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Abstract

Background: Several authors use the R-R interval, which is the temporal difference between the largest waves (R
waves) of the electrocardiogram (ECG), to propose a support system for the diagnosis of arrhythmias. However, R-R
interval analysis does not measure ECG waveform deformations such as P wave deformations for atrial fibrillation.

Objective: In this study, we propose an arbitrary analysis the any segment of the heartbeat. This analysis is a
generalization of a previous work that measures the wave deformations of the ECG signal.

Methods: We proposed to investigate the voltage (mV) variation occurring at each heartbeat interval using
statistical moments. Unlike the R-R interval in which each heartbeat is associated with a single real number, the
proposed method associates each heartbeat to a set of points, that is, a vector. The heartbeats were obtained in the
following databases: MIT-BIH Normal Sinus Rhythm, MIT-BIH Atrial Fibrillation (AF), and MIT-BIH Arrhythmia; and the
classifiers used to evaluate the proposed method were linear discriminant analysis, k-nearest neighbors, and support
vector machine. The experiments were conducted using 80% of the patients for training (16 healthy patients, 41
patients with arrhythmia, and 20 patients with AF) and 20% of the patients for testing (2 healthy patients, 6 patients
with arrhythmia, and 3 patients with AF).

Results: The proposed method proved to be efficient in solving global (accuracy is up to 99.78% in the arrhythmia

practices.

classification) and local (accuracy of 100% in the AF classification) heartbeat problems.
Conclusion: The results obtained by the proposed method can be used to support decision-making in clinical

Keywords: Heartbeat, R-R interval, Morphological information, Statistical moments, Arrhythmias, Atrial fibrillation

1 Introduction

World Health Organization indicates that, each year, 17.3
million people die worldwide from cardiovascular disease
[1]. In this context, the interest in noninvasive analysis
techniques for the diagnosis of arrhythmias, such as the
electrocardiogram (ECQG), is increasing.

The ECG is an examination that records the variation
of the electrical potentials of the cardiac muscle. ECG is
composed of the P wave that corresponds to the electrical
activity of the atria, by the Q, R, and S waves compos-
ing the QRS complex that corresponds to depolarization
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of the ventricles, by the T wave that registers the repo-
larization of the ventricles [2]. From the QRS complex,
specifically the R waves (larger peaks of the ECG signals),
it is possible to obtain R-R intervals which are the time
difference between two R waves.

Conventionally, the R-R interval is used to data extrac-
tion from the ECG signal in order to diagnose different
types of arrhythmia [3—8]. However, the analysis of the R-
R intervals is not able to measure changes on other ECG
waves, such as the distortions on P wave for atrial fib-
rillation (AF) [9-12]. Thereby, some studies segment the
ECG signal [13-17]. Nevertheless, the diagnosis is still not
ideal. The present research proposes an arbitrary analysis
to any segment of the ECG signal. This analysis is based
on ECG variability and morphology. The morphological
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information of the ECG signal is obtained by the voltage
(mV) variation investigation occurring to each heartbeat
interval. This new method of data extraction will allow
a beat-to-beat analysis. Unlike the R-R interval in which
each heartbeat is associated with a single real number,
the proposed method associates each heartbeat to a set of
points, that is to say, to a vector.

In this study, we propose to investigate the morphologi-
cal information occurring at each heartbeat interval using
statistical moments. The statistical moments used were
variance, skewness, and kurtosis. The improvement in
performance is due to the information obtained from the
voltage variability and the morphology of the ECG signal,
i.e., in addition to the frequency modulation informa-
tion used in the heart rate variability (HRV) calculation,
we added the amplitude modulation. Thus, to classify
different types of arrhythmias, we use two modulation
information of the ECG signal (frequency and amplitude),
not just one as in the calculation of HRV. Unlike the R-
R interval, in which each heartbeat is associated with a
single real number, the proposed method associates each
heartbeat with a set of points, that is, a vector.

The ECG signals were obtained in the databases MIT-
BIH Normal Sinus Rhythm, MIT-BIH Atrial Fibrillation,
and MIT-BIH Arrhythmia. The classifiers used to evaluate
the proposed method were linear discriminant analysis,
k-nearest neighbors, and support vector machine.

2 Materials and methods
The proposed method is based on the observation that
arrhythmias episodes change the morphology of the ECG
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signal. A block diagram is shown in Fig. 1, and each of the
processing blocks is described in the following.

2.1 Datasets

The ECG signals were obtained from the databases (DB):
MIT-BIH Normal Sinus Rhythm (NSR) database contains
18 ECG recordings of approximately 24 h duration. Sub-
jects included in this database had no significant arrhyth-
mias; they include 5 men, aged 26 to 45, and 13 women,
aged 20 to 50 [18]; MIT-BIH Arrhythmia database con-
tains 48 half-hour excerpts of two-channel ambulatory
ECG recordings, obtained from 47 subjects [19], and MIT-
BIH AF contains 319 episodes of atrial fibrillation. The
individual recordings have approximately a 10-h duration
of 25 individuals [20].

