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Abstract

Background: The spectral information of the EEG signal with respect to epilepsy is examined in this study.

Method: In order to assess the impact of the alternative definitions of the frequency sub-bands that are analysed, a
number of spectral thresholds are defined and the respective frequency sub-band combinations are generated. For
each of these frequency sub-band combination, the EEG signal is analysed and a vector of spectral characteristics is
defined. Based on this feature vector, a classification schema is used to measure the appropriateness of the specific
frequency sub-band combination, in terms of epileptic EEG classification accuracy.

Results: The obtained results indicate that additional frequency band analysis is beneficial towards epilepsy detection.

Conclusions: This work includes the first systematic assessment of the impact of the frequency sub-bands to the
epileptic EEG classification accuracy, and the obtained results revealed several frequency sub-band combinations that

achieve high classification accuracy and have never been reported in the literature before.
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1 Introduction

Signal processing of electroencephalogram (EEG) is a
field that has drawn significant attention in the last
years. As a result, numerous EEG processing methodolo-
gies have been presented in the literature. One of the
most popular field in EEG signal processing is the epi-
lepsy detection and classification. Being one of the most
common neurological disorders [1], epilepsy has been
the focus of hundreds of EEG analysis studies. Epilepsy
is a chronic brain disorder, characterized by recurrent
seizures, which cannot be predicted. The severity of the
condition can vary greatly, while seizures may fall into a
large variety of types [2].

Most of the studies for epileptic activity detection/classi-
fication using EEG signal processing, formulate method-
ologies that analyse the EEG signal by extracting
informative features from it [3—20]. To this end, spectral
analysis of the EEG signal is essential, since epileptic activ-
ity interrupts normal brain functionality. Analysing the
EEG signal frequency patterns in order to extract spectral
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characteristics is one of the most common types of EEG
analysis, either by itself (i.e. by focusing on the frequency
domain) or combined with other types of analysis (such as
non-linear analysis), thus resulting to a vector of features.
Then, these features are used as input into a classifier,
resulting to classification of epileptic signals.

The EEG spectral analysis is based on a set of fre-
quency sub-bands. Researchers have mainly used wavelet
transform (WT) [3-16] and time-frequency distributions
(TFD) [17-20] to analyse the EEG spectral patterns.
However, although spectral analysis is a well-known ap-
proach, with numerus studies including spectral charac-
teristics in the features extracted from the EEG, the
importance of the frequency sub-bands that are used to
analyse the signal has never been thoroughly investi-
gated in the literature. It is medically established that
brainwaves are divided based on their frequency into
several sub-bands, being delta (1-4 Hz), theta (4—8 Hz),
alpha (8-13Hz), beta (13-30Hz) and gamma (30-80
Hz) [21]. Thus, several researchers roughly focus on
these sub-bands [3—14, 17, 18], with the technical limita-
tions that the analysis technique imposes (i.e. WT).
Thus, the importance of the frequency sub-bands and
their limits have not been analysed in the literature,
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since in WT-based approaches the frequency sub-bands
are automatically set [3—16], while in TFD-based meth-
odologies, an attempt to compare the impact of different
sub-bands has been presented [17], however not being a
systematic approach since only four different sub-band
combinations were analysed.

The main focus of this study is to study the impact of
frequency sub-band selection regarding the EEG epi-
lepsy classification. To this end, a methodology has
been developed, which initially defines the number of
spectral thresholds (which determines the number of
frequency sub-bands that are created) from 0 to 12,
with 0 meaning that the overall frequency spectrum of
the EEG is considered as a single frequency sub-band
and all other values (1-12) defining the number of fre-
quency sub-bands (i.e. for five spectral thresholds, six
frequency sub-bands are created). Then, all possible
combinations of these sub-bands are created, subject to
simple limitations (i.e. the range of each sub-band is
forced to be =2 Hz). From each combination, a set of
features is extracted, which are used in a classifier. The
Bonn EEG database has been employed and results are
obtained in terms of classification accuracy, indicating
the importance of this study. To the best of the author’s
knowledge, this is the first systematic analysis of the
impact of different frequency sub-band number and
range, presented in the literature. Furthermore, the re-
sults reveal frequency sub-bands that presented high
classification accuracy and have never been studied in
the literature before.

2 Related work

2.1 Dataset

The Bonn EEG database [22] has been employed in this
study, which is a well-known benchmark dataset for
this problem. The database includes recordings for both
healthy and epileptic subjects, divided in five subsets
(denoted as A-E and named as Z, O, N, F and S, re-
spectively) each of them containing 100 single-channel
EEG recordings. Sets A and B (Z and O files) are re-
cordings from five healthy volunteers with eyes open
and eyes closed, respectively. The recordings are made
extracranially, using the standard 10—20-electrode posi-
tioning system. Sets C and D (N and F files) are
seizure-free recordings from five epileptic patients,
from the epileptogenic zone (set D) and the hippocam-
pal formation of the opposite brain hemisphere (set C),
while set E (S files) contains seizure activity, selected
from several recording sites exhibiting ictal activity.
Sets C, D and E are recorded intracranially, using depth
electrodes implanted symmetrically into the hippocam-
pal formation and strip electrodes are implanted onto
the lateral and basal regions (middle and bottom) of
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the neocortex. An example recording of each set is il-
lustrated in Fig. 1. The sampling rate of the EEG data is
173.61 Hz, and each of them has duration of 23.6s
(4096 samples), recorded using 12-bit resolution, while
the spectral bandwidth is 0.5 to 85 Hz.

