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Abstract

Visual tracking in condition of occlusion has been a challenging task over years. Recently, part-based algorithms
have made great progress in handling occlusion. However, the existing part-based methods neglect different
importance between central parts and marginal parts. Besides, scale variation remains a difficulty for part-based
tracking. In this paper, we propose a novel part-based tracker to solve the above problems. Specifically, we
introduce a visual attention mechanism recurrently exploiting co-saliency of target to guide the sampling of parts,
which aims to highlight the importance of salient parts and guarantee the semantic integrity so as to improve the
robustness handling occlusion. Considering the drift of prediction caused by mutual influence of parts, we
implement the non-maximum suppression operation to reduce the high overlaps between parts, and introduce an
effective correlation filter as base tracker. To balance the global distribution and local partiality of parts, appropriate
update strategy including scale estimation method inspired by particle filters and correlation filters, Hough-voting
scheme for target’s center prediction, and principles of part resampling are also fused into the algorithm. The
experimental results on VOT 2017 and OTB-50 benchmarks showed that the proposed method is in comparison to
the state-of-the-art trackers and good at dealing with occlusion situations particularly.
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1 Introduction
Visual tracking, which locates a target in a video sequence,
is one of the most challenging tasks in computer vision
with numerous applications, such as behavior analysis,
scene understanding, and video surveillance. Tracking algo-
rithms can be simply categorized into generative methods
(e.g., [1–3]) and discriminative methods (e.g., [4, 5, 6]).
Generally, tracking ability of trackers can be enhanced by
cooperating with effective algorithms used in pattern recog-
nition like rotation invariants [7–9]. With the continuous
advancement in machine learning, correlation filters [10]
have become the mainstream in target tracking.
Most proposed tracking methods rely on global ap-

pearance features. However, occlusion or deformation
may dramatically deteriorate the performance of such
methods. Recently, the part-based tracker has attracted
researchers’ attention. The part-based tracking methods
divide the target into multiple parts and then use the

generative tracker or discriminative tracker to track
parts of the target. Most part-based trackers retain the
structural layout of the target. For example, Yao et al. [11]
propose a part-based appearance model that utilizes the
spatial structure of parts to predict new position of the
target by minimizing the appearance and deformation
costs. Liu et al. [12] propose an oversaturated part-based
tracking algorithm based on spatio-temporal context
learning, which includes a structural layout constraint and
a model updating strategy. Gao et al. [13] propose an
end-to-end deep regression model utilizing the advantages
of convolutional neural networks, which fully exploits the
context information of the parts to preserve the spatial
layout structure of the target, and learns the reliability of
the parts to emphasize the importance of the parts. Liu et
al. [14] propose a structural correlation filter SCF that pre-
serves the overall structure of the target through main-
taining similar circular shifts for all parts. With
comprehensive progress of tracking algorithms, many
part-based tracking methods absorb the ideas from differ-
ent methods. Bhargava et al. [15] propose a multi-parts
and multi-feature tracking method, exploiting strong
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features to measure the confidence and reducing the im-
pact of weak features. Niu et al. [16] introduce a back-
ground tracker to typical part-based framework, which
aims to determine the occurrence of occlusion, so as to
adjust the update strategy of the target tracker. Addition-
ally, Wang et al. [17] creatively introduce the imagery
ranking-based method into the field of part-based track-
ing. Li et al. [18] combine the idea of particle filter with
correlation filter. Liu et al. [19] take advantage of correl-
ation filter and Bayesian inference and propose a tracker
for real-time component tracking. Recently, Johnander et
al. [20] propose a deformable filter which is represented as
a linear combination of sub-filters, and establish a unified
formulation to learn a deformable convolution filter.
Although many novel algorithms are proposed with

the advancement of tracking algorithms, most of them
are similar in terms of part sampling strategy and base
tracker. Firstly, the most popular part sampling strat-
egies are fixed sampling strategies [15] and Gaussian
distribution [12, 18] strategies. The former sample the
parts by recurrently dividing the target into several
fixed-size parts, while the latter is similar to particles
that sample parts based on Gaussian distribution. For
the base tracker, most part-based tracking algorithms
choose the KCF filter [11, 14, 18, 19] because of its high
speed. However, the KCF filter cannot adjust the scale
variation of the parts, and its features extraction cap-
ability is limited.
In this paper, we propose a novel part-based tracking al-

