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Abstract

In this paper, signal-to-noise ratio (SNR) estimation is carried out by the method of moments (MOM) for fading
channels modeled by probability distributions η − μ and κ − μ, consideringM-ary quadrature amplitude modulation
(M-QAM) with constellation energy normalized to one. New expressions are presented for the SNR estimation and for
the mean, variance, and normalized mean square error (NMSE) of the estimates, obtained by a statistical linearization
argument. Additionally, it is shown how to obtain the SNR estimate for Nakagami-m channel from the estimation
derived for the models η − μ and κ − μ. The results obtained from the analytical expressions are corroborated by
simulation results and show that the MOM is a suitable alternative for scenarios in which the mathematical tractability
does not suggest the application of other estimation techniques.
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1 Introduction
Signal-to-noise ratio (SNR) estimation has been a recur-
rent research topic, due to the relevance of SNR for a
variety of mobile communication systems. The a priori
knowledge of the communication channel conditions is
an important issue as long as those systems become more
complex and widely required. In [1] for instance, the a
priori knowledge of the channel, by means of the SNR,
is proposed for evaluating the effective transmission rate
(throughput) in a communication system with adaptive
modulation and coding, while in [2] its use is considered
in adaptive transmission systems.
In [3], the knowledge of the SNR is necessary for assess-

ing the time-varying channel condition of an adaptive
system with frequency hopping, and in [4] it is necessary
for planning relay communication systems. In [5], SNR is
a useful parameter in the scenario of turbo decoding sys-
tems, while in [6] it is useful in the context of low-density
parity check (LDPC) codes.
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Usually, the choice of the estimation technique depends
on the complexity of the mathematical model of the sig-
nal in the receiver [4, 7]. Depending on that complexity,
one can use a method belonging to the class of estimators
that use a training sequence (that is, a data-aided method
(DA)) [8, 9], or a method belonging to the class of estima-
tors that do not have a priori knowledge of the transmitted
sequence of symbols (that is, a non-data-aided method
(NDA)) [10].
In [11], for example, a new SNR estimator is derived, DA

and NDA, for a slow time-varying channel with impulse
response characterized by a polynomial function of order
Lc and phase-shift keying (PSK) signals. In the NDA sce-
nario, the expectation maximization (EM) algorithm is
proposed for the calculation of the estimates and improve-
ment of performance is observed in relation to the estima-
tor with channel considered constant throughout the time
of observation, at the cost of a moderate increase in com-
putational complexity. The difference of that approach in
relation to the method of moments (MOM) NDA tech-
nique considered in our article is that the MOM is not
efficient in reaching the Cramér-Rao bound.
In [12], the least-squares (LS) technique is proposed for

estimation of SNR in a received signal model composed

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-019-0607-7&domain=pdf
http://orcid.org/0000-0003-2486-9950
mailto: waslon@ieee.org
http://creativecommons.org/licenses/by/4.0/


Lira de Queiroz et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:20 Page 2 of 17

by M-QAM symbols (M = 16) multiplied by samples of
the impulse response of a time-varying channel added to
samples of white Gaussian noise. The impulse response of
the channel is approximated by a polynomial as a function
of time with constant coefficients calculated by means of
the LS technique, with the aid of a pilot sequence sent
periodically and an array of antennas of Na elements. The
performance of the technique is evaluated by means of
the normalized root mean square error (NRMSE), with-
out comparison with the Cramér-Rao bound, and requires
a much smaller number of samples than the required by
the MOM without training sequence, in order to reach
NRMSE values below 0.1 for an SNR above 10 dB.
In [13], one considers the maximum likelihood estima-

tion (MLE) of the SNR in the demodulator of an orthogo-
nal and non-coherent frequency-shift keying (FSK) signal,
in which the transmitted signal is affected by Rayleigh fad-
ing and that this fading is constant in a block of k symbols,
while in [14], the authors consider a binary frequency-
shift keying (BFSK) affected by constant Rayleigh fading
in a block of symbols whose BFSK carrier has frequency
deviation. The MLE with and without pilot sequences
are presented for the SNR, assisted by estimators by the
MOM for the frequency deviation. Although the MLE is
optimum in the sense of the minimum variance criterion,
it depends on the expression of the probability density
function (PDF) of the samples of the observed signal, and
in the case of generalized fading models, such as those
considered in this work, their PDFs make the PDFs of the
received signal complicated for treatment by MLE.
In [15], the authors consider a model of received signal

for a signal with frequency modulated differential chaos
shift keying (FMDCSK) transmitted by a channel with
multipath propagation and Rayleigh fading. The authors
analyze the SNR estimators and their performance con-
sidering that the channel coefficients that characterize the
fading are constant in a sequence of K symbols of the
FMDCSK signal. The estimators are calculated for the
data-aided (DA), non-data-aided (NDA), and joint DA-
NDA cases, presenting good results in relation to the
proximity of the Cramér-Rao Lower Bound (CRLB) for
values of SNR above 20 dB.
In [16], an estimation method of SNR is presented

for linearly modulated signals captured by an array of
antennas in an environment with complex white addi-
tive Gaussian noise with spatial uncorrelation between the
elements. In this NDA and single input multiple output
(SIMO) estimator, based on the MOM, the performance
is assessed in terms of the NormalizedMean Square Error
(NMSE) for QAM signals and improves with the increase
of the number of elements. The estimation of SNR in
SIMO systems is also addressed in [17], in which the
authors consider signal samples captured by an array of
antennas in a channel model of constant gain by the time

of observation of a sequence of symbols. A MLE based
on the I/Q components of the received signal is evalu-
ated, for the cases DA and NDA, that reach the CRLB for
a wide range of SNR. In [18], the problem of estimation
of the SNR is extended to a multiple input multiple out-
put (MIMO) system in a channel model with block flat
fading, in which the channel gain matrix is considered
constant by a block ofN symbols. From this consideration
and reduction of the channel model to a Gaussian chan-
nel to each block of N symbols, the authors then present
ML estimators for the DA and NDA cases, as well as the
CRLB.
In [19], the main contribution of the authors is the

analysis of the CRLB of SNR estimates of signals with
minimum shift keying (MSK) modulation and QAM with
turbo encoding. Even in a constant gain channel model
over a K symbols window, the task of calculating the
CRLB for the M-QAM symbols is the most laborious of
the article and is solved from the analysis of the struc-
ture of Gray’s mapping. The authors then show that the
proposed DA ML estimator has a lower CRLB than the
NDA CRLB case. The CRLB is also evaluated in [20] for
a channel model of constant gain over the whole set of
symbols observed under QAM modulation, for the cases
DA and NDA. In the channel models of the aforemen-
tioned references, the channel gain is considered constant
by a sequence of symbol intervals, which contributes to
the mathematical treatment of estimation by maximizing
the likelihood function. In our proposed model, in which
fading can vary at each time interval in which a sample is
obtained at the output of the receiver’s matched filter, the
PDF of the received signal modulus makes the likelihood
function calculation more difficult.
In [21], the proposed solution consists of using the