2.2 Methods using wavelet transform

The WT-based methods presented in the literature for
the analysis of epilepsy in EEG mainly apply discrete
wavelet transform (DWT) or wavelet packet decompos-
ition (WPD). WT is a time-frequency technique, which
provides both time and frequency views of a signal [23].
Thus, it can accurately capture and localize transient
features in the data like the epileptic spikes. In wavelet
analysis, a linear combination of specific functions repre-
sents the initial signal. These functions are obtained by
dilation and translation of the mother wavelet. The sig-
nal is decomposed into segments of half its size and
spectrum with the use of the mother wavelet. Particu-
larly, in DWT the scaling and translating parameters are
presented in powers of two. A series of quadrature mir-
ror filters (QMF) are used, serving as high-pass and
low-pass filters. In the first level, the conjugate filters
(high-pass and low-pass) are applied to the input signal
resulting to a set of coefficients, named wavelet coeffi-
cients. The “approximation” is the output of the
low-pass filter and is sub-decomposed, extending this
procedure in the next level. However, the output of the
high-pass filter (“detail”) is not further decomposed. In
the next level, the procedure is repeated only for the ap-
proximation until the signal is decomposed to reveal the
band of interest.

WPD is a wavelet transform and it can also be inter-
preted as an expansion of the DWT, wherein the signal
is analysed with a set of QMFs that divide the fre-
quency axis in separate intervals of various sizes [24].
However, in the WPD, the signal is passed through
more filters than the DWT and both the detail and ap-
proximation coefficients are decomposed. In the first
level of decomposition, the obtained wavelet packet co-
efficients are referred as first-level approximation and
detail respectively. In the second level, the approxima-
tion of the approximation (AA), the detail of the ap-
proximation (DA), the approximation of the detail (AD)
and the detail of the detail (DD) coefficients are com-
puted and this recursive algorithm renders each newly
computed wavelet packet coefficient the root of its own
analysis tree. This recurrent splitting is represented in a
binary tree. The steps of the methodological approaches
presented in the literature are common in both cases.
The EEG signal is decomposed into several frequency
sub-bands and features are extracted, creating a feature
vector, most commonly used as input to a classifier.
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Fig. 1 Recordings from the five sets of the Bonn EEG database
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2.2.1 DWT-based studies

The sampling frequency of the EEG recordings in the
Bonn database is 173.61 Hz, and thus the frequency
range is 0-86.8 Hz. In the majority of methods, the en-
tire spectrum of the EEG recordings was analysed.
However, frequencies higher than 60 Hz are often char-
acterized as noise and are subsequently discarded. For
that reason, some researchers have initially applied a
band-pass filter, which removes the redundant frequency
and focuses only on the spectrum that corresponds to
the five medically established EEG rhythms, i.e. delta
(0-4Hz), theta (4—8 Hz), alpha (8-13 Hz), beta (13-30
Hz) and gamma (30-60 Hz or 30—-80 Hz).

Subasi [3] used DWT to decompose the EEG signals
into six frequency sub-bands. However, only the wave-
let coefficients that correspond to the frequency range
of interest 0—21.7 Hz, meaning the details D3-D5 and
the approximation A5, were used to calculate the fea-
tures and train a mixture of experts (ME)-based classi-
fier. Guo et al. [4] also used the DWT to analyse the
EEG signals, applying a four-level decomposition,
dividing the selected EEG recordings into five fre-
quency sub-bands. The line length feature was ex-
tracted from each of the five sub-signals (D1-D4 and
A4) forming the feature vector that trained a multilayer

perceptron neural network (MLP). Ocak [5] applied a
decomposition of three levels in the entire spectrum
(0-86.8 Hz). Approximate entropy (ApEn) values, cal-
culated for all the frequency bands, were used to define
a threshold which classified the EEG segments. Kumar
et al. [6] applied a five-level decomposition and calcu-
lated the ApEn in each decomposition level. The gener-
ated feature vector was fed to an MLP classifier. In a
subsequent study, the same group applied a decompos-
ition of five levels (as they previously suggested in [6]),
using the fuzzy approximate entropy (fApEn) and sup-
port vector machines (SVM) for classification.

A comparison of three feature extraction techniques,
principal component analysis (PCA), independent com-
ponent analysis (ICA) and linear discriminant analysis
(LDA) was presented in [8]. The EEG recordings were
subjected to a five-level decomposition, and statistical
features were extracted only by the sub-signals D3, D4,
D5 and A5, which correspond to the frequency range of
0-21.7 Hz. The dimension of the resulting feature set
was reduced by using PCA, ICA and LDA, and the fea-
ture vector was used as input to an SVM classifier. In
another DWT-based study [9], the authors’ main target
was the implementation of a feature extraction system
based on genetic programming. Therefore, they applied
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a four-level decomposition to analyse the signal in
sub-signals and then genetic programming, aiming to re-
duce the dimension of the extracted feature vector. The
extracted set of features and the reduced were used re-
spectively to train a k-nearest neighbour (KNN) classi-
fier. Results indicated that the reduced feature vector
improved the classifier’s performance. A comprehensive
methodology based on optimized extreme learning ma-
chine (OELM) was proposed in [10]. In this method-
ology, wavelet-based statistical features were extracted
from a four-level decomposition and the OELM classi-
fier was trained by the features that were extracted
from the entire spectrum (0-86.8 Hz). Five classifica-
tion problems were conducted (among them the
five-class problem Z-O-N-F-S), and the performance
was measured with accuracy, which reached above 94%
for all of the problems.

Another approach is to isolate the frequency band of
interest from the five EEG rhythms, from the redundant
frequency of the signal, by applying a band-pass filter. A
wavelet-chaos methodology was presented by Adeli et al.
[11], where a low-pass finite impulse response (FIR) was
used to filter the EEG signal to the 0-60 Hz band. The
EEG recordings were then subjected to a four-level de-
composition, and the average values and standard devia-
tions of a couple of parameters (namely correlation
dimension and largest Lyapunov exponent) were calcu-
lated in each wavelet sub-signal (D1-D4 and A4), repre-
senting the system’s chaocity. In a subsequent study
[12], the aforementioned authors applied wavelet ana-
lysis and decomposed the signals into the same fre-
quency sub-bands, evaluating different methods of
classification. A similar approach is described in study
[13], wherein the authors applied a band-pass filter and
cut off all the signal activity outside the 0—60-Hz range
to prepare the EEG signals for further processing. In the
next stage, a four-level decomposition was applied and
the calculated autoregressive (AR) parameters of each
sub-band were fed to an MLP classifier. Wang et al. [14]
presented a novel classification algorithm based on a
voting strategy and a hardware implementation. The
authors used a band-pass filter to focus only to the
0-32-Hz range and then applied a three-level decom-
position and extracted the sample entropy (SampEn)
only by the detail coefficients (D1, D2, D3).