Database records contain the rhythm types: atrial
bigeminy, atrial fibrillation, atrial flutter, ventricular
bigeminy, 2° heart block, idioventricular rhythm, nor-
mal sinus rhythm, nodal (A-V junctional) rhythm,
paced rhythm, pre-excitation (WPW), sinus bradycardia,
supraventricular tachyarrhythmia, ventricular trigeminy,
ventricular flutter, and ventricular tachycardia.

2.1.1 Pre-processing

In the preprocessing step, the goal is to reduce contamina-
tion of different types of noise and artifacts in the ECG sig-
nal. Therefore, to perform this work, the following types
of noise have been removed: a signal in the frequency
of 60 Hz and its bandwidth below 1 Hz; baseline wan-
der, a low-frequency (0.15 up to 0.3 Hz) noise that results
from the patient inhaling and compels a baseline shifting
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of the ECG signals; electrode contact noise, noise that
results from a deficiency in the contiguity between the
electrode and skin, which adequately cuts off the measure-
ment system from the subject; electrode motion artifacts,
artifacts that result from variations in the electrode-skin
impedance with electrode motion; muscle contractions,
noise that results from the contraction of other muscles
apart from the heart; electrosurgical noise, noise pro-
duced from other medical apparatus in the patient care
circumstance at frequencies between 100 and 1 MHz; and
instrumentation noise, noise produced by the electronic
equipment utilized in the ECG measurements [21].

From the records of the MIT-BIH NSR, MIT-BIH
Arrhythmia, and MIT-BIH AF bases, as described in
Section 2, 50,000 healthy heartbeat and 50,000 heart-
beat of people with AF were withdrawn. Less than 1%,
at the beginning and at the end, of the ECG signals were
excluded due to measurement error. The ECG signal was
normalized, and the sampling frequency was set to 128
Hz with 12-bit resolution in a range of £10 mV. Two or
more cardiologists independently annotated each record;
disagreements were resolved to obtain the computer-
readable reference annotations for each beat (approx-
imately 110,000 annotations in all) included with the
database.

2.2 Data extraction of the heartbeat

The data extraction of the ECG signal proposed in this
study is carried out by analyzing the voltage variation on
each heartbeat and is given by [22]

B = (bstart, b2, - , bend), 1)
where B is a heartbeat, bgtart and bepq are given by

bstart = Pr — Fs, 2)
and

bend = Pr + F0), 3)

where Py is the position of the R peak (Pr are found in
annotation files in MIT-BIH database), F is the sampling
frequency, and A and 0 are the proportion weights of the
heartbeat, being 1 + 6 < 1. The parameters A and 6 are
heuristically assigned and function as sliding windows on
the heartbeat.

2.3 Method’s generalization

The method presented in the previous Section 2.2 specifi-
cally analyzes heartbeat. Nevertheless, an arbitrary analy-
sis to any segment of the heartbeat is defined as

s Xend) (4)

where X is any segment of a heartbeat. If the segment of
interest in the heartbeat begins before the peak of the R
wave, Eq. 2 must be used, but if the segment of interest

X = (Kstarts X2, - * -
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starts after the peak of the R wave, Eq. 3 should be used.
Both equations are heuristically adjusted. The end of an
arbitrary segment in the ECG signal, from a specific part
in a given heartbeat or even a succession of heartbeats, is
given by
Xend = tuFs, (5)
where t; is the arbitrary period in the heartbeat or the
ECG signal.
Another point of interest within the ECG is the peak of
the P, QRS, and T waves. Therefore, the peak of the waves
is defined as

Py = max(X). (6)

Finally, a heartbeat can be defined as

B=r| JrQ| Jars| JsT| T = 7)
» Pend) U(PGIstartrpq% -+, Pqend)

(8)
U(qrsstart» qrsz, - -+ ,PQRS, “+ ,qrSend) U(Ststarty sta, (9)

-, Stend) U(tstart; t2, -, Pr,- -+ tend)- (10)

= (Pstarts P2, - » Pp, -+ -

2.4 Feature extraction of the heartbeat

Modulation of the ECG signal can be performed in time
(or frequency) and in amplitude (or energy). For frequency
modulation, HRV is used, and for amplitude modula-
tion, presented in Section 2.3, the voltage variation of the
ECG signal was used. Thus, to classify different types of
arrhythmias, we use two modulation information of the
ECG signal, unlike several authors that only use the time
modulation (HRV) [23-28]. The use of the two modula-
tions allows a greater characterization of the ECG signal,
improving the quality of the classification of arrhythmia.
The variance, skewness, and kurtosis were used in this
study to extract characteristics of both the ECG signal
modulations.