goodness-of-fit test of Kolmogorov-Smirnov (K-S) for the
evaluation of the distance between empirical cumula-
tive distribution function (CDF) generated from observed
samples of the received signal and the theoretical curves of
CDFs generated and stored in a file for different configura-
tions of channel parameters. The proposed estimator was
presented for a Gaussian channel, of constant gain by a
sequence of symbol intervals, and was evaluated by means
of the normalized root mean square error (NRMSE). For
fading channels, such as the models considered in this
manuscript, the method would depend on the calculation
of the CDF of the envelope of the signal received, which
would be a challenging task.
It is worth mentioning that in the paper by Bellili et

al. [22], the authors do not make any other consideration
about the channel coefficients than they are determinis-
tic and unknown. In our article, the only consideration
is that the fading is constant during the interval of the
impulse response of the matched filter in the receiver. The
main merit for our work is that the random behavior of
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the channel is taken into account by the fading probabil-
ity distributions and the estimators obtained have simple
expressions, encompass the estimators for other fading
models, and are not aided by data sequence. In the flat fad-
ing channel model considered in [22], the NDA estimator
needs the EM algorithm that converges for an optimum
solution with a reduced number of iterations at cost of a
greater computational complexity.
In propagation environments in which the fading is

characterized by probability distributions such as η −
μ and κ − μ [23], the SNR estimation is difficult by using
estimators such as MLE, because the likelihood function
for the problem becomes complicated. In these cases, the
MOM is a good alternative.
Despite raising the mathematical complexity of the

SNR estimation problem, general probability distribu-
tions, such as the η − μ and κ − μ distributions, model
a wider variety of fading signals, such as signals received
on Nakagami-m, Hoyt (Nakagami-q), Rice (Nakagami-
n), unilateral Gauss, and Rayleigh channels. According to
[23], the κ−μ distribution is better suited for line-of-sight
applications and the η − μ distribution is more appropri-
ate for non-line-of-sight applications. The SNR estimators
obtained for the signal received under these two fad-
ing models encompass all the estimators obtained for the
other fadingmodels mentioned. The estimation of SNR by
the MOM has been the considered technique, as shown,
for example, in references [24, 25] and more recently in
reference [26] in which the transmitted signal is modeled
by a complex Gaussian random variable with zeromean by
component. In [27], the MOM is proposed in a process of
joint estimation of both theK parameter of the Rice fading
distribution and SNR in a SIMO communication system.
In the present paper, the method of moments for SNR

estimation is applied to channel models in which the fad-
ing is characterized by η − μ and κ − μ distributions and
modulation schemeM-QAM [28] is considered.

1.1 Main contributions
The main contributions of this paper are as follows:

1. New expressions for the SNR estimates by NDA
MOM for a received signal model for M-QAM signal
under η − μ and κ − μ fading.

2. New expressions for the evaluation of the mean,
variance, and NMSE of the estimates, obtained from
a statistical linearization procedure.

3. Comparative analysis between the estimates obtained
for the models η − μ, κ − μ, and Nakagami-m.

4. Exact expressions for the moments of order k of the
envelope of the observed signal.

The remaining of the paper is organized as follows. In
Section 2, methods used in the work and the problem

definition are presented. In Section 3, the derivation of
the kth moment of the absolute value of the samples of
the observed signal is presented. In Section 4, the deriva-
tion of the SNR estimates is presented. In Section 5, it
is shown how to obtain the SNR estimates for the signal
under Nakagami fading from the estimates for the mod-
els η − μ and κ − μ. In Section 6, the derivation of the
mean, variance, and NMSE of the estimates is presented.
In Section 7, the moments of order 2, 4, 6, and 8 of M-
QAM are presented. In Section 8, a proposal is presented
for evaluating the CRLB. In Section 9, theoretical curves
corroborated by curves obtained by simulations are pre-
sented, and in Section 10, the conclusions of the work are
provided.

2 Methods
The aim of this paper is to apply the MOM in the esti-
mation of the SNR considering communication channels
subject to η − μ and κ − μ generalized fading and
M-QAM modulation schemes. Firstly, the channel model
is described and the moments of the received signal are
determined. Then, the estimation of the SNR is obtained
from the ratio of the square of the secondmoment and the
fourth moment considering the generalized fading mod-
els. The performance of the method is assessed by means
of the normalized mean square error and the variance of
the estimate.

2.1 Problem definition
The mathematical model for a signal sample r[ n]
observed at the output of the detector with a matched fil-
ter, in a discrete time n, from a transmission through a
fading channel, modeled by a multiplicative gain g[ n] and
by additive noise w[ n], can be written as

r[ n]= g[ n] s[ n]+w[ n] . (1)

In this model of received signal, s[ n] represents the
equiprobable symbols of a M-QAM constellation, nor-
malized such that the average energy per symbol be uni-
tary, and w[ n] is a Gaussian complex random variable of
zero mean and variance 2σ 2

w. In this paper, the modulus of
the random variable g[ n] is characterized by the probabil-
ity distributions η − μ and κ − μ [23], which have been
used to characterize the envelope of the fading in mobile
communication channels since both of them can repre-
sent a wide variety of fading models. The average power of
the envelope of g[ n] is given by σ 2

g = E
[|g[ n] |2], in which

E[ ·] is the expected value operator.
The η − μ model is used to characterize small scale

intensity variations in the faded signal in non-line-of-
sight links and has two types, format I and format II. In
format I, the parameter η varies in the interval [ 1,∞)

and represents the ratio of the powers of the in-phase
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and quadrature components of the scattered electromag-
netic wave, and in format II, the parameter η varies in
the interval (−1, 1) and represents the correlation coeffi-
cient between the in-phase and quadrature components
of the electromagnetic wave in each cluster of multipath.
The parameter μ has the same physical meaning in both
formats and represents an extension of the number of
clusters of multipath to the real numbers [23]. The PDF of
|g[ n] | can be written as

f|g[n]|(|g[ n] |) = 4
√

πμμ+ 1
2 hμ

�(μ)Hμ− 1
2

1
√

σ 2
g

(
|g[ n] |2

σ 2
g

)μ

×

exp
(

−2μh
(

|g[ n] |2
σ 2
g

))

Iμ− 1
2

(

2μH
|g[ n] |2

σ 2
g

)

,

(2)

in which h = (
2 + η−1 + η

)
/4 and H = (

η−1 − η
)
/4 for

format I, while h = (
1 − η2

)−1 and H = η/
(
1 − η2

)
for

format II. The term Iv(x) represents the modified Bessel
function of first kind and order v and �(μ) represents the
Gamma function.
The probability distribution κ − μ, on the other hand,

can be applied in the characterization of small scale fading
(variations in the signal intensity in short time intervals
from propagation by multiple paths) and with line-of-
sight. The parameter μ ≥ 0 represents the number of
clusters of multipath in the environment. The parameter
κ is defined as the ratio of the total power of the dominant
components to the total power of the scattered waves.
For an envelope |g[ n] | of root mean square (rms) value
r̂ =

√
E
[|g[ n] |2] =

√
σ 2
g , the PDF of the envelope κ − μ

can be written as

f|g[n]|
(|g[ n] |) = 2μ (1 + κ)

μ+1
2

κ
μ−1
2 exp(κμ)

√
σ 2
g

(
|g[ n] |

σ 2
g

)μ

× exp
(

−μ (1 + κ)

(
|g[ n] |2

σ 2
g

))

× Iμ−1

⎛

⎜
⎝2μ

√
κ (1 + κ)

⎛

⎜
⎝

|g[ n] |
√

σ 2
g

⎞

⎟
⎠

⎞

⎟
⎠ .