2.2.2 WPD-based studies

Ocak [15] divided the EEG segments through a
four-level wavelet packet decomposition. ApEn values
of the wavelet coefficients of all the 31 nodes of the de-
composition tree were used as a feature vector, while a
genetic algorithm was employed to reduce the number
of features and find the optimal feature subset that

(2019) 2019:10

Page 4 of 17

maximizes the classification performance of a learning
vector quantization (LVQ) scheme. Swami et al. [16]
used wavelet packet decomposition to extract valuable
information from the EEG signal. A six-level wavelet
packet decomposition yielding 64 nodes was performed,
and several statistical features were extracted from each
node. The authors tested seven different combinations
of the feature vector and resulted in the best pair,
reaching high levels of accuracy. Table 1 summarizes
WT-based methods (DWT and WPD) presented in
the literature.

2.3 Methods using time-frequency analysis

The smoothed pseudo Wigner-Ville distribution
(SPWVD) was applied in study [17]. Various lengths of
time-frequency resolutions (64, 128, 256 and 512), time
windows (3 and 5) and frequency sub-bands (4, 5, 7 and
13) were analysed, aiming to extract several features
from the spectrum of the signal reflecting the energy
distribution over the time-frequency plane. PCA was ap-
plied to the obtained features, and then an artificial
neural network (ANN) was employed for classification.
In [18], the same group presented a comprehensive
study wherein the short-time Fourier transform (STFT)
and 12 other TFDs were evaluated. The power spectrum
density (PSD) of each segment was also extracted and
used as input to an ANN classifier.

A methodology based on fast Fourier transform (FFT)
and ApEn was proposed in [19]. The average power
spectrum was extracted in each sub-band of 4 Hz along
with the ApEn. In total, 16 features were extracted, and
the ability of genetic programming and PCA to reduce
the dimension of feature vector was examined. The
SVM classifier with linear and radial basis functions
(kernel functions) was also employed.

In study [20], EEG analysis using TFDs and particu-
larly the spectrogram (SP), the Choi-Williams distribu-
tion (CWD) and the SPWVD are performed. The
purpose of the study was both the identification of the
seizure peaks and the classification of the EEG signals.
For the identification of the peak seizures, the TFDs
were calculated and the maximum values were found.
The normalized Renyi marginal entropy (RME) was ex-
tracted for various lengths of a window (11, 17, 27, 41,
49, 93, 151, 205, 255) for SP and SPWVD and the best
value of CWD obtained by the best values of window
length of SP and SPWVD. The SPWVD with the RME
provided the best results in terms of time-frequency
resolution for the peak identification problem. Each sig-
nal of the entire datasets was segmented in six
sub-bands, and the energy from the sub-bands B1, B2
and B3 corresponding to the frequency range of interest
of 0.5 to 12 Hz was extracted. A vector of 200 values of
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Table 1 WT-based methods for EEG analysis
Author Frequency Levels Frequency Author Frequency Levels Frequency
range (Hz) sub-bands (Hz) range (Hz) sub-bands (Hz)
Subasi [3] 0-86.8 5 D1 434-86.8 Guo et al. [9] 0-86.8 4 D1 43.4-86.8
D2 21.7-434 D2 21.7-434
D3 10.8-21.7 D3 10.85-21.7
D4 54-108 D4 542-10.85
D5 2.7-54 A4 0-542
A5 0-2.7 Murugavel and 0-86.8 4 D1 434-86.8
Guo et al. [4] 0-868 4 D1 434868  nomakishnan [10) D2 217-434
D2 21.7-434 D3 10.8-21.7
D3 10.8-21.7 D4 54-10.8
D4 54-108 A4 0-54
A4 0-54 Adeli et al. [11] 0-60 4 D1 30-60
Ocak [5] 0-86.8 3 D1 43.4-86.8 D2 15-30
D2 21.7-434 D3 8-15
D3 10.85-21.7 D4 4-8
Al 0-434 A4 0-4
A2 0-21.7 Ghosh-Dastidar 0-60 4 D1 30-60
A3 0-1085 etal (12 D2 15-30
Kumar et al. [6] 0-86.8 5 D1 43.4-86.8 D3 8-15
D2 21.7-434 D4 4-8
D3 10.85-21.7 A4 0-4
D4 54-10.85 Mousavi et al. [13] 0-60 4 D1 30-60
D5 27-54 D2 15-30
Al 0-434 D3 8-15
A2 0-21.7 D4 4-8
A3 0-10.85 A4 0-4
A4 0-543 Wang et al. [14] 0-32 3 D1 16-32
A5 0-2.70 D2 8-16
Kumar et al. [7] 0-86.8 5 D1 43.4-86.8 D3 4-8
D2 21.7-434 A3 0-4
D3 10.8-21.7 Ocak [15] 0-86.8 4 0-434
D4 54-108 D 434-86.8
D5 2.7-54 AA 0-21.7
A5 0-2.7 DA 21.7-434
Subasi [8] 0-86.8 5 D1 43.4-86.8 AD 434-65.1
D2 21.7-434 DD 65.1-86.8
D3 10.8-21.7 Swami et al. [16] 0-86.8 6 0-434
D4 54-108 43.4-86.8
D5 2.7-54 AA 0-21.7
A5 0-2.7 DA 21.7-434
AD 43.4-65.06

DD 65.06-86.8
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energy for the three sub-bands of interest was obtained,
and the moving averages were extracted. The classifica-
tion of the signals was performed by a threshold which
was defined by the mean of the moving average of en-
ergy for each band. The obtained results were used as
input to a score function to classify each signal.
Methods based on TFD analysis are summarized in
Table 2.