gorithm that recurrently exploiting co-saliency of the tar-
get (REC tracker) for visual tracking. Our contributions
can be mainly summarized in the following aspects: (1) we
propose a part sampling method guided by co-saliency of
target which not only highlight the importance of salient
parts during tracking process, but also guarantee the se-
mantic integrity. (2) We design an appropriate part update
strategy to balance the global distribution and local parti-
ality of the parts. (3) We introduce the handcrafted feature
version of efficient convolution operator (ECO-hc) to im-
prove the accuracy of part tracking.
The rest of the paper is organized as follows. Section 2

explains the three main components in our proposed
tracker: the part sampling method, the base tracker, and
the scale estimation method in detail. And we also provide
the process of the proposed tracker. Section 3 shows the
experimental results on tracking benchmarks and ablation
study of the proposed method. Finally, the conclusions of
our research are summarized in Section 4.

2 Methods
In this section, we first illustrate the attention mechan-
ism and apply the target’s saliency to the part sampling.
We then introduce the ECOhc tracker, a correlation fil-
ter with powerful ability in feature extraction, into the

part-based tracking framework. At last, we analyze the
scale estimation of the existing algorithms and propose
a new scale estimation method.

2.1 Part sampling method
In order to address the problems of semantic fragmen-
tation and background interference in the current
part-based tracking algorithms, we use the most attract-
ive part of the target to guide the part sampling and
therefore improve the representation of the parts in this
study. Specifically, we follow the principle of visual
stimulation in a single picture, which can identify the
most salient objects from the background. As a
pre-processing operation before part sampling, the sali-
ency detection should meet requirements of efficient
computation. We employ a cluster-based saliency de-
tection method [21], which uses the contrast and
spatial cues of a single image to construct a saliency
map of the target area of each frame, and we then sam-
ple the part based on the saliency map.

2.1.1 Saliency map
We apply the k-means clustering method to divide the
pixels of the image I into K clusters and then compute
the contrast cues and spatial cues of each cluster. Then,
the two cues are merged into a saliency map.
As a traditional method for measuring the uniqueness

of visual features, contrast cue is widely used in the sali-
ency detection of single image. In our study, contrast
cue measures the difference between features and can be
expressed as follows:

wc kð Þ ¼
XK

i¼1;i≠k

ni

N
uk−ui
�� ��

l2

� �
ð1Þ

where the superscript “c” refers to contrast cue, and wc(k)
denotes the salient score of contrast cue on cluster Ck, uk

represents the center of cluster Ck, the l2-norm is used to
calculate the distance between features in the feature
space, ni denotes the number of pixels of cluster Ci, and N
is the total number of pixels of the image. It can be seen
from Eq. (1) that the larger the cluster Ci, the greater in-
fluence it plays to contrast cue of cluster Ck.
Contrast cue assigns higher salient scores to the

minor clusters. However, it is ineffective for handling
the complex background. Thus, we introduce spatial
cue. Similar to the cosine window operation in the cor-
relation filter, the spatial cue suppresses the saliency of
the region far from the center of image based on the
assumption that the central region of image is more
significant than other regions. Spatial cue can be de-
scribed as follows:
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where the superscript “s” refers to spatial cue, ws(k) is
the salient score of spatial cue on cluster Ck, and ti de-
notes the normalized location of the pixel xi in the
image I. The normalization coefficient nk represents the
number of pixels of cluster Ck, and the Gaussian kernel
G(⋅) is used to calculate the Euclidean distance between
the normalized pixel ti and the image center o, and the
variance σ2 is the normalized radius of the image. δ(⋅) is
the Kronecker delta function, and function b associates
the pixel xi with the cluster index b(xi).
The two cues are merged by element-wise multiplica-

tion operations. The saliency probability of each cluster
is calculated using the following formula to obtain the
cluster-level significance value:

p Ck
� � ¼ wc kð Þ∘ws kð Þ ð3Þ

In order to get the pixel-level significance value, the
relation between pixels and their clusters should be
established. For each pixel in the cluster, its salient likeli-
hood follows a Gaussian distribution:

p xjCk
� � ¼ G vx; u

k
�� ��

l2
j0; σ2k

� �
ð4Þ

where vx denotes the feature vector of pixel x and σk
represents the variance of the clusterCk. The pixel-level
feature map can be described as the sum of all cluster
saliency values:

p xð Þ ¼
XK
k¼1

p xjCk
� �

p Ck
� � ð5Þ

According to (5), the saliency feature map that re-
flects the saliency distribution of the target area is ob-
tained. The cluster-based saliency detection method
not only calculates the pixel-level saliency value, but
also performs the segmentation operation of different
regions of the target; it is plausible to use saliency map
to guide the part sampling.

2.1.2 Part sampling
With a saliency feature map, the part sampling can be
easily performed on the target. Similar to most of the
part-based algorithms, the parts mentioned in this
paper are in the form of rectangular bounding boxes.
The specific size of the parts are 0.7 times of target size.
Here, the ith rectangular bounding box can be de-
scribed as riðxim;wi; hi; siÞ, where xim denotes the pixel in
the rectangular bounding box, m ∈ {1, 2, … , wi × hi} is
the pixel index, and wi and hi represent the width and

height of the rectangular bounding box, respectively. si

represents the saliency score of the rectangular bound-
ing box, which is defined as follows:

si ¼
Xwi�hi

m¼1

p xm
i

� � ð6Þ

Rectangular bounding boxes with low saliency scores
are eliminated by implementing the non-maximum sup-
pression (NMS) operation: we first sort rectangular
bounding boxes according to saliency scores, then calcu-
late the intersection between rectangular bounding boxes
according to the sorting result. The rectangular bounding
boxes with the intersection ratio greater than a certain
threshold θ are eliminated. The calculation of the intersec-
tion ratio θ can be expressed by the following formula:

θ ¼ ri∩r j

ri∪r j
ð7Þ

Although exhaustive computation is implemented in
sampling, the computational cost is still limited because
it is only carried out in the target area. Since the NMS
operation eliminates redundant rectangular bounding
boxes, the rectangular bounding boxes are widely dis-
tributed over the salient areas and cover the entire tar-
get area, which balances the emphasis and uniformity.
We use an example to illustrate it as shown in the Fig. 1.
Figure 1a shows the input image, and Fig. 1b shows the
co-saliency map which we sample parts based on. Ap-
parently, the sampling results of the Gaussian sampling
method (Fig. 1c) contain too much background infor-
mation and ruin the semantic integrity of the target.
However, by the proposed part sampling method
(Fig. 1d), the areas which attract visual attention, for in-
stance the shirt, are sampled as a whole.

2.2 ECOhc tracker
In this paper, we choose ECOhc tracker, a pioneering
correlation filter, as base tracker. The principle of cor-
relation filter is to obtain correlation peak in target’s
center while depressing the response of the back-
ground. Compared with other correlation filters, the
ECOhc has compact structure, a representative samples
fusion model, and an adaptive update strategy, which
ensures the high accuracy in tracking. During the track-
ing, the detection scores of the target can be described
as follows:

S ¼ Pf � J ð8Þ
where S is the detection scores, J represents the interpo-
lated feature vector, and f is a set of filters. P is a matrix
learned in the first frame, with the aim of reducing feature
dimensions. The operator “*” denotes the convolution

Han et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:12 Page 3 of 12



operation, and more details are referred to [4]. The filter is
learned by minimizing the following objective in the Fou-
rier domain:

arg min f ¼ z
∧T
P f
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− y
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2

l2

þ
XQ
q¼1

κ
∧ � f

∧q
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þ β Pk k2F ð9Þ

where z∧ is interpolated feature map, y∧ is the expected

detection score, k � k2l2 means the square of l2-norm,

k � k2F represents the Frobenius norm, and κ∧ represents
a spatial penalty which mitigates the drawbacks of the
periodic assumption. q is the index of the filter and Q
denotes the number of filters. In order to limit P, a
weight parameter β is added in the equation. Equation
(9) is regarded as a nonlinear least squares problem,
which can be solved by employing the Gauss-Newton
and the Conjugate Gradient method.