(3)

Considering that the variables g[ n], s[ n], and w[ n] are
independent, it follows that a sequence of samples of r[ n]
can be seen as a sequence of the faded signal g[ n] s[ n]
affected by a white Gaussian noise sequence w[ n]. In this
model of r[ n], the average power can be written as

Pr = E[ r[ n] r∗[ n] ]= E
[|g[ n] |2]E [|s[ n] |2]+E

[|w[ n] |2]

(4)

and the SNR can be written as

SNR = E
[|g[ n] |2]E [|s[ n] |2]

E
[|w[ n] |2] = σ 2

g

2σ 2
w

M∑

i=1
pi|Ai|2, (5)

in which σ 2
g = E

[|g[ n] |2] represents the average power
of the fading, M represents the order of the QAM con-
stellation, and |Ai| and pi represent the amplitude and
probability, respectively, of the occurrence of the ith sym-
bol.
Since the QAM constellation symbols considered in the

study are equiprobable, it follows that
∑M

i=1 pi|Ai|2 = 1.
Thus, if one assumes γ = σ 2

g /σ 2
w, it follows that the esti-

mate of the SNR γ can be calculated from a function
f(γ ) defined as the ratio between the square of the sec-
ond moment M2 and the fourth moment M4 of |r[ n] |.
If the rational function f(γ ) is algebraically inverted in
terms of the ratio between the square of the second sam-
ple moment and the fourth sample moment of |r[ n] |,
then this inverse obtained is the estimate of γ and will be
denoted by γ̂ . The problem is then to find the expressions
of the moments of the variable |r[ n] |.

3 Derivation of the kth moment of |r[n] |
For calculating the SNR estimate, γ̂ , one needs the
moments of order 2 and 4 of |r[ n] |. This is because the
moment of order 2 of |r[ n] | is directly proportional to σ 2

w,
while the moment of order 4 is directly proportional to
the square of σ 2

w. Hence, the ratio of the square of the sec-
ond moment and the fourth moment of |r[ n] | eliminates
the dependence on the average power σ 2

w and remains
as a function of the SNR γ , which is the variable to be
estimated in this study. In order to calculate the variance
of the estimate γ̂ , the moments of order 2, 4, 6, and 8
of |r[ n] | are required. In this section, an exact expres-
sion is presented for the moment of order k, and then,
the expressions of the individual moments are obtained in
their simplified forms.
The kth moment of |r[ n] | can be calculated from the

model r[ n] presented in (1) from the PDF of |r[ n] | condi-
tioned on |g[ n] | and |s[ n] |, written as [29]

f|r[n]|(|r[ n] |||g[ n] |, |s[ n] |) = |r[ n] |
σ 2
w

× exp
(

−
( |r[ n] |2 + |g[ n] |2|s[ n] |2

2σ 2
w

))

× I0
(

|r[ n] | |g[ n] ||s[ n] |
σ 2
w

)
,

(6)

in which I0(x) represents the zero order modified Bessel
function. For the sake of simplicity, it is appropriate to
simplify the notation and represent the variables |r[ n] |
and |g[ n] |, respectively, by r and g.
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Taking the mean of fr(r|g, |s[ n] |) with respect to prob-
ability distribution of the modulus of the QAM constel-
lation symbols considered and substituting the resulting
expression in the integral that defines the conditional
expectation E

[
rk|g], it follows, after some simplifications,

that

E
[
rk|g

]
= 1

σ 2
w

M∑

i=1
pi exp

(
−g2|Ai|2

2σ 2
w

)

×
∫ ∞

0
rk+1 exp

(
− r2

2σ 2
w

)
I0
(
2
g|Ai|
2σ 2

w
r
)
dr.

(7)

The integral in (7) can be solved by Expression 6.643
of the table of integrals ([30] pp. 709). Representing
the Whittaker’s function resulting from the solution of
this integral by the Kummer’s confluent hypergeometric
function 1F1(a; b; z) [30] and making the necessary alge-
braic simplifications, one can write the expression of kth
moment of |r[ n] | conditioned on |g[ n] | as

E
[
rk |g

]
= 2

k
2
(
σ 2
w
) k
2+1

�

(
k
2

+ 1
)

×
M∑

i=1
pi exp

(
−g2|Ai|2

2σ 2
w

)

1F1
(
k
2

+ 1; 1;
g2|Ai|2
2σ 2

w

)
.

(8)

The kth moment of |r[ n] | can then be calculated taking
the average of E

[
rk|g] with respect to PDF of the fading

envelope, by the calculus of the integral

E
[
rk
]

=
∫ ∞

0
E
[
rk |g

]
fg(g)dg. (9)

3.1 Moments of |r[ n] | for the distribution η − μ

The kth moment of |r[ n] | for η−μ fading can be obtained
by substituting the expressions (2) and (8) in (9), so that
one can write

E
[
|r[ n] |k

]
=

√
2π2

k
2 �

(
k
2 + 1

)

�(μ)(2H)μ

(
H
h

) 1
2 (

σ 2
w
) k
2

×
M∑

i=1

pi
(1 + γi)

μ+ 1
2

∫ ∞

0
vμ− 1

2 exp(−v)Iμ− 1
2

[
H
h

v
1 + γi

]

× 1F1

(
k
2

+ 1; 1;
v

1 + 1
γi

)

dv,

(10)

in which

γi = |Ai|2
4hμ

σ 2
g

σ 2
w
. (11)

The expressions of the moments of order 2, 4, 6, and
8, denoted by M2, M4, M6 and M8, respectively, can

then be obtained from (10) by writing the Kummer’s
confluent hypergeometric function in terms of Laguerre
polynomials [31],

1F1(a; 1; z) = ezLa−1(−z), (12)

in which the polynomials Ln(x) can be generated from the
Olinde Rodrigues formula [31], given by

Ln(x) = ex

n!
dn

dxn
(
e−xxn

)
. (13)

