer 2. c Layer 3

Fig. 16 Visualization of filters learned from a three-layer SCNN where each row represents a type of filter. a Layer 1. b Layer 2. c Layer 3
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(a) (b)
Fig. 17 Rejection performance of our model and counterpart approaches on measured data. a Histogram of reconstruction errors of our model(
λ = 10−6

)
between the three in-class targets (blue bins) and the outlier target (orange bins). b ROC curves obtained by different rejection methods

target is shown in Fig. 17a. We also consider support vec-
tor domain description with Gaussian kernel (KSVDD)
[43], Kernel PCA with Gaussian kernel (KPCA) [44],
and K-means [43] as counterparts in the experiment.
For KSVDD and KPCA, the kernel parameters and the
number of eigenvectors (for KPCA) are chosen by cross-
validation. The ROC curves of KSVDD, KPCA, K-means,
and our model

(
λ = 10−6) are shown in Fig. 17b, and

the AUC values of them are 0.9385, 0.9335, 0.8128, and
0.9662, respectively. We can see that the proposed model
achieves better rejection of the outliers than other classi-
fiers (or models). This can be attributed to the fact that
the highly nonlinear transformations in decoder not only

provide our model a good reconstructor but also capture
features that are relevant to the training data.
The hyper-parameter λ is used to balance the recogni-

tion loss and the reconstruction loss. In order to figure
out how the λ influences the recognition and rejection
result, several λs are chosen in our experiments to inves-
tigate. Figure 18 shows the AUC and the recognition rate
varies with λ. We can notice that the parameter λ affects
both the recognition and rejection performance. When λ

is small, e.g., λ = 10−7, the model focuses on recogni-
tion and leads to a poor reconstruction. When the λ gets
larger, e.g., around 10−6 to 10−3, the recognition decreases
a little and the rejection performs well. However, it is

Fig. 18 ACC (average recognition rate) and AUC under different λs
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interesting to see that with λ going too large
(
λ > 10−3),

the model does not exhibit good performance on rejection
task, since it has strong capability of signal reconstruction
for both of existing and outlier targets, which will make
the model ambiguous. In practical, the values that satisfy
the radar system recognition and rejection performance
requirements can be selected as λ. Considering the recog-
nition and rejection performance, a λ around 10−6 to 10−3

is suitable for our HRRP data.

5 Conclusion
In this paper, in order to explore the correlation between
range cells and extract the structured discriminative fea-
tures in HRRP, we have proposed a novel approach to
address HRRP RATR and rejection problem based on
convolutional neural network. Since the spectrogram is
more informative than time domainHRRPwith frequency
and phase information, besides using one-dimensional
CNN to handle HRRP in time domain, we also special-
ized a two-dimensional CNN model for its spectrogram
representations.
Furthermore, we plugged a deconvolutional network

into the model to solve the outlier rejection problem. By
measuring the reconstruction error between the input and
the output in the decoder part, the model can identify
whether a sample is an outlier or not. Experiments based
on the measure radar data have shown that our model is
competitive on both of recognition and rejection task. In
the future, to make use of the phase information, we will
design the complex-valued CNNs to handle the complex
HRRPs.

Abbreviations
1-D: One-dimensional; 2-D: Two-dimensional; AGC: Adaptive Gaussian
classifier; AUC: Area under an ROC curve; BN: Batch normalization; CNN:
Convolutional neural network; DBN: Deep belief networks; DFT: Discrete
Fourier transformation; FA: Factor analysis; HRR: High-resolution radar; HRRP:
High-resolution range profile; KPCA: Kernel PCA; KSVDD: Support vector
domain description with Gaussian kernel; LDA: Linear discriminant analysis;
LOS: Line-of-sight; LSVM: Linear support vector machine; MCC: Maximum
correlation coefficient; PCA: Principal components analysis; RATR: Radar
automatic target recognition; ROC: Receiver operation characteristic; SCAE:
Stacked corrective autoencoders; SCNN: CNN for spectrogram domain; SDAE:
Stacked denoising autoencoder; STFT: Short-time Fourier transform; TCNN:
CNN for time domain

Acknowledgements
The authors would like to thank the anonymous reviewers for their valuable
comments and suggestions that helped improve the quality of this manuscript.

Funding
This work is partially supported by the Thousand Young Talent Program of
China, NSFC (61771361), the 111 Project (B18039), and the National Science
Fund for Distinguished Young Scholars of China (61525105).

Availability of data andmaterials
Not available online. Please contact author for data requests.