3 Method

The flowchart of the methodology followed for this
study in order to access the spectral characteristics of
the EEG signals is presented in Fig. 2.

3.1 Select number of thresholds

Initially, the number of spectral thresholds is selected,
which determines the number of frequency sub-bands
that are created; for N spectral thresholds, N+ 1 fre-
quency sub-bands are analysed. The number of spec-
tral thresholds that are examined in this study varied
from N= 0 (thus considering all EEG spectrum to be
a single sub-band) to N =12 (thus creating 13 spectral
sub-bands).

3.2 Create combinations

For each number of thresholds, all possible threshold
combinations are generated, subject to a single con-
strain, being that no two consecutive thresholds can be
closer than 2 Hz. The limits for the spectral analysis are
set to [0, 42] Hz. For N spectral thresholds, the thresh-
old set T is defined as:

N={t;},i=1:N (1)

with to=0Hz and £x, ; = 42 Hz, thus:
tiv1-t;22Hz,Vi=0: N, (2)

while each frequency sub-band is defined as:

Table 2 TFD-based methods for EEG analysis
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[ Select Number of Thresholds }

( Create combinations ]
[ Spectral Feature Extraction }
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Fig. 2 Flowchart of the methodology followed in this study

fi=

and the frequency sub-bands set F" is defined as:

={fi},i=0:N (4)

with |FN| =N+ 1. For example, for N=5, F={[0, #],
[t B, [to 8], 83 tal, L4 £5), [25, 42]} Hz.

In order to create all different threshold combinations
C" that satisfy the above limitation, only integer values of
thresholds are considered. Thus, ¢; € [2, 40] Hz, i=1:N,
since all frequency sub-bands must be > 2 Hz, and:

[ti,ti+1]7i =0:N

(3)

= {all different combinations of F"} (5)
The number of combinations varies greatly as N in-
creases; N vs |C"| is presented in Fig. 3.

3.3 Spectral feature extraction

3.3.1 Sub-band energy

All EEG signals are initially filtered using a low-pass fil-
ter with cut-off frequency of 42 Hz. Then, each threshold
set combination CV is used in order to define a set of
filters for the EEG signal, one low pass for the [0, t;] Hz
sub-band, one high pass for the [fy, 42] Hz sub-band
and N -1 band-pass filters for the [¢;, ¢;, 1] Hz,

Frequency ranges

Authors Freq. range (Hz) ~ Num. of frequency sub-bands
Tzallas et al. [17] 0-40 4
5
7
13
Tzallas et al. [18] 0-43.5 5
Liang et al. [19] 0-60 15
Ridouh et al. [20] 0-86.8 6

{
{
{

{
{
{
{
{

{

[0-
[0-
[0-
[0-
[16-
{[0-
[0-
[20-
[40-
[0

4], [4-8], [8-12], [12-40]}

2.5], [25-55], [5.5-10.5], [10.5-21.5], [21.5-43.5]}

2], [2-4], [4-6.5], [6.5-9], [9-12], [12-25], [25-40]}
1

4], [4-6], [6-8], [8-10], [10-12], [12-16]},
0], [20-24], [24-28], [28-32], [32-36], [36-401}

2],
2
2.5], [25-55], [5.5-10.5], [10.5-21.5], [21.5-43.5]}

4], [4-8], [8-12], [12-16], [16-201},
24], [24-28], [28-32], [32-36], [36-40]},
44], [44-48], [48-52], [52-56], [56-60]}

(2-
[2-

-2.71], [2.71-5.42], [5.42-10.85], [10.85-21.70], [21.70-43.40], [43.40-86.80]}
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\
i=1:N -1 sub-bands. All EEG filters are designed as
Elliptic IIR filters, with t;+ 0.5 Hz values as fstop and TE = Ze; (6)

fpass thresholds, respectively. The overall procedure is
illustrated in Fig. 4.

The energy of each of the N+ 1 filtered signals is the
calculated (e;), and the vector of energies (EN) is used for
the classification.

3.3.2 Total EEG energy
The total EEG energy (TE) is also calculated as sum of
all sub-band energies:

3.3.3 Sub-band fractional energy
Besides the energy of each sub-band, the fractional en-
ergy (fe;) is also calculated:

fe; =e/TE (7)

The vector of fractional energies (FEY) is also used as
input for the classification step.

-2ozw W MM
. - ’ - —
200 ’ ’ ; | . . i

0

0 5 20

5 10

N+ 1 filtered signals (right column)

20

YT TP TIRT [ TTTLUPIY [PPSR R TPPY T X
Ll | L

10 15 20

Fig. 4 Spectral feature extraction step. After initial filtering (0-42 Hz), the signal is filtered with N+ 1 elliptic filters (middle column), resulting to
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3.3.4 Spectral entropy

The spectral entropy (SEn) is the Shannon entropy of
the power spectrum density of each EEG signal, calcu-
lated as:

SEn = -X(Py log Py)/ log(M) (8)

with P being the spectral power of normalized frequen-
cies (and XP; = 1), and M is the number of frequency bins.

3.4 Classification

The spectral feature vector created in the previous step
is FV = {E", TE, FEV, SEn}. Thus, the size of FV is 2N
+4, except in the case of N=0 (ie. when all EEG
spectrum is considered as a single sub-band) where
|[EFV| =1 (ie. a single feature is included). The number
of spectral sub-bands (FV), spectral threshold combina-
tions (CV) and the size of the feature vector (FVY) with
respect to the number of spectral thresholds (N) are
presented in Table 3. Classification is based on a ran-
dom forest classifier [25], which is an ensemble learn-
ing method based on the construction of a multitude
of decision trees. In this study, random forests were
constructed with standard parameters, i.e. each forest
containing 100 decision trees, which are grown to the
full depth.

The overall methodology is presented in Algorithm 1.