Using the representation (12) and simplifying the result-
ing integrals, one obtains, after the procedure of simpli-
fication, that the moments M2, M4, M6, and M8 can be
written as polynomials as a function of the SNR γ as

M2 = (
σ 2
w
)1 (

α21γ
1 + 2

)
,

M4 = (
σ 2
w
)2 (

α42γ
2 + α41γ + 8

)
,

M6 = (
σ 2
w
)3 (

α63γ
3 + α62γ

2 + α61γ + 48
)
,

M8 = (
σ 2
w
)4 (

α84γ
4 + α83γ

3 + α82γ
2 + α81γ + 384

)
,

(14)

in which the parameters αij can be described by the group
of expressions (15) and by the relations (16),
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α21 = C2,
α42 = δ

[
2μ + ξ2 + 1

]
C4,

α63 = δ2
[
2μ2 + 3

(
ξ2 + 1

)
μ + 3ξ2 + 1

]
2C6,

α84 = δ3
[
4μ3 + 12(ξ2 + 1)μ2 + (

3ξ4 + 30ξ2 + 11
)
μ

+ 3ξ4 + 18ξ2 + 3
]
2C8

(15)

and
⎧
⎨

⎩

α41 = 8α21,
α61 = 72α21, α62 = 18α42,
α81 = 768α21, α82 = 288α42, α83 = 32α63,

(16)

in which δ = 1/(2μ), ξ = H/h, and Ck represent the kth
moment of the constellationM-QAM.

3.2 Moments of |r[ n] | for the distribution κ − μ

Similarly, substituting expressions (3) and (8) in (9), from
the kth conditioned moment, one can write the kth
moment of |r[ n] | under κ − μ fading as

E
[
|r[ n] |k

]
=

2
k
2 (σ 2

w)
k
2 �

(
k
2 + 1

)

κμ
μ−1
2 exp(κμ)

M∑

i=1
pi
(

1
1 + γi

)μ
2 + 1

2

×
∫ ∞

0
w

μ
2 − 1

2 exp(−w)1F1

(
k
2

+ 1, 1;
w

1 + 1
γi

)

× Iμ−1

(
2
√

κμw
1 + γi

)
dw,

(17)
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in which

γi = σ 2
g

σ 2
w

|Ai|2
2μ(1 + κ)

. (18)

Expressions of the moments of order 2, 4, 6, and 8,
denoted by M2, M4, M6 and M8, respectively, can be
obtained from (17) writing the Kummer confluent hyper-
geometric function in terms of polynomials of Laguerre
[31], so that the moments can be written as a function of
the SNR γ ,

M2 = (
σ 2
w
)1 (

β21γ
1 + 2

)
,

M4 = (
σ 2
w
)2 (

β42γ
2 + β41γ + 8

)
,

M6 = (
σ 2
w
)3 (

β63γ
3 + β62γ

2 + β61γ + 48
)
,

M8 = (
σ 2
w
)4 (

β84γ
4 + β83γ

3 + β82γ
2 + β81γ + 384

)
,

(19)

in which the relations between the coefficients βij can be
written as in the groups of expressions (20) and (21).
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

β21 = C2,
β42 = ζ 2 [(κ + 1)2μ2 + (2κ + 1)μ

]
C4,

β63 = ζ 3 [(κ + 1)3μ3 + 3(2κ2 + 3κ + 1)μ2

+2(3κ + 1)μ]C6,
β84 = ζ 4 [(κ4 + 64κ2 + 4κ + 1

)
μ4 + 6

(
2κ3 + 5κ2

+4κ + 1) μ3

+(36κ2 + 44κ + 11)μ2 + 6(4κ + 1)μ
]
C8,

(20)

and
⎧
⎨

⎩

β41 = 8β21,
β61 = 72β21, β62 = 18β42,
β81 = 768β21, β82 = 288β42, β83 = 32β63,

(21)

in which ζ = 1/(μ(1 + κ)).

4 Derivation of SNR estimates
In Section 3, exact expressions were obtained for the
moments of order 2, 4, 6, and 8 of the received signal enve-
lope in discrete time, |r[ n] |, for the fading models η − μ

and κ−μ. The estimation of the SNR can then be obtained
from the ratio between the square of the second moment
and the fourth moment for these models. This ratio can be
expressed in terms of the SNR γ = σ 2

g /σ 2
w and is denoted

f(γ ) for formats I and II of fading η − μ and for κ − μ.
Thus, if the ratio

f(γ ) = E
[|r[ n] |2]2

E
[|r[ n] |4] = p(γ )

q(γ )
(22)

can be written as a function of γ and this function can be
inverted in terms of the ratio of the square of the second
sample moment and the fourth sample moment of |r[ n] |,
denoted by sample ratio and represented by f̂, then the
inverse obtained is an estimate γ̂ of the SNR γ .

In the first case, in which the fading is characterized by
format I of the distribution η − μ, for which h = (2 +
η−1 +η)/4 andH = (η−1 −η)/4, the function f(γ ) can be
written as the ratio of two polynomials of order 2 in γ ,

f(γ ) = 4 + 4C2γ + C2
2γ

2

8 + 8C2γ + 4C4γ 2 , (23)

in which  is given in (24).
When inverted in terms of the sample ratio f̂, the esti-

mate γ̂ under the format I of fading η − μ may be written
as

Fo
rm

at
Iη

−
μ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ̂ = 2(1−2f̂)+2
√

2f̂(1−2f̂)(ε−1)
C2(2ε f̂−1)

ε = 2 C4
C2
2

 = μ(1+η)2+(1+η2)
4μ(1+η)2

.

(24)

In the second case, in which the fading is characterized
by format II of distribution η−μ, for which h = 1/(1−η2)
and H = η/(1 − η2), the parameter  of the function f(γ )

presented in (23) is given in (25). When inverted in terms
of the sample ratio f̂, the estimate γ̂ under format II of
fading η − μ can be written as

Fo
rm

at
II

η
−

μ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ̂ = 2(1−2f̂)+2
√

2f̂(1−2f̂)(ε−1)
C2(2ε f̂−1)

ε = 2 C4
C2
2

 = 1+2μ+η2

8μ

(25)

In the third case, in which the fading is characterized by
the distribution κ − μ, the parameter  of the function
f(γ ) is given in (26). When inverted in terms of the sample
ratio f̂, the estimate γ̂ under κ −μ fading can be written as

M
od

el
κ

−
μ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ̂ = 2(1−2f̂)+2
√

2f̂(1−2f̂)(ε−1)
C2(2ε f̂−1)

ε = 2 C4
C2
2

 = (κμ(κμ+2μ+2)+μ2+μ)

4μ2(1+κ)2
.

(26)

As the generalized distributions encompass the distri-
bution of Nakagami-m as a particular case and this distri-
bution is one of the most used to characterize the fading
in mobile communication channels, the following section
shows the relationship between the estimators obtained in
this article and the SNR estimator for the received signal
model under Nakagami-m fading.