2.3 Scale estimation
The scale estimation of the target is one of the diffi-
culties in the part-based visual tracking algorithm. On
the one hand, since scale variation of parts is almost
unrelated to the change of the target’s overall scale, it
is hard to determine the optimal size of the target by
scale variation of base trackers. On the other hand,
due to the small number of parts, the scale estimation
methods, which are based on dense sampling, are un-
able to accurately determine the scale variation of the
target. In this paper, we design a new mechanism of

scale estimation for part-based tracking framework,
which is inspired by the scale variation methods of
particle filter and correlation filter. The scale variation
of particle filter reflects the relationship between tar-
get size and motion of parts. And the method of cor-
relation filter constrains the drastic change of the
scale which usually happen among particle filters. To
the best of our knowledge, it is the first time that we
introduce the concept of overlap between the parts
and the target into the scale estimation, and we fully
consider and introduce the overlaps between the parts
and target into the scale estimation. Specifically, 33
scale gradients are set, and the displacement of each
part between adjacent frames is calculated. Then we
compute the Euclidean distance of the displacement
and the scale gradient is computed, which aims to se-
lect the scale with the shortest distance as candidate
scale of target.
To illustrate the method, we design an objective func-

tion for scale estimation. The center coordinates of the
target in the tth frame is μc

t, the center coordinates of
the ith part is μi

t, and the number of parts is represented
by l. The objective function of scale estimation can be
described as follows:

L vð Þ ¼ min
1
l

Xl
i¼1

μtc−μ
t
i

μt−1c −μt−1i

� �2

−λv
 !2

ð10Þ

where the λ means the gradient base number, which is set
to 1.02 after a series of experiments, and v ∈ {−16, −15,
… , 16} represents the index of λ. The aim of the objective

Fig. 1 A comparison of different sampling strategy. a Input image. b Co-saliency map. c Gaussian sampling method. d The proposed method.
The sampling results of the Gaussian sampling method contain too much background information and ruin the semantic integrity of the target,
while the proposed part sampling method samples the salient areas which attract visual attention
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function is to obtain the candidate scale λva . In order to re-
duce the influence of the part tracking error in the process
of scale estimation, a judgment coefficient η ∈ {0, 1} is in-
troduced as follows:

η ¼ 1;φ≥0:3
η ¼ 0;φ < 0:3

�
ð11Þ

if the intersection ratio φ of parts’ total area and target
area is less than 0.3, η = 0, otherwise η = 1. Let St denotes
the scale of target in tth frame. Thus, the final scale esti-
mation is as follows:

St ¼ St−1 � λva�η ð12Þ

2.4 REC algorithm
In this section, we propose the process of the proposed
algorithm. The tracker model M is composed of multiple
part tracking models: Mt ¼ fHt

1;H
t
2;…;Ht

lg . Similar to
the RPT tracker [18], we use the Hough voting scheme
to predict the center coordinates of target. However, we
do not classify parts as positive parts or negative parts,
because the algorithm does not use the Monte Carlo
framework to distribute parts based on Gaussian distri-
bution. Thus, in our proposed algorithm, all the parts
can be considered as positive samples. The center coor-
dinates of target can be predicted by using the Hough
voting scheme:

pt
∧
¼
Xl
i¼1

ωt
iH

t
i ð13Þ

where the weight ω is determined by the confidence of
each part. Specifically, the normalized peak-to-sidelobe ra-
tio (PSR) of each part is used as the weight. It can be seen
from Eq. (13) that the parts with higher response value
has a greater influence on the target state evaluation,
which corresponds to the visual principle that different
parts of the target tracking have different importance.
After predicting the target center, the target’s scale St

can be estimated by Eq. (12), and finally, the state of the
target can be obtained as follows:

Tt
target ¼ pt

∧

; St
� �

ð14Þ

With the iteration of part tracking, the tracking error
is also accumulated. In order to reduce the error, it is
necessary to resample parts. Traditionally, the algo-
rithms resample all of parts, which causes expensive cost
of computation [22]. In our algorithm, we only resample
certain parts based on the saliency of target. In addition,
we have to avoid the overlaps between parts, which may
lead to the drift of the target center. In this paper, the

criteria for judging the parts that need to be resampled
can be summarized as the following:

(a) Low confidence. As mentioned before, parts
confidence is measured by evaluating their PSR
values. A low confidence means that the part’s
current tracking result is unreliable, and there is a
high probability of tracking errors, so the part should
be resampled. We should discard parts with low
confidence and add with high confidence new parts.

(b) Far center. During the tracking, some parts may
gradually move away from the target center, which
may seriously affect the prediction of the target
center. Therefore, we identify a part with the center
1.5 times of the target size away from the target
center as the far center, which should be resampled.

(c) High overlap. Our resampling strategy is also based
on the saliency of the target. However, during the
resampling, if an added new part highly overlaps with
the existing parts, it affects the accuracy of the
tracking through Hough Voting scheme. Thus, when
the intersection ratio between a new part and an
existing part by more than 50%, the new part will not
be added. In summary, the process of the entire
algorithm in this paper is shown in Algorithm 1.

a b c

3 Results and discussion
In this section, we perform several experiments to testify
the effectiveness of our proposed algorithm. We first
evaluate the REC tracker on the VOT 2017 and OTB-50
benchmarks. Then we select some typical sequences
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from public datasets to demonstrate the tracker’s ability
to counter occlusion. In addition, we analyze the design
of proposed algorithm.

3.1 Implementation details
The experiments are run in the Matlab R2017b, and
the hardware environment includes an Intel i5-8400
2.80 GHz CPU, 16 GB RAM. We apply the HOG and
color names (CN) as feature representations. All the
experiments are carried out using the following fixed
parameters, which are set after several experiments.
More details about the setting of parameters are de-
scribed in Section 3.5. For part sampling, the size of
part is 0.7 times of the target size, the intersection
threshold of the part sampling θ is set to 0.4. As to sa-
liency detection, the input image I is resized to 150 ×
150, and the cluster number K equals to 8. For scale
estimation, the gradient base number λ is set to 1.02
after several experiments, while the intersection
threshold φ is set to 0.3. For the ECOhc tracker, we
use default parameter configuration. In these experi-
ments, the proposed algorithm runs around 14 frames
per second.

3.2 VOT 2017 results
3.2.1 Datasets and evaluation metrics
The VOT 2017 dataset consists of 60 video sequences,
and each sequence is per-frame annotated. The overall
tracking performance is evaluated in terms of expected
average overlap (EAO) which takes into account both ac-
curacy and robustness. The larger the value of EAO is, the
better the performance of the tracking algorithm will be.
The details of calculation of EAO are referred to [23].

3.2.2 Baseline methods
Similar to [24], we choose representative baselines as ex-
perimental comparisons from the following perspectives:

1. The recent state-of-the-art tracking baselines: DSST
(BMVC 2014) [25], KCF (PAMI 2015) [26], ANT
(WACV 2016) [27], ECOhc (CVPR 2017) [4],
MEEM (ECCV 2014) [28], Staple (CVPR 2016)
[29], ASMS (PRL 2014) [1], SRDCF (ICCV 2015)
[30], and Struck (ICCV 2011) [5]

2. The recent state-of-the-art part-based baselines:
DPRF [31], DPT (TCYB 2018) [24], CMT (CVPR
2015) [32], LGT (PAMI 2013) [33], FoT (2014) [34],
and CGS [31]