(2019) 2019:10
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Table 3 Number of spectral thresholds and size of spectral
threshold set (N/TY) and respective number of spectral sub-bands
(F), spectral threshold combinations (C") and size of feature

vector (FEM)

NTY FY @) @ VAN
0 1 1 1

1 2 39 6
2 3 703 8
3 4 7770 10
4 5 58905 12
5 6 324,632 14
6 7 1,344,904 16
7 8 4,272,048 18
8 9 10,518,300 20
9 10 20,160,075 22
10 11 30,045,015 24
1 12 34,597,290 26
12 13 30,421,755 28
4 Results

The study focused on two different classification prob-
lems, the five-class problem (i.e. classifying all Z, O, N, F
and S categories) with the main objective being to iden-
tify the spectral sub-bands that carry the maximum in-
formation, and the three-class problem (ie. ZO-NF-S
categories), which is a well-known medically established

Algorithm 1. Methodology for systematic analysis of frequency sub-bands.

I:for N=0to 12

2: create CN = {all different combinations of FV }.

3: for each F" item in CV

4: for each x signal in EEG dataset

5: filter x (according to FV)

6: extract FV = {E", TE, FE", SEn}

7: end

8: classification using RF (10-fold cross-validation using FV from all

signals in the EEG dataset)
9: end

10: end
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problem in this area. The obtained results are in terms
of classification accuracy. The 10-fold stratified cross-
validation technique has been employed in the classifica-
tion, thus the dataset has been divided into 10 equally
sized datasets, with each of them having the same num-
ber of EEG recordings from each of the categories, and
then nine of them were used for training the classifier,
and the final for testing. This procedure is applied 10
times, thus resulting into 10 confusion matrices, while
the final confusion matrix (used to calculate classifica-
tion accuracy) is their summation.

In Table 4, the best obtained accuracy for the five-class
problem, for all number of thresholds (N) is presented
(max accuracy). Also, the average value of the top-10 clas-
sification accuracies for each number of thresholds (N) is
calculated (average accuracy). The results are illustrated in
Fig. 5.

The obtained accuracy results for N=1 are presented
in Fig. 6. The value of the threshold (#;) is on the x-axis;
thus, the respective accuracy result is obtained using fea-
tures extracted from frequency sub-bands FL={[0, 1],
[t1, 42]} Hz, with the size of the feature vector FV' = 6.
For example, for ¢; =4 Hz, the frequency sub-bands are
{[0, 4], [4, 42]} Hz and the accuracy result is 73.60%.
Also, the accuracy result of N =0 (F°=[0, 42] Hz, FV°=1),
being 44.80%, is depictured in Fig. 6 (black line) as a
baseline result.

The obtained accuracy results for N =2 are presented
in Fig. 7. Since using two spectral thresholds, the ob-
tained results formulate a matrix M (with M (¢, £,) = ac-
curacy obtained using these spectral thresholds), the
results are depicted in a 3D image. The value of t
threshold (Hz) is on the x-axis and the value of #,
threshold (Hz) is on the y-axis. Thus, the accuracy result

Table 4 Maximum obtained accuracy (max accuracy) and
average value of the top 10 obtained values for accuracy
(average accuracy) for the five-class problem, for N =0-12

N Max accuracy (%) Average accuracy (%)
0 44.80 44.80
1 73.60 67.08
2 83.60 8228
3 88.00 87.32
4 89.60 89.20
5 90.00 89.84
6 9040 90.00
7 9040 90.04
8 90.80 90.60
9 91.20 90.72
10 90.80 9048
11 9040 90.32
12 9040 90.08
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Fig. 5 Maximum obtained accuracy (max accuracy) and average

value of the top-10 obtained values for accuracy (average accuracy)

for the five-class problem, for N=0-12

for frequency sub-bands F2={[0, t1], [t1, to], [£2, 42]} Hz
(with size of feature vector FV?=8). For example, for
t;=4Hz and ¢,=6Hz, the frequency sub-bands are
{[o, 4], [4, 6], [6, 42]} Hz.

For values of N greater than 2, the obtained results
cannot be presented with respect to the # values.
Thus, results for N >2 are presented in Fig. 8a—j with
respect to the overall number of combinations (cM.
Vertical lines represent the changes of t;. For ex-
ample, the first part of Fig. 8a (denoted with gray
color) presents the results of all C* combinations with
t; =2Hz (which is the first valid value for ¢;, since
t,—to must be >2 Hz) and thus ¢, € [4, 38] Hz and t3
€ [6, 40] Hz. The sequence of C® combinations for #;
=2Hz is {{[0, 2], [2, 4], [4, 6], [6, 42]}, {[0, 2], [2, 4],
[4, 71, [7, 421}, ... {[0, 2], [2, 4], [4, 40], [40, 42]}, {[O,
2], [2, 5], [5, 7], [7, 421}, ..., {[O, 2], [2, 38], [38, 40],
[40, 42]}}.

To make clearer the plots of Fig. 8, the results of
C* combinations are also generated in this form
(Fig. 9). The subplots (a) to (f) in Fig. 9 correspond
to the parts of the main plot that are connected with
the red lines, for a specific value of ¢;. Figure 8a (the
first part of the main plot) corresponds to ¢, =2 Hz
and thus t, € [4, 40] Hz, Fig. 8b (the second part of
the main plot) corresponds to ¢, =3 Hz and thus £, €
[5, 40] Hz, Fig. 8c corresponds to t; =4Hz and ¢, €
[6, 40] Hz, Fig. 8d corresponds to t; =6Hz and ¢, €
[8, 40] Hz, Fig. 8e corresponds to t; =7Hz and ¢, €
[9, 40] Hz and Fig. 8f corresponds to t; =8 Hz and ¢,
e [10, 40] Hz.

The top five obtained classification accuracy results for
each N value, and the respective F are presented in
Table 5.
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Fig. 6 Obtained accuracy results for N=1 (t; = 2:40). Black line denotes the accuracy for N =0 (44.80%)

Besides the five-class problem, the well-known
three-class problem (ZO-NE-S) is also addressed. In this
case, the main focus is a medically established problem,
addressed from several researchers in the literature [17,
26-31]. Again, the results are in terms of classification
accuracy, and the 10-fold stratified cross-validation tech-
nique has been employed. The obtained results are pre-
sented in Table 6.