5 Relation with the estimator for Nakagami
fading channel

According to [23], the Nakagami-m distribution can be
obtained from the distribution η − μ making μ = m and
η → 0 or η → ∞ in format I or μ = m and η → ±1
in format II. It can still be obtained making μ = m

2 and
η → 1 in format I or μ = m

2 and η → 0 in format II.
The Nakagami-m distribution can also be obtained from
the κ − μ distribution making κ = 0 and μ = m.
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Using the estimates summarized in Table 1, one can
obtain the parameters

 = (m + 1)
4m

and

ε = (m + 1)
2m

C4

C2
2

for the Nakagami fading from the following possible sub-
stitutions

1. For η − μ fading format I: making μ = m and η → 0
in the expression of .

2. For η − μ fading format I: making μ = m
2 and η = 1

in the expression of .
3. For η − μ fading format II: making μ = m and

η → ±1 in the expression of .
4. For η − μ fading format II: making μ = m

2 and
η → 0 in the expression of .

5. For κ − μ: making κ = 0 and μ = m in the
expression of .

6 Evaluation of the estimate bymeans of the
NMSE

The normalized mean square error (NMSE) of a parame-
ter θ , considering an estimate θ̂ , is defined as [26]

NMSE =
E
[
(θ̂ − θ)2

]

θ2
, (27)

and the variance of the estimate θ̂ is given by

Var
[
θ̂
]

= E
[
θ̂2
]

− E2
[
θ̂
]
. (28)

Table 1 SNR estimates under generalized fading

fading Estimate of SNR γ

Nakagami-m

γ̂ = 2(1−2f̂)+2
√

2f̂(1−2f̂)(ε−1)
C2(2ε f̂−1)

ε = 2 C4
C22

 = (m+1)
4m

Format I

η − μ

γ̂ = 2(1−2f̂)+2
√

2f̂(1−2f̂)(ε−1)
C2(2ε f̂−1)

ε = 2 C4
C22

 = μ(1+η)2+(1+η2)
4μ(1+η)2

Format II

η − μ

γ̂ = 2(1−2f̂)+2
√

2f̂(1−2f̂)(ε−1)
C2(2ε f̂−1)

ε = 2 C4
C22

 = 1+2μ+η2

8μ

κ − μ

γ̂ = 2(1−2f̂)+2
√

2f̂(1−2f̂)(ε−1)
C2(2ε f̂−1)

ε = 2 C4
C22

 = (κμ(κμ+2μ+2)+μ2+μ)
4μ2(1+κ)2

Using E
[
θ̂2
]
from (28) and applying in (27), one can

write

E
[
(θ̂ − θ)2

]
= Var

[
θ̂
]

+
(
E
[
θ̂
]

− θ
)2

. (29)

Hence, the NMSE of the estimate γ̂ can be written as

NMSE = Var[ γ̂ ]+(E[ γ̂ ]−γ )2

γ 2 , (30)

in which Var[ γ̂ ] and E[ γ̂ ] as a function of γ can be com-
puted by a linearization process, as presented in [32].
According to that method, if an estimate θ̂ can be written
as a function of the observed data vector x,

θ̂ = h−1(μ̂) = g(x), (31)

in which μ̂ is the vector of sample moments of x, it is pos-
sible to obtain approximate expressions for the mean and
variance of the estimate to evaluate the performance of the
estimator by means of a Taylor’s expansion of g(x) about a
vector of statistics μ = E[T] [32]. The mean and variance
values given by these expressions approximate the exact
values as the number of samples observed in the vector x
increases. The exactmean and variance, however, can only
be determined by means of computational simulation.
In the context of the study presented in this paper, the

estimated parameter is scalar, θ̂ = γ̂ , and can be writ-
ten in terms of the relation (31). Calculating approximate
expressions for the mean and the variance of θ̂ can then
be performed assuming that this estimate depends on the
vector T of two statistics of the observed samples, T =
[ T1(x) T2(x) ], respectively, the second sample moment
and fourth sample moment of |r[ n] |.
The Taylor’s expansion of an estimate θ̂ , about a vector

μ of two statistics, can be approximated by

θ̂ ≈ g(μ) +
[

∂g
∂T

∣
∣∣
∣
T=μ

]T
(T − μ), (32)

and

θ̂2 ≈ g2(μ) + 2g(μ)

[
∂g
∂T

∣∣∣∣
T=μ

]T
(T − μ)

+
[

∂g
∂T

∣∣∣∣
T=μ

]T
(T − μ)(T − μ)T

[
∂g
∂T

∣∣∣∣
T=μ

]

.

(33)

It follows that Var(θ̂) can be written as

Var(θ̂) = ∂g
∂T

∣∣∣∣

T

T=μ

CT
∂g
∂T

∣∣∣∣
T=μ

, (34)

in which CT = E
[
(T − μ)(T − μ)T

]
represents the

covariance matrix of the statistics vector T .
In the context of SNR estimation, it is observed that all

estimates γ̂ summarized in Table 1 can be written from a
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single function, in terms of the parameters that character-
ize the type of fading and sample moments of |r[ n] |, so
that

γ̂ = g(T) = 2(1 − 2q(T1,T2))(2εq(T1,T2) − 1)−1

+ 2
√
2(ε − 1)q(T1,T2)(1 − 2q(T1,T2))(2εq(T1,T2) − 1)−1,

(35)

in which q(T1,T2) = f̂ = T2
1

T2
,

T1 = 1
N

N∑

n=1
|r[ n] |2

T2 = 1
N

N∑

n=1
|r[ n] |4.

(36)

and

E [T1] = 1
N

N∑

n=1
E
[|r[ n] |2] = M2

E [T2] = 1
N

N∑

n=1
E
[|r[ n] |4] = M4.

(37)

If the constellation of the modulation scheme used has
equiprobable symbols and with energy per symbol such
that the second moment of the entire constellation is uni-
tary, then C2 = 1. Hence, the mean value of the estimate,
E[ γ̂ ]= g(μ), can be written as

E[ γ̂ ] = 2
(

1 − 2
M2

2
M4

)(

2ε
M2

2
M4

− 1
)−1

+ 2
(

2(ε − 1)
M2

2
M4

(

1 − 2
M2

2
M4

))1/2

×
(

2ε
M2

2
M4

− 1
)−1

.