3. Deep feature-based baselines: SiamFC (ECCV 2016)
[35], GMD [31], GMDnetN [31], and FSTC [31]

3.2.3 Comparison with state-of-the-art
Table 1 shows the performance evaluation results of
different state-of-the-art trackers. The best result is

highlighted with italic style. Compared with the part-
based trackers, the proposed REC method performs
well against the DPT [24] (by 27%), DPRF [31] (by
76%), CMT [32] (by 105%), LGT [33] (by 40%), FoT
[34] (by 55%), and CGS [31] (by 44%). It is obvious
that the REC has excellent competitiveness compared
to the existing part-based trackers. The proposed
method is also better than algorithms based on deep
features such as SiamFC [35] (by 7%), GMD [31] (by
55%), GMDnetN [31] (by 27%), and FSTC [31] (by
7%), which prove that the tracking frameworks based
on hand-crafted feature still have great potential. The
overall evaluation of 20 trackers is shown in Fig. 2a, b.
With the powerful strategy and modeling ability
well-designed for global object tracking, the ECOhc
tracker gets the best result in the overall performance. No-
ticed that the proposed method underperforms the
ECOhc tracker in the overall performance, but outper-
forms the ECOhc tracker under occlusion situation, which
is further explained in Section 3.4. It can be seen from the
experimental results that the REC algorithm not only
achieves the state-of-the-art effect among the part-based
trackers, but also is superior to most global tracking
algorithms.

3.3 OTB-50 results
3.3.1 Datasets and evaluation metrics
The OTB-50 benchmark [36] consists of 50 video se-
quences, and 25% of sequences of OTB benchmark are
gray sequences. The overall tracking performance is
evaluated in terms of precision plots and success plots.
Specifically, the precision plots measure the Euclidean
distance between the predicted center and the ground
truth center, while the success plots measure the overlap
between the predicted bounding box and the ground
truth bounding box. The larger the area under the preci-
sion and success curves are, the better the performance
of the tracking algorithm will be. In this paper, we per-
form one-pass evaluation (OPE), which means that only
an initial state of target will be given at the first frame.

3.3.2 Baseline methods
Similar to [36], we evaluate our method by comparing
with 29 trackers whose original source codes are publicly
available.

3.3.3 Comparison with state-of-the-art
The overall performance is shown in Fig. 3a, b. Our
method is ranked top both in precision plots and success
plots. Note that the proposed method exceeds the per-
formance of the second-best tracker by over 19% in pre-
cision plots at representative location error threshold of
20 pixels. When the overlap threshold is from 0 to 0.5,
the proposed REC method achieves better than the
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second-best tracker in success plots of OPE. In summary,
the evaluation illustrate that our method is dependable in
target’s center prediction and target’s scale adaptation.

3.4 Performance under occlusion
3.4.1 Datasets and evaluation metrics
The VOT 2017 challenge organizers annotate per
frame with attributes and construct a subset of frames
that target is partially or completely occluded. The
OTB-50 benchmark also constructs a subset contain-
ing 29 sequences with attributes “occlusion.” These

subsets can be used to analyze the performance of
trackers to handle occlusion. In addition, we choose typ-
ical occlusion sequences from Temple Color [37], OTB
100, and VOT datasets for experiments to evaluate the
proposed method. The EAO scores (VOT 2017 metrics),
precision plots, and success plots (OTB-50 metrics) are
used as criteria since the evaluation of overall perform-
ance and performance under occlusion is proceeded sim-
ultaneously. In additional comparison, distance precision
(DP) at a threshold of 20 pixels, which equals to the preci-
sion value at the location error threshold of 20 pixels in

Table 1 Comparison with state-of-the-art on the VOT 2017 dataset based on EAO

Method DPT KCF SRDCF SiamFC ECOhc DSST DPRF ANT CMT LGT

EAO 0.158 0.135 0.119 0.188 0.238 0.079 0.114 0.168 0.098 0.144

Method Struck MEEM Staple ASMS FSTC GMDnetN GMD FoT CGS REC

EAO 0.097 0.193 0.169 0.169 0.188 0.158 0.130 0.130 0.140 0.201

Fig. 2 Evaluation on the VOT2017 dataset. a The overall EAO curves. b The overall EAO orders. c The EAO curves for occlusion attribute. d The
EAO orders for occlusion attribute

Han et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:12 Page 7 of 12



the Precision plots, is used to measure the tracker’s per-
formance. The DP value can be seen as a representative
precision score [36, 38].