5 Discussion

A methodology for systematic analysis of the fre-
quency sub-band definition regarding EEG analysis
for epilepsy, is presented in this work, in order to as-
sess the impact of different number and alternative
definitions of frequency sub-bands in this problem.

80

=
> 70
8
2
S 60 0

50

40
20 30
10 t, (Hz)
40
t, (H2) 0 g
Fig. 7 Obtained accuracy for N=2 (t; = 238 Hz, t, = 440 Hz)

The methodology is based on the definition of a
number of spectral thresholds, based on which a set
of frequency sub-bands is created. Then, a set of
spectral features are extracted and used to train a
random forest classifier. For each specific number of
spectral thresholds (ranging from 0 to 12), all combi-
nations of sub-band definition are analysed, with the
limitation that each sub-band range must be at least
2Hz, resulting to a total of ~1.32x10% frequency
sub-band combinations. The methodology has been
applied on a benchmark dataset, being the Bonn EEG
database, for the five-class (Z-O-N-F-S) and the
three-class (ZO-NEF-S) problems.

For the five-class problem, the maximum accuracy
obtained for each N (presented in Table 4) ranges
from 44.80% (for N=0) to 91.20% (obtained for two
combinations with N=9). An important conclusion
extracted from this analysis is that increasing the
number of frequency sub-bands does not have a posi-
tive impact in the classification accuracy, since the re-
sults after peaking for N=9 are slightly decreasing
with respect to N (Fig. 5). The same conclusion is
reached when the average accuracy of the top 10 re-
sults is taken under consideration; maximum average
accuracy is 90.72% (obtained for N=9), decreasing to
90.08% (for N =12). It should be noted that evidence
for this conclusion can be found in Tzallas et al. [17]
and Liang et al. [19], where 13 and 15 frequency
sub-bands were examined, respectively, however
drawn from single experiments and not a systematic
analysis. In [17], the results are decreasing for 13 fre-
quency sub-bands compared to the results obtained
for five and seven frequency sub-bands (although the
five-class problem is not included in the analysis of
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[17]), while in [19] the obtained accuracy for the
five-class problem is 85.90% using 15 frequency
sub-bands. Furthermore, combinations with N=5-12
achieved classification results =90%, being in accord-
ance with the majority of researchers, using four to
seven frequency sub-bands in their analysis (without
however any justification for this selection).
Considering the delta, theta, alpha, beta and gamma
frequency sub-bands (medically established rhythms)
that correspond to the {[0-4], [4-8], [8-13], [13-30],
[30-42]} Hz combination for four spectral thresholds
(N=4), the obtained accuracy is 82.80%, being 6.8%
lower than the maximum classification accuracy ob-
tained for N=4 (89.60%) and 8.4% lower than the
best classification accuracy obtained in this study
(being 91.20%, obtained for two frequency sub-band
combinations for N=9). Several of the frequency
sub-band combinations that achieved high classifica-
tion accuracy (=90%) include frequency sub-bands

that correlate with the medically established rhythms,
including also however sub-bands that clearly differ-
entiate from them. For N =4 spectral thresholds, the
{[0-3], [3-8], [8-18], [18-33], [33-42]} Hz combin-
ation, which achieved the best classification accuracy
(for N=4), includes [0-3] Hz band (resembling delta)
and [3-8] Hz (resampling theta); however, the other
bands are somewhat different. Also, the {[0-2], [2-8],
[8-16], [16-25], [25-35], [35-42]} Hz combination,
which is one of the frequency sub-band combinations
that achieved maximum classification accuracy for
N =5, includes [8-16] Hz band (alpha rhythm) but
significant differences for all other rhythms. Further-
more, for N >4, additional frequency sub-bands that
carry significant information regarding this problem
are revealed.

The frequency sub-band combinations that achieved
maximum classification accuracy are in the first two
lines for N=9 in Table 5. Both include the [0-3] Hz
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and [3-7] Hz bands, closely related to delta and theta
rhythms, but also an additional band [7, 8] Hz, be-
tween theta and alpha rhythms, is included. In both
cases, beta rhythm is split into four and three smaller
bands, for the first and second combination, respect-
ively. Also, gamma rhythm is split into smaller bands
(two for the first combination and three for the sec-
ond). The low-frequency bands [0-3] and [3-7] are
the most common among the ones that achieved high
classification accuracy (=90%). This is in compliance
with several works presented in the literature [5, 7, 8,
11-14, 17-20]. In higher frequencies, however, there
are major differences in the frequency sub-band com-
binations that achieved maximum results in this

study. Especially with the WPD-based studies [15,
16], the frequency sub-bands used are in complete
disagreement with the results obtained in this study.
A band (0-43.4 Hz), included in [15, 16] studies, car-
ries little information for this problem, while
low-frequency sub-bands, extensively included in the
high-accuracy achieving combinations in this study,
are excluded from the WPD-based studies.
Considering the three-class problem, the maximum
accuracy obtained for each N (presented in Table 6)
ranges from 56% (for N=0) to 98.8% (obtained for
several combinations with N=8 and N=9). Again, in-
creasing the number of frequency sub-bands does not
have a positive impact in the classification accuracy;
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Table 5 Top 5 accuracy results for the five-class problem and the respective frequency sub-bands (F")