(38)

For the evaluation of the variance of the estimates, it
is necessary, according to the expression (34), the calcu-
lation of the partial derivatives of γ̂ in relation to the
statistics T1 and T2. These derivatives can be written as

∂g
∂T1

= ∂g
∂q

∂q
∂T1

∂g
∂T2

= ∂g
∂q

∂q
∂T2

,
(39)

and the partial derivative ∂g
∂q can be written as

∂g
∂q

= h(q(T1,T2)), (40)

in which the function h(x) is given by

h(x) = −4ε(1 − 2x)(2εx − 1)−2 − 4(2εx − 1)−1

− 4ε(2(ε − 1))1/2(2εx − 1)−2x1/2(1 − 2x)1/2

+ 2(ε − 1)(2(ε − 1))−1/2(1 − 4x)x−1/2(1 − 2x)−1/2

× (2εx − 1)−1.
(41)

Using the fact that

∂

∂T1
q(T1,T2) = 2

T1
T2

∂

∂T2
q(T1,T2) = −T2

1
T2
2
,

(42)

one can write the vector ∂g
∂T

∣∣
∣
T=M

as

∂g
∂T

∣
∣∣∣
T=M

=
⎡

⎣
2h(g(M2,M4))

M2
M4

−h(g(M2,M4))
M2

2
M2

4

⎤

⎦ . (43)

The elements of the covariance matrix CT, presented
in (34), can be obtained from the expressions of the
statistics T1 and T2, given in (36), and written as

Cov(T1,T1) = 1
N
(
M4 − M2

2
)

Cov(T1,T2) = Cov(T2,T1) = 1
N

(M6 − M2M4)

Cov(T2,T2) = 1
N
(
M8 − M2

4
)
.

(44)

Substituting (43) and (44) in the expression of the vari-
ance of γ̂ , one can write Var(γ̂ ) as

Var[ γ̂ ] = h2(g(M2,M4))

N

(
M2
M4

)2 [ 2
−M2

M4

]T

×
[

M4 − M2
2 M6 − M2M4

M6 − M2M4 M4 − M8 − M2
4

] [
2

−M2
M4

]
,

(45)

which can be written as

Var[ γ̂ ]= 1
N
h2(fM)

[

4fM − f 2M − 4M6
M2M4

f 2M + M8

M2
4
f 2M

]

,

(46)

in which

fM = M2
2

M4
.

7 Moments of theM-QAM constellations
In this section, the moments of order 2, 4, 6, and 8 are
determined for the M-QAM constellation. The moments
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of order 2 and 4 are necessary to calculate the SNR esti-
mate, while the higher order moments are necessary to
evaluate the variance of the estimate.
In this calculation, it is assumed that the symbols are

equiprobable and normalized from the total energy of the
constellation, obtained from the sum of the square mod-
ulus of M symbols. Writing these symbols in terms of
the corresponding coordinates in the plane R2, (2i − 1 −√
M, 2j−1−√

M) for i, j = 0, 1, · · · ,√M−1, one has that
the total energy is given by Et = ∑M−1

n=0 |s[ n] |2 = 2M(M−
1)/3, while the average energy per symbol, obtained by
dividing the total energy by the number of symbols, can be
written as Eav = 2(M − 1)/3. The constellation can then
be normalized by the constant C = 1/

√
Eav.

Themoment of order 2k of the normalized constellation
can then be obtained by multiplying the symbols by the
constant of normalization C and calculating the sum

C2k =
M−1∑

n=0
pn(|s[ n] |)2k . (47)

Writing s[ n] in terms of its coordinates in the plane R2

and developing the sum of (47) for k equal to 1, one has
that the moment of order 2, C2, can be written as

C2 =
M−1∑

n=0
pn|s[ n] |2 = 1

M

M−1∑

n=0
|s[ n] |2 = Et

M
= 1. (48)

Making k equal to 2, 3, and 4, one can obtain, respec-
tively, the moments of order 4, 6, and 8, denoted byC4,C6,
and C8. Developing the summation (47) and making the
necessary simplifications, one has

C4 = (7M2 − 20M + 13)
5(M − 1)2

,

C6 = 9(9M2 − 40M + 51)
35(M − 1)2

,

C8 = 9(83M3 − 637M2 + 1897M − 2183)
175(M − 1)3

.

(49)

8 Discussion on the Cramér-Rao bound
In this section, a discussion is presented about the cal-
culation of the Cramér-Rao bound for the η − μ fading
model. This proposal can be extended to κ − μ fading
following the same procedure. The PDF of the samples
modulus of the received signal |r[ n] | under η − μ fad-
ing can be obtained by taking the expected value of the
conditioned PDF f|r[n]|(|r[ n] |||g[ n] |, |s[ n] |) by the dis-
tributions of |g[ n] | and |s[ n] |. Thus, the PDF can be
written as

f|r[n]|(x) = βη−μ

M
x
σ 2
w
exp

(
− x2

2σ 2
w

) M∑

i=1

∫ ∞

0

vμ− 1
2 exp

(

−
(

2μh + |Ai|2
2

σ 2
g

σ 2
w

)

v
)

× Iμ− 1
2
(2μvH)I0

(
x|Ai| σg

σ 2
w

√
v
)
dv,

(50)

in terms of the average powers of the noise, σ 2
w, and fading,

σ 2
g , for the normalizedM-QAMconstellation of equiprob-

able symbols. After searching in classical Laplace integrals
and transform tables involving Bessel functions, it was not
possible to find an exact solution to the integral in (50)
because one of the Bessel functions has as argument a
square root of the integration variable and this became the
main constraint to calculating the Cramér-Rao bound.
A possible solution to this problem is to consider the

average power, σ 2
g , of the fading of unit value, so that the

SNR is γ = 1/σ 2
w. This consideration is appropriate from

the point of view of computational simulation because
it makes the generation of variables η − μ faster by the
method of acceptance-rejection employed in this study,
since the variation of σ 2

g influences the PDF format of the
η−μ distribution. In addition, this consideration allows to
calculate only the Fisher information, instead of the Fisher
information matrix, which is four times more laborious.
Thus, by considering σ 2

g = 1, f|r[n]|(x) can be written as

f|r[n]|(x; γ ) = βη−μ

M
xγ exp

(
−γ

2
x2
)
Qη−μ(x, γ ), (51)

in which

Qη−μ(x, γ ) =
M∑

i=1

∫ ∞

0
vμ− 1

2 exp
(

−
(
2μh + |Ai|2

2
γ

)
v
)

× Iμ− 1
2
(2μvH)I0

(
x|Ai|γ

√
v
)
dv

(52)

and

βη−μ = 2
√

πμμ+ 1
2 hμ

�(μ)Hμ− 1
2

. (53)

Considering the N observed samples of |r[ n] | indepen-
dent and identically distributed with PDF f|r[n]|(|r[ n] |; γ ),
then the Fisher information I(γ ) can be written as

I(γ ) = −NE
[

∂2

∂γ 2 lnf|r[n]|(|r[ n] |; γ )

]

= N
∫ ∞

0

∂

∂γ
f|r[n]|(x; γ )

∂

∂γ
lnf|r[n]|(x; γ )dx.