Authors’ contributions
All authors have contributed equally. All authors have read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 14 May 2018 Accepted: 10 January 2019

References
1. D. Orlando, G. Ricci, Adaptive radar detection and localization of a

point-like target. IEEE Trans. Signal Process. 59(9), 4086–4096 (2011)
2. A. Aubry, A. De Maio, G. Foglia, C. Hao, Orlando D., Radar detection and

range estimation using oversampled data. IEEE Trans. Aerosp. Electron.
Syst. 51(2), 1039–1052 (2015)

3. R. A. Mitchell, J. J. Westerkamp, Robust statistical feature based aircraft
identification. IEEE Trans. Aerosp. Electron. Syst. 35(3), 1077–1094 (1999)

4. S. P. Jacobs, J. A. O’Sullivan, Automatic target recognition using
sequences of high resolution radar range-profiles. IEEE Trans. Aerosp.
Electron. Syst. 36(2), 364–381 (2000)

5. X. Liao, P. Runkle, L. Carin, Identification of ground targets from sequential
high-range-resolution radar signatures. IEEE Trans. Aerosp. Electron. Syst.
38(4), 1230–1242 (2002)

6. F. Zhu, X. D. Zhang, Y. F. Hu, D. Xie, Nonstationary hidden Markov models
for multiaspect discriminative feature extraction from radar targets. IEEE
Trans. Signal Process. 55(5), 2203–2214 (2007)

7. J. Chai, H. Liu, Z. Bao, Combinatorial discriminant analysis: supervised
feature extraction that integrates global and local criteria. Electron. Lett.
45(18), 934–935 (2009)

8. X.-D. Zhang, Y. Shi, Z. Bao, A new feature vector using selected bispectra
for signal classification with application in radar target recognition. IEEE
Trans. Signal Process. 49(9), 1875–1885 (2001)

9. L. Du, H. Liu, Z. Bao, M. Xing, Radar HRRP target recognition based on
higher order spectra. IEEE Trans. Signal Process. 53(7), 2359–2368 (2005)

10. L. Du, H. Liu, Z. Bao, J. Zhang, Radar automatic target recognition using
complex high-resolution range profiles. IET Radar Sonar Navig. 1(1),
18–26 (2007)

11. L. Du, H. Liu, Z. Bao, Radar HRRP statistical recognition: parametric model
and model selection. IEEE Trans. Signal Process. 56(5), 1931–1944 (2008)

12. L. Shi, P. Wang, H. Liu, L. Xu, Z. Bao, Radar HRRP statistical recognition with
local factor analysis by automatic Bayesian Ying-Yang harmony learning.
IEEE Trans. Signal Process. 59(2), 610–617 (2011)

13. L. Du, P. Wang, H. Liu, M. Pan, F. Chen, Z. Bao, Bayesian spatiotemporal
multitask learning for radar HRRP target recognition. IEEE Trans. Signal
Process. 59(7), 3182–3196 (2011)

14. L. Du, H. Liu, P. Wang, B. Feng, M. Pan, Z. Bao, Noise robust radar HRRP
target recognition based on multitask factor analysis with small training
data size. IEEE Trans. Signal Process. 60(7), 3546–3559 (2012)

15. X. Zhang, B. Chen, H. Liu, L. Zuo, B. Feng, Infinite max-margin factor
analysis via data augmentation. Pattern Recog. 52, 17–32 (2016)

16. B. Feng, L. Du, H. W. Liu, F. Li, in IEEE Cie International Conference on Radar.
Radar HRRP target recognition based on K-SVD algorithm (IEEE,
Piscataway, 2012), pp. 642–645

17. D. Zhou, Radar target HRRP recognition based on reconstructive and
discriminative dictionary learning. Signal Process. 126, 52–64 (2016)

18. H. Yan, Z. Zhang, G. Xiong, W. Yu, Radar HRRP recognition based on
sparse denoising autoencoder and multi-layer perceptron deep model.
UPINLBS. 1, 283–288 (2016)

19. B. Feng, B. Chen, H. Liu, Radar HRRP target recognition with deep
networks. Pattern Recogn. 61, 379–393 (2017)

20. M. Pan, L. Du, P. Wang, H. Liu, Z. Bao, Multi-task hidden Markov modeling
of spectrogram feature from radar high-resolution range profiles.
EURASIP J. Adv. Sig. Proc. 2012(1), 411 (2012)

21. B. Chen, H. Liu, J. Chai, Z. Bao, Large margin feature weighting method via
linear programming. IEEE Trans. Knowl. Data Eng. 21(10), 1475–1488
(2009)