3.4.2 Baseline methods
Because the evaluation of the overall performance and
performance under occlusion on the VOT 2017 and
OTB-50 benchmark is proceeded at the same time,
the baselines used are the same as Section 3.2 and
Section 3.3, respectively. In additional comparison, we
compare the proposed method with ECOhc and RPT
tracker. The reasons that we choose these two
trackers as strong baselines are that the proposed
method is most like to these two trackers: we apply
ECOhc as our base tracker and design the algorithm
based on the core concept of the RPT tracker—the
fusion of particle filters and correlation filters. How-
ever, the proposed method is different to the ECOhc
and RPT tracker in many aspects such as part
sampling strategy, model update scheme, and scale
estimation.

3.4.3 Comparison with state-of-the-art
The evaluation of performance under occlusion on
the VOT 2017 benchmark is shown in Fig. 2c, d. It is

obvious that the REC provides the best results with
the occlusion situation, and another part-based
tracker DPT takes the second place; both of them
outperform the ECOhc tracker which obtains the
highest score in overall performance. The order re-
flects the advantage of part-based tracker dealing with
occlusion situation. As a matter of fact, the part-
based framework was proposed to cope with the oc-
clusion situation, so the superior capability dealing
with occlusion is the most significant goal throughout
the design of part-based algorithms.
The evaluation of performance under occlusion on

the OTB-50 benchmark is shown in Fig. 3c, d. It is
clear that the proposed method outperforms other
29 trackers. Considering that the proposed method
also takes the first place in overall performance
evaluation on the OTB-50 benchmark, the experi-
mental results demonstrate the excellent performance
of our algorithm.
Additionally, a comparison is made between the pro-

posed algorithm and state-of-the-art trackers, includ-
ing ECOhc and RPT. The experimental results are
listed in Table 2. The best result of each sequence is
highligted with italic style. The proposed method out-
performs all the competitors. Specifically, the average

Fig. 3 Precision plots and success plots on the OTB-50 benchmark. a The overall precision plots. b The overall success plots. c The precision plots
under occlusion situations. d The success plots under occlusion situations
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precision of REC is 52% higher than ECOhc and 32%
higher than RPT. Apparently, part-based methods are
good at dealing with occlusion problem, while the
REC is better than RPT tracker generally. For qualita-
tive analysis, we visualize the comparison, and the re-
sults are shown in Fig. 4.

3.5 Ablation study
In this section, we demonstrate the impact of the design
of the proposed tracker by progressively integrating our
contributions. The performance is evaluated on the pub-
lic datasets with related evaluation methodology.

3.5.1 Size of part
The size of part, however, significantly influences the per-
formance of tracking. On the one hand, if the size is too
small, the base trackers cannot learn enough information
for tracking. On the other hand, if the size is as big as the
target, the base trackers may confuse the foreground and
background. Many part-based trackers set the part size
range from 1/3 to 2/3 of the target size. To demonstrate
the impact of part size setting, we evaluate the proposed al-
gorithm with different part size on the VOT 2017 datasets.
As shown in Fig. 5a, it can be easily seen that the EAO
scores gradually rise with the increase of the part size until
it is 0.7 times of target size.

3.5.2 Sampling strategy
The most important contribution of our method is the
sampling strategy based on target’s saliency. To demon-
strate the effect of our sampling strategy, we analyze the
impact of different sampling strategies. Specifically, the fol-
lowing strategies are respectively evaluated on the VOT
2017 benchmark: sampling based on Gaussian distribution,
sampling based on ITTI saliency model [39], and sampling
based on co-saliency. For objective comparison, other pa-
rameters of the REC tracker are not modified. The results
are shown in Table 3, and the best results are highlighted
with italic style. The sampling strategy based on co-saliency
outperforms other strategies. It is clear that the saliency de-
tection benefits sampling of parts for part-based tracker,
and advanced saliency detection method dramatically im-
proves the overall performance of the tracker.
We also investigate the effect of the NMS operation in

part-based tracking. The operation is introduced into
the proposed algorithm for reducing the repeatedly

Table 2 A comparison on occlusion sequences in distance
precision at a threshold of 20 pixels