(54)

in which the expected value was taken by the PDF
f|r[n]|(|r[ n] |; γ ).
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The integral in (54) can be written as
∫ ∞

0

∂

∂γ
f|r[n]|(x, γ )

∂

∂γ
lnf|r[n]|(x, γ )dx

= 1
γ

βη−μ

M

∫ ∞

0
xQη−μ(x, γ )exp

(
−γ

2
x2
)
dx

︸ ︷︷ ︸
I1

− βη−μ

M

∫ ∞

0
x3Qη−μ(x, γ )exp

(
−γ

2
x2
)
dx

︸ ︷︷ ︸
I2

+ γ

4
βη−μ

M

∫ ∞

0
x5Qη−μ(x, γ )exp

(
−γ

2
x2
)
dx

︸ ︷︷ ︸
I3

+ 2
βη−μ

M

∫ ∞

0
xQ′

η−μ(x, γ )exp
(
−γ

2
x2
)
dx

︸ ︷︷ ︸
I4

− γ
βη−μ

M

∫ ∞

0
x3Q′

η−μ(x, γ )exp
(
−γ

2
x2
)
dx

︸ ︷︷ ︸
I5

+ γ
βη−μ

M

∫ ∞

0
x
(Q′

η−μ(x, γ ))2

Qη−μ(x, γ )
exp

(
−γ

2
x2
)
dx

︸ ︷︷ ︸
I6

,

(55)

in which

∂

∂γ
Qη−μ(x, γ ) =

M∑

i=1

∫ ∞

0
vμ− 1

2 exp(−2μhv)Iμ− 1
2
(2μHv)×

∂

∂γ

[
exp

(
−|Ai|2

2
vγ
)
I0(x|Ai|γ

√
v)
]
dv.

(56)

Calculation of the expressions I1, I2, I3, I4, and I5 could
be performed and simplified without great difficulties
because when Qη−μ(x, γ ) was considered, the change of
order of integration in the resulting double integrals led
to integrals that could be calculated as Laplace transforms
involving the modified Bessel functions. Therefore, one
has the following solutions.

I1 = M
γ

�(μ)Hμ− 1
2

2
√

πμμ+ 1
2

1
[
h2 − H2]μ . (57)

I2 = 1
γ

M∑

i=1
|Ai|2

(
�(μ)Hμ− 1

2

2
√

πμμ+ 1
2

h
[
h2 − H2]μ+1

)

+ 2
γ 2

M∑

i=1

(
�(μ)Hμ− 1

2

2
√

πμμ+ 1
2

1
[
h2 − H2]μ

)

.

(58)

I3 = 1
2γ

M∑

i=1
|Ai|4

(
�(μ)Hμ− 1

2

2
√

πμμ+ 1
2

(
H2 + (2μ + 1)h2

)

μ
[
h2 − H2]μ+2

)

+ 8
γ 2

M∑

i=1
|Ai|2

(
�(μ)Hμ− 1

2

2
√

πμμ+ 1
2

h
[
h2 − H2]μ+1

)

+ 8
γ 3

M∑

i=1

(
�(μ)Hμ− 1

2

2
√

πμμ+ 1
2

1
[
h2 − H2]μ

)

.

(59)

I4 = 1
2γ

M∑

i=1
|Ai|2

(
�(μ)Hμ− 1

2

2
√

πμμ+ 1
2

h
[
h2 − H2]μ+1

)

.

(60)

I5 = 1
4γ

M∑

i=1
|Ai|4

(
�(μ)Hμ− 1

2

2
√

πμμ+ 1
2

(
H2 + (2μ + 1)h2

)

μ
[
h2 − H2]μ+2

)

+ 3
γ 2

M∑

i=1
|Ai|2

(
�(μ)Hμ− 1

2

2
√

πμμ+ 1
2

h
[
h2 − H2]μ+1

)

.

(61)

The integral I6 cannot be written in closed-form. It is
rewritten as

I6(γ ) = γ
βη−μ

M

∫ ∞

0
x
(Q′

η−μ(x, γ ))2

Qη−μ(x, γ )
exp

(
−γ

2
x2
)
dx.

(62)

In both Format I and Format II of the model η − μ, one
has h/

(
h2 − H2) = 1. Thus, after substituting the results

Ik , 1 ≤ k ≤ 5 and I6(γ ) in (55), Fisher information I(γ )

can be written, from (54), as

I(γ ) = N
[
I6(γ ) + 1

γ 2 − C2
γ

− C4λ

]
. (63)

Therefore, one has

CRLB[ γ̂ ]= 1

N
[
I6(γ ) + 1

γ 2 − C2
γ

− C4λ
] , (64)

in which

λ = 1
8λ

[(
H
h

)2
+ (2μ + 1)

]

, (65)

C2 = 1 for the normalized M-QAM constellation and C4
is given by (47).

9 Results and discussion
In this section, results are presented for numerical eval-
uation of the mathematical expressions obtained for the
estimates of the SNR and its NMSE, corroborated by sim-
ulations performed by the Monte Carlo method. For each
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Fig. 1 Curves of the rational function f(γ ), as a function of SNR γ (dB), for fading model η − μ with μ = 0.6 for 64-QAM and different values of η
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Fig. 2 Curves of the rational function f(γ ), as a function of SNR γ (dB), for fading model κ − μ with μ = 0.5 with 64-QAMmodulation and different
values of κ
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Fig. 3 NMSE of the estimate γ̂ as a function of SNR in dB for fading η − μ with η = 0.1, different values of μ, N = 5 × 104 and 64-QAMmodulation

SNR value, the variance and the mean of each estimate
were obtained from a mean of 10 realizations of N sam-
ples of r[ n]. In Figs. 1 and 2, curves are presented for the
rational function f(γ ) obtained from the ratio between the
square of the second moment and the fourth moment of
the magnitude of the received signal |r[ n] |, for the fad-
ing models η − μ and κ − μ, considering the 64-QAM
modulation scheme.
The importance of these curves is that they allow to

determine the interval within which the ratio between
the square of the second sample moment and the fourth

sample moment of |r[ n] | must lie within so that f(γ ) can
be inverted and provide the estimate γ̂ of the SNR. In
both figures, one observes that the length of this inter-
val increases as κ and η decrease. When these parameters
decrease, for μ fixed, the probability of the normalized
envelope of the fading take values close to zero, for exam-
ple, is larger, and this behavior can be confirmed by means
of the CDF of the distributions η −μ and κ −μ presented
in [23].
The next group of curves, in Figs. 3 and 4, show the

behavior of the NMSE and the mean of the estimate γ̂

Fig. 4Mean of the estimate γ̂ as a function of SNR in dB for fading η − μ with η = 0.1, different values of μ, N = 5 × 104 and 64-QAMmodulation
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Fig. 5 Variance of the estimate γ̂ as a function of the number of samples N for different values of SNR γ and 64-QAMmodulation considering κ − μ

fading with κ = 1.1 and μ = 0.3

for the received signal model r[ n] under fading η − μ as
a function of the SNR γ in dB. The theoretical curves of
the NMSE were plotted for different values of η from the
expressions (30), (38), (46), and the moments obtained for
|r[ n] | under fading η − μ. The modulation used was 64-
QAM, and the number of samples N considered was 5 ×
104, for the plot of the theoretical curves of the NMSE and
for the the mean of the estimate obtained by simulation.