22. L. Du, H. Liu, Z. Bao, in International Conference on Radar. Radar automatic
target recognition based on complex high-resolution range profiles (IEEE,
Piscataway, 2006), pp. 1–5



Wan et al. EURASIP Journal on Advances in Signal Processing          (2019) 2019:5 Page 17 of 17

23. L. Du, H. Liu, Z. Bao, J. Zhang, A two-distribution compounded statistical
model for radar HRRP target recognition. IEEE Trans. Signal Process. 54,
2226–2238 (2006)

24. B. Chen, H. Liu, L. Yuan, Z. Bao, Adaptively segmenting angular sectors for
radar HRRP automatic target recognition. EURASIP J. Adv. Signal Process.
2008(1), 641709 (2008)

25. H.-w. Liu, B. Chen, B. Feng, L. Du, Radar high-resolution range profiles
target recognition based on stable dictionary learning. IET Radar Sonar
Navig. 10(2), 228–237 (2016)

26. G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with
neural networks. Science. 313(5), 504–507 (2006)

27. P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and
composing robust features with denoising autoencoders. ICML,
1096–1103 (2008)

28. Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and
new perspectives. IEEE Trans. Pattern. Anal. Mach. Intell. 35(8), 1798–828
(2013)

29. A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep
convolutional neural networks. NIPS, 1097–1105 (2012)

30. K. Simonyan, A. Zisserman, Very deep convolutional networks for
large-scale image recognition. CoRR. abs/1409.1556 (2014). http://arxiv.
org/abs/1409.1556. arXiv, 1409.1556

31. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, A. Rabinovich, Going deeper with convolutions. CVPR. 1, 1–9
(2015)

32. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition. CVPR. 1, 770–778 (2016)

33. S. Ioffe, C. Szegedy, in Proceedings of the 32nd International Conference on
Machine Learning. vol. 37, Proceedings of Machine Learning Research, ed. by
F. Bach, D. Blei. Batch normalization: Accelerating deep network training
by reducing internal covariate shift (PMLR, Lille, 2015), pp. 448–456. 07–09
July

34. H. Lee, R. Grosse, R. Ranganath, A. Y. Ng, in the 26th Annual International
Conference. Convolutional deep belief networks for scalable unsupervised
learning of hierarchical representations (ACM Press, New York, 2009),
pp. 1–8

35. T. N. Sainath, A. R. Mohamed, B. Kingsbury, B. Ramabhadran, in IEEE
International Conference on Acoustics, Speech and Signal Processing. Deep
convolutional neural networks for LVCSR (IEEE, Piscataway, 2013),
pp. 8614–8618

36. Y. Zhang, W. Chan, N. Jaitly, Very deep convolutional networks for
end-to-end speech recognition. Int. Conf. Acoust. Speech Signal Process.
1, 4845–4849 (2017)

37. V. Nair, G. E. Hinton, Rectified linear units improve restricted Boltzmann
machines. ICML, 807–814 (2010)

38. R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, C. D. Manning,
Semi-supervised recursive autoencoders for predicting sentiment
distributions. EMNLP, 151–161 (2011)

39. D. P. Kingma, D. J. Rezende, S. Mohamed, M. Welling, Semi-supervised
learning with deep generative models. Adv. Neural Inf. Process. Syst. 4,
3581–3589 (2014)

40. J. L. Walker, Range-Doppler imaging of rotating objects. IEEE Trans.
Aerosp. Electron. Syst. 16(1), 23–52 (1980)

41. B. Chen, G. Polatkan, G. Sapiro, D. Blei, D. Dunson, L. Carin, Deep learning
with hierarchical convolutional factor analysis. IEEE Trans. Pattern. Anal.
Mach. Intell. 35(8), 1887–1901 (2013)

42. J. Davis, M. Goadrich, The relationship between Precision-Recall and ROC
curves. ICML. 1, 233–240 (2006)

43. D. M. J. Tax, One-class classification. PhD thesis, Delft University of
Technology (2001)

44. H. Hoffmann, Kernel PCA for novelty detection. Pattern Recognit. 40(3),
863–874 (2007)

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

	Abstract
	Keywords

	Introduction
	Preliminaries
	Time domain HRRP
	Spectrogram feature of HRRP

	HRRP target recognition and outlier rejection based on CNN
	CNN for time domain
	CNN for spectrogram domain
	Batch normalization
	Combine recognition with rejection

	Results and discussion
	Measured data
	Training and test dataset selection
	Preprocessing

	Recognition
	Experimental setup
	Impact of model parameters
	STFT window length
	Kernel size
	The number of CNN layer

	Recognition performance
	Feature visualization

	Combine recognition with rejection

	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	References