N A Accuracy (%)
0 [0-42] 4480
1 {[0-2], 2421} 73.60
{[0-4], [4-42]} 7120
{[0-5], [5-421} 7040
{[0-3], 3421} 68.80
{l0-6], [6-421} 6520
2 {[0-3], 3-11], [11-42}} 83.60
{[0-4], [4-6], [6-421} 83.60
{[0-3], 3-17], [17-42]} 8240
{[0-3], [3-25], [25-42} 8240
{[0-3], [3-31], [31-42} 8240
3 {[0-4], [4-71, [7-27), [27-42]} 88.00
{[0-3], [3-7], [7-19], [19-42]} 87.60
{[0-3], 3-71, [7-37), [37-42]} 87.60
{{0-4], [4-6], [6-30], [30-421} 87.60
{[0-2], [2-7], [7-18], [18-42]} 87.20
4 {[0-3], [3-8], [8-18], [18-33], [33-42]} 89.60
{[0-3], [3-9], [9-15], [15-30], [30-42]} 89.60
{[0-3], [3-12], [12-17], [17-22], [22-42]} 89.60
{[0-3], [3-9], [9-15], [15-36], [36-42]} 89.20
{[0-4], [4-7], [7-23], [23-27], [27-42]} 89.20
5 {[0-2], [2-8], [8-16], [16-25], [25-35], [35-42]} 90.00
{{0-3], [3-7], [7-18], [18-32], [32-36], [36-42]} 90.00
{[0-3], [3-7], [7-22], [22-33], [33-36), [36-42]} 90.00
{[0-4], [4-6], [6-23], [23-25], [25-34], [34-42]} 90.00
{[0-4], [4-6], [6-24], [24-26], [26-37], [37-42]} 90.00
6 {[0-3], [3-71, [7-9]), [9-15], [15-17], [17-33], [33-42]} 9040
{[0-3], [3-7], [7-17], [17-29], [29-33], [33-35], [35-42]} 90.40
{[0-3], [3-9], [9-13], [13-15], [15-29], [29-39], [39-42]} 90.40
{[0-3], [3-7], [7-9], [9-15], [15-25], [25-39], [39-42]} 90.00
{(0-3], [3-7], [7-13], [13-17], [17-31], [31-35], [35-42]} 90.00
7 {[0-3], [3-9], [9-15], [15-27], [27-29], [29-33], [33-39], [39-42]} 9040
{[0-3], [3-7], [7-9], [9-15], [15-21], [21-25], [25-33], [33-42]} 90.00
{[0-3], [3-7], [7-9], [9-15], [15-21], [21-25], [25-37], [37-42]} 90.00
{[0-3], [3-7], [7-9], [9-15], [15-31], [31-33], [33-37], [37-42]} 90.00
{[0-3], [3-7], [7-9], [9-17], [17-27], [27-33], [33-35], [35-42]} 90.00
8 {[0-3], 3-7], [7-9], [9-13], [13-15], [15-17], [17-21], [21-23], [23-42]} 90.80
{[0-3], [3-7], [7-9], [9-13], [13-15], [15-17], [17-21], [21-25], [25-42]} 90.80
{[0-3], [3-7], [7-9], [9-13], [13-15], [15-17], [17-27], [27-31], [31-42]} 90.80
{[0-3], [3-7], [7-9], [9-13], [13-17], [17-21], [21-25], [25-39], [39-42]} 90.80
{[0-3], [3-9], [9-13], [13-15], [15-29], [29-31], [31-33], [33-35], [35-42]} 90.80
9 {[0-3], [3-7], [7-9], [9-13], [13-17], [17-21], [21-23], [23-31], [31-35], [35-42]} 91.20
{[0-3], [3-71, [7-9], [9-13], [13-17], [17-21], [21-31], [31-33], [33-37], [37-42]} 91.20
{[0-3], [3-7], [7-9], [9-13], [13-15], [15-19], [19-21], [21-29], [29-37], [37-42]} 90.80
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Table 5 Top 5 accuracy results for the five-class problem and the respective frequency sub-bands (F¥) (Continued)

N A Accuracy (%)
{[0-3], [3-7], [7-9], [9-13], [13-15], [15-21], [21-23], [23-25], [25-39], [39-42]} 90.80
{[0-3], [3-7], [7-9], [9-13], [13-15], [15-25], [25-31], [31-33], [33-39], [39-42]} 90.80
10 {{0-3], [3-7], [7-9], [9-13], [13-15], [15-17], [17-19], [19-29], [29-31], [31-39)], [39-42]} 90.80
{[0-3], [3-7], [7-9], [9-13], [13-15], [15-17], [17-25], [25-31], [31-35], [35-37], [37-42]} 90.80
{[0-3], [3-7], [7-9], [9-11], [11-13], [13-15], [15-17], [17-21], [21-23], [23-39)], [39-42]} 90.40
{10-3], 3-71, [7-9], [9-11], [11-13], [13-15], [15-17], [17-21], [21-29], [29-39), [39-42]} 9040
{[0-3], [3-7], [7-9], [9-11], [11-13], [13-15], [15-17], [17-31], [31-35], [35-39], [39-42]} 90.40
11 {[0-3], [3-7], [7-9], [9-11], [11-13], [13-17], [17-23], [23-29], [29-31], [31-33], [33-35], [35-42]} 90.40
{{0-3], 3-71, [7-9], [9-11], [11-15], [15-17], [17-21], [21-23], [23-25], [25-37], [37-39)], [39-42]} 90.40
{[0-3], [3-7], [7-9], [9-13], [13-15], [15-17], [17-19], [19-21], [21-23], [23-27], [27-37], [37-42]} 90.40
{[0-3], [3-7], [7-9], [9-13], [13-15], [15-17], [17-21], [21-23], [23-25], [25-27], [27-39], [39-42]} 90.40
{[0-3], [3-7], [7-9], [9-13], [13-15], [15-17], [17-21], [21-25], [25-31], [31-33], [33-37], [37-42]} 90.40
12 {(0-3], 371, [7-9], [9-11], [11-13], [13-17], [17-23], [23-27], [27-31], [31-33], [33-37], [37-39], [39-42} 90.40
{[0-3], [3-7], [7-9], [9-13], [13-15], [15-17], [17-19], [19-21], [21-27], [27-29], [29-33], [33-35], [35-42]} 90.40
{[0-3], [3-71, [7-9], [9-15], [15-19], [19-21], [21-23], [23-27], [27-29], [29-31], [31-33], [33-35], [35-42]} 9040
{[0-3], 3-7], [7-9], [9-11], [11-13], [13-17], [17-19], [19-21], [21-31], [31-33], [33-35], [35-37], [37-42]} 90.00
{[0-3], [3-7], [7-9], [9-13], [13-15], [15-17], [17-19], [19-21], [21-31], [31-33], [33-35], [35-39], [39-42]} 90.00
the maximum values are obtained for N=8 and then In Table 7, a comparison of methodologies

the results are decreasing with respect to N. In this
case also, the combination that corresponds to the
medically established rhythms obtained much lower
classification  accuracy. Among the frequency
sub-band combinations that achieved high classifica-
tion accuracy (=90%), the low-frequency bands [0-3]
and [3-7] are the most common while there are sig-
nificant differences in the high-frequency bands.