Figures 3 and 4, together, show the interval of SNR
values for which the estimator presents its better perfor-
mance. While the mean of the estimates approximates the
desired values in the interval from 0 to 10 dB for all val-
ues of the parameter μ considered, the NMSE remains
bellow 10−1 from –5 to 15 dB only for μ = 0.8. It can
be seen from Fig. 4 that the estimates adhere well to the
expected average behavior in the range of SNR values

Fig. 6 Variance of the estimate γ̂ as a function of the number of samples N for different values of SNR γ and 64-QAMmodulation considering η − μ

fading with η = 0.1 and μ = 0.8
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between 0 dB and approximately 15 dB for all values of
the parameter μ, while the NMSE of the estimate is more
sensitive to the variation of intensity of fading character-
ized by the different values μ. For η fixed, the probability
of the intensity of the fading envelope decreases below
a fixed value decreases as μ increases. This behavior of
the fading envelope η − μ can be verified by means of
its CDF, presented in [23], and means that the increase
of parameter μ models fading situations of lesser
intensity.
Figures 5 and 6 present curves of the variance of the esti-

mate γ̂ as a function of the number of samples N of the
signal envelope |r[ n] | on a channel under fadings κ − μ

and η − μ. It was considered, both in the simulation and
in the plot of theoretical curves, fading κ −μ with κ = 1.1
and μ = 0.3 and fading η − μ with η = 0.1 and μ = 0.8
for different values of γ (dB) and 64-QAM modulation
scheme.
It is observed from Fig. 5 that the variance of γ̂ is

below 0.015 for N = 8 × 104, for all values of SNR
considered. The theoretical curves were all obtained from
the expression (46) and corroborated with the points of
the simulations carried out. By the curves, it is observed
that the estimator performs better, in terms of the vari-
ance, for smaller values of SNR. For γ = −2 dB, the
variance remains below 0.01 for the entire range of N
values considered, indicating that with 104 samples, it is
possible to get the estimate with a variance of less than
0.01 around the average.
From Fig. 6, it can be seen that for the SNR of –1 dB the

variance of γ̂ takes maximum value below 0.05 for a num-
ber of samples N of |r[ n] | equals 104, whereas for a SNR
of 5 dB, the variance is only below 0.05 for N = 4× 104. It

is also worth noting that the setting of parameters η = 0.1
and μ = 0.8 models a case of more intense fading than
configurations with values greater than μ. Therefore, the
γ estimator of the η − μ model, presented in the second
and third lines of Table 1, presents better performance for
this more severe channel condition than the case where
the SNR is larger and the fading is less intense. Although
these MOMNDA estimators require much more samples
of the received signal, compared to MLE estimators, it is
still appropriate, due to its simplicity, to be implemented
in hardware systems in which the processor capacity is
reduced.
The group of curves of Figs. 7 and 8 shows the behavior

of the NMSE and the mean of the estimate γ̂ for different
configurations of parameters of the κ − μ fading model.
Each simulated value of the SNR estimate was obtained
from N = 5× 104 samples of the envelope of the received
signal |r[ n] |, and the theoretical curves were obtained
from the expressions (30), (38), and (46) and from the
expressions of moments of |r[ n] | for the κ − μ model.
Regarding Fig. 7, it is observed that forμ = 0.8 and fixed

SNR γ , the NMSE of the estimate γ̂ decreases with the
decreasing of κ parameter. It can be observed, by means
of the CDF of the envelope of κ − μ fading presented in
[23], that with smaller values of κ , the distribution κ − μ

models cases of greater fading depth. This conclusion can
be obtained by fixing a value of envelope of the κ − μ

fading and verifying the probability of the envelope tak-
ing values below that fixed value as κ decreases. With
respect to Fig. 8, it can be observed that the mean of
the estimate γ̂ is close to the target value in the range of
–5 to 15 dB, for the different parameter configurations
used in simulations, while the interval of SNR values for

Fig. 7 NMSE of the estimate γ̂ as a function of SNR in dB for fading κ − μ for N = 5× 104 and 64-QAMmodulation considering different values of κ
and μ = 0.8
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Fig. 8Mean of the estimate γ̂ as a function of SNR in dB for fading κ − μ for N = 5× 104 and 64-QAMmodulation considering different values of κ
and μ

which the NMSE remains below 10−1 becomes shorter as
κ increases.
Either for the η − μ model or the κ − μ model, the

SNR range for the best performance of the estimators is
from –2 to 12 dB. Above 12 dB, the average values of the
estimates begin to deviate from the exact value. Never-
theless, the simplicity of the expressions of the estimators
justifies the number of samples of the observed signal
greater than the necessary for the optimal MLE estima-
tor. As can be seen in Section 8, the greater complexity
of the fading model leads to a greater complexity of the

likelihood function and the difficulty for obtaining both a
MLE estimator and an exact expression for the CRLB.
Figures 9 and 10 present the curves of the NMSE for dif-

ferent values of the constellation order, as a function of the
SNR γ , respectively, on channels under η − μ fading with
η = 0.1 and μ = 0.6 and κ − μ fading with κ = 3 and
μ = 0.5. In both channel models, the estimator perfor-
mance is not affected as the constellation order increases.
This happens for the M-QAM constellation because the
value of its fourth moment changes a little asM increases,
as can be seen from (49).

Fig. 9 NMSE of the estimate γ̂ as a function of the SNR in dB, N = 5× 104, η − μ fading for η = 0.1 and μ = 0.6, and different orders of theM-QAM
constellation
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Fig. 10 NMSE of the estimate γ̂ as a function of the SNR in dB, N = 5 × 104, κ − μ fading for κ = 3 and μ = 0.5, and different orders of theM-QAM
constellation

10 Conclusion
In this article, new and exact expressions are presented
for the estimation of SNR in generalized fading channels
characterized by the probability distributions η − μ and
κ − μ, by using the method of moments. In the model
of received signal considered, the modulation scheme M-
QAM was used. The main advantage of using generalized
models, such as η − μ and κ − μ, is that their dis-
tributions encompass several other distributions com-
monly used to model fading. As an example, one of
the scenarios considered in this article was that of the
Nakagami fading, for which the estimate of SNR was
obtained from expressions presented in this work. Regard-
ing the performance of the estimators, the mean and
the NMSE of the estimates were used. It is observed
from the theoretical curves obtained, corroborated by the
simulations, that the performance of the estimators is sat-
isfactory in the range of SNR values in which the mean
of the estimate adheres to the target SNR value. It is also
noticed, from the curves presented, that the performance
of the estimators is better for the parameter settings
that characterize more intense fading and low SNR. As
future works on SNR estimation, the authors will inves-
tigate the use of goodness-of-fit tests and kernel density
estimation.
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