Sequence REC ECOhc RPT

Tiger 0.93 0.88 0.81

Basketball 0.99 0.98 0.92

Shaking 0.97 0.96 0.99

Bolt1 1.00 0.01 0.02

Godfather 0.71 0.49 1.00

Bolt2 1.00 0.01 1.00

Handball1 1.00 0.47 0.64

Road 1.00 0.71 0.99

Sheep 0.90 0.35 0.62

Marching 0.98 0.89 0.90

Airport_ce 0.45 0.88 0.39

Birds1 0.98 0.62 0.01

Average 0.91 0.60 0.69

Fig. 4 Tracking results of the trackers in our evaluation on challenging sequences. From left to right and top to down are birds1, tiger1, bolt1,
bolt2, handball1, airport, marching, shaking, respectively
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sampling on same parts of the target. The results of
comparison are displayed in Fig. 5b. Among the REC
variants that with different NMS threshold θ, the best
result is achieved when the θ is 0.4, which EAO value is
5% higher than the second-best variant and 44% higher
than the REC without NMS operation. It is obvious that
the NMS operation significantly enhances the perform-
ance of the tracker; however, the value of θ should be
carefully filtrated since both the low overlaps and high
overlaps between parts could deteriorate the perform-
ance of tracker.

3.5.3 Scale estimation
To demonstrate the effect of scale estimation method
used in this paper, we perform several experiments
on OTB-50 benchmark. We investigate the impact of
λ, the gradient base number of scale estimation,
which decides the degree of size change. The higher
the value of λ is, the greater the target size changes.
The results of comparison are displayed in Fig. 6. No-
ticed that when the λ equals 1, it also represents the
tracker without scale estimation. We first evaluate
two variants of REC: one with scale estimation and
the other one without scale estimation. The results
prove that the scale estimation method improves the
performance of REC. The REC with scale estimation
has better performance than the REC without scale

estimation. Furthermore, it is interesting that 1.02 is
the most suitable value for λ, which is the same as
[25] by coincidence. When the value of λ is 1.02, the
scale estimation method not only appropriately adapts
the scale change but also restricts the divergence of
the size change. Hence, we choose 1.02 as the gradient
base number of scale estimation.

4 Conclusions
In this paper, we propose a novel part-based tracker
named REC for robust visual tracking. The proposed
tracker recurrently exploits the co-saliency distribu-
tion of the target area to guide part sampling and em-
ploys efficient correlation filter called ECOhc to track
those parts. During the sampling, we also consider the
overlaps between the parts and suppress the inference
to avoid the drift of prediction. To guarantee the part
reliability, we propose an appropriate updating strat-
egy. Additionally, we also combine the idea of scale
variation of particle filter and correlation filter and
propose a new scale estimation method. The REC
tracker outperforms most of the state-of-the-art
part-based trackers as well as state-of-the-art trackers
based on global information of target. The REC
tracker is evaluated on highly challenging benchmarks
by comparing with 19 trackers on VOT 2017 bench-
mark, 29 trackers on OTB-50 benchmark, and 2
representative trackers on the subset of occlusion se-
quences. As a result, the experimental results on the
public datasets show that the proposed tracker not
only reaches the state-of-the-art level in the overall
performance, but also outperforms all competitors
under occlusion situation. We also investigate factors
related to the performance of part-based tracker such

Fig. 5 Performance of REC variants in terms of EAO curves on the VOT 2017 dataset. The number denotes the part size or value of the NMS
threshold θ. For example, “REC_sz04” means the REC tracker with part size which is equal to 0.4 times of the target size, and “REC_nms04” means
the value of θ is 0.4. a Performance of different part sizes. b Performance of different θ

Table 3 Analysis of sampling strategy on the VOT 2017 dataset

Strategy EAO fps

REC_Co-saliency 0.201 14.1

REC_ITTI 0.186 16.8

REC_Gaussian 0.151 16.3
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as size of part, part sampling strategy, and scale esti-
mation, which could be useful in optimizing hyper-
parameters of part-based tracking algorithms. In the
future, we will improve the tracker by taking the
advantage of deep features and advanced attention
mechanism.
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EAO: Expected average overlap; NMS: Non-maximum suppression; PSR: Peak-
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