Table 6 Max and average accuracy for the three-class problem,

for N=0-12

N Max accuracy (%) Average accuracy (%)
0 56.00 56.00
1 89.60 80.80
2 9340 92.56
3 95.60 95.12
4 96.80 96.28
5 96.80 96.48
6 97.00 96.80
7 9740 9732
8 98.80 9848
9 98.80 98.24
10 98.20 97.84
11 97.60 9740
12 96.80 96.64

presented in the literature for the five-class problem
is presented. Although the focus of this study is to
assess the impact of the number of frequency sub-
bands and the different frequency sub-band combina-
tions in the classification of EEG regarding epilepsy,
the obtained results compare well with the ones re-
ported in the literature. The works by Guler and
Ubeyli [32, 33] and Murugavel and Ramakrishnan
[10] reported high classification accuracy; however,
they are validated using a 50% holdout technique and
not a cross-validation procedure. The obtained results
using a cross-validation technique [17, 19, 34, 35]
range from 86.10 to 93.75%, with the best obtained
results in this study being 91.20%.

A comparison of methodologies presented in the
literature for the three-class problem is presented in
Table 8. The results reported in the literature range
from 95.6 to 98.8%, with the proposed method archiv-
ing 98.8%. Again, some researchers used different valid-
ation techniques; however, works employing a 10-fold
cross-validation technique [29-31] range from 98.28 to
98.8%.

6 Conclusions

The first systematic analysis in the literature, regarding
the impact of the frequency sub-band definition in the
epileptic EEG classification problem, is presented in this
study. The study revealed significand conclusions, some
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Table 7 Comparison of methodologies presented in the literature for the five-class (Z-O-N-F-S) problem

Authors Feature extraction Classification Validation Classification
accuracy
Guler and Ubeyli [32] (2005) DWT (db2)/mean, min, max, std Adaptive neuro-fuzzy 50% holdout 98.68%
inference system
Ubeyli and Guler [33] (2007) Eigenvector methods Modified mixture-of- 50% holdout 98.60%
(Pisarenko, MUSIC, Minimum-Norm) experts

Tzallas et al. [17] (2009) TFD (SPWVD)/fractional energy ANN Monte Carlo cross-validation 89%
(50% split—10 repeats)

Liang et al. [19] (2010) FFT/ApEn SVM Monte Carlo cross-validation 85.90%
(60-40% split—10 repeats)

Nicolaou et al. [34] (2012) Permutation entropy SVM Monte Carlo cross-validation  86.10%
(various splits—100 repeats)

Murugavel and Ramakrishnan [10] DWT (db2)/energy, entropy, mean, OELM 50% holdout 94%

(2014) min, max, std

Tawfik et al. [35] (2016) Weighted permutation entropy SVM 10-fold cross-validation 93.75%

This study Frequency sub-bands/energy, total energy, Random forests 10-fold cross-validation 91.20%

fractional energy, entropy

are in accordance to the majority of works presented in
the literature, while others are contradicting with pub-
lished works. Yet, a major conclusion of this study is
that examining additional frequency sub-bands (and not
only focusing on the medically established rhythms) can
greatly benefit studies focusing on the EEG analysis for
epilepsy detection.

A limitation of this study is that the range of each
sub-band was forced to be =2 Hz, thus not examining
in greater detail the frequency sub-bands. The main
reason for this limit was the high number of spectral
threshold combinations, as the number of spectral
thresholds increase. In future, the results obtained in
this study will be validated in additional EEG record-
ings and other well-known EEG databases [36], in-
cluding different types of seizure activity; the latter is

of major importance since different types of epileptic
seizure activity may present different spectral pat-
terns. Also, the application of frequency-based EEG
analysis (as in this work) is advantageous compared
to other types of EEG processing, since it is of low
computational complexity and can be applied in real
time. Furthermore, the author will exploit the
conclusions from this study (i.e. frequency sub-band
combinations that achieve maximum classification
accuracy), in the design of an EEG epilepsy classifica-
tion procedure based on more complex signal pro-
cessing techniques (such as using this combination
for a time-frequency grid, as in [17]). Also, employ-
ment of additional classification methods, such as
neural networks and deep learning networks [37-39],
will be studied in future communications.

Table 8 Comparison of methodologies presented in the literature for the three-class (ZO-NF-S) problem

Authors Feature extraction Classification Validation Classification
accuracy

Tzallas et al. [17] (2009) TFD (SPWVD)/fractional energy ANN Monte Carlo cross-validation  97.72%
(50% split — 10 repeats)

Acharya et al. [26] (2009) 10 parameters from Recurrence SVM 3-fold cross-validation 95.60%

Quantification Analysis

Orhan et al. [27] (2011) DWT and K-means clustering MLP 50% train, 50% validation 95.60%
and test

Acharya et al. [28] (2012)  ApEn, SampEn, Phase Entropy 1 and 2 Fuzzy Sugeno Classifier Threefold cross-validation 98.10%

Peker et al. [29] (2016) Dual tree complex wavelet transform Complex valued neural networks — 10-fold cross-validation 98.28%

Tiwari et al. [30] (2016) Key-point-based local binary patterns SYM 10-fold cross-validation 98.80%

Bhattacharyya et al. Tunable-Q WT and K-NN entropies SYM 10-fold cross-validation 98.60%

[31] (2017)

This study Frequency sub-bands/energy, total energy, ~Random forests 10-fold cross-validation 98.80%

fractional energy, entropy
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