® Variance

0% = E(X?) — (EX)% (11)
e Skewness

yx = E[(X - EX)o '] (12)
e Kurtosis

kx = E[(X — ECO)o1]*. (13)

Proposed method will be evaluated in a generalist
(arrhythmia classification) and specialist (AF classifica-
tion) manner.

2.5 Performance evaluation
The new method of ECG data extraction will be evaluated
based on the ECG window for arrhythmia classification.
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Metrics for evaluation are specificity (SPEC—how effi-
cient is the method for diagnosing healthy patients), sen-
sibility (SENS—how efficient is the method for diagnos-
ing patients with arrhythmias), and accuracy (ACC—how
efficient is the method regarding the diagnosis).

The sensitivity and specificity are defined, respectively,
given by

TN

SPEC = ——— x 100. (14)

TN + FP
and

SENS = —— x 100, (15)

TP + FN
And the accuracy is given by
TP+ TN
ACC + x 100 (16)

T TP+ TN + EN + FP

where TP is the true positive, TN is the true negative, FP
is the false positive, and FN is the false negative.

3 Results

The experiments were conducted using 150,000 heart-
beats (50,000 healthy heartbeats, 50,000 heartbeats of
people with arrhythmia, and 50,000 heartbeats of people
with AF). In the experiments, we used 80% of the patients
for training (16 healthy patients, 41 patients with arrhyth-
mia, and 20 patients with AF) and 20% of the patients
for testing (2 healthy patients, 6 patients with arrhythmia,
and 3 patients with AF). The classification of heartbeats
was performed based on the following: the linear dis-
criminant analysis (LDA) was used in its linear version;
k-nearest neighbors (k-NN) ranged in up to 2—5 nearest
neighbors, and support vector machine (SVM) used the
polynomial kernel function. Heartbeat obtained accord-
ing to Section 2.1 and the parameters used were shown in
Table 1.

Table 2 shows the average accuracy of the classifiers
(LDA, k-NN, SVM) for 4 different ECG windows (heart-
beat, P wave, QRS complex, T wave).

Figure 2 illustrates the heartbeat, P wave, QRS com-
plex, T wave, and PQ segment processed by the proposed

Table 1 Parameters used in the ECG window

Heartbeats Atrium AV node Ventricular Ventricular

(8) (P (PQ) depolarization repolarization
(QRS) M
Time [ms] 1000 110 160 180 130
A 0.6 0.066  0.096 0.108 0.078
0 04 0.044  0.064 0.072 0.052
Start 0 0 21 26 66
End 80 20 25 60 80

A is the proportion weight used from the start of the heartbeat, and 6 is the
proportion weight used from the end of the heartbeat
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Table 2 ECG window by the method proposed in 5 different

cases
Average accuracy %
Classifier Heartbeat P QRS T
Healthy LDA 99.99 99.95 99.98 99.95
k-NN 99.99 99.96 99.98 99.95
SVM 99.99 99.96 9998  99.96
Arrhythmia LDA 99.97 99.01 99.93 99.03
k-NN 99.97 99.03 9994  99.04
SVM 99.97 99.08 9994  99.04
Atrial fibrillation LDA 99.97 98.07  99.95 99.98
k-NN 99.97 99.07 9998  99.98
SVM 99.99 99.03 9998  99.07

LDA linear discriminant analysis, k-NN k-nearest neighbors, SVM support vector
machine

method according to the parameters described in the
Table 1

Table 3 shows the average accuracy of the classifiers
using variance, skewness, and kurtosis in the diagnosis
of arrhythmia and AF. The results in this study are eval-
uated using 10-fold cross-validation, that is, definitive
classification is the mean of the metrics (specificity, sensi-
tivity, and accuracy) for ten different sets of training and
testing.

Figure 3 illustrates the dispersion to features extracted
by the proposed method for each heartbeat.

4 Discussion

ECG window was efficient in healthy heartbeat (Fig. 2a)
in all evaluated cases (heartbeat, P wave, QRS complex,
T wave, PQ segment), and this behavior is a conse-
quence of signal uniformity; indeed, there is little or no
difference in signal morpholog, differently from the heart-
beat with arrhythmia (Fig. 2b). P wave with arrhythmia
(Fig. 2d) present deformations compared to healthy P
wave (Fig. 2c), a consequence of the arrhythmia’s asso-
ciated with atrium (e.g., atrial fibrillation, atrial flutter)
[29-32]. Ventricular diseases, such as heart block, cause
irregularities in the electrical activity of the ventricles,
which is evident in QRS complexes with arrhythmia
(Fig. 2f), a characteristic not observed in healthy patients
(Fig. 2e) [33-36]. The morphology of the T wave is com-
pletely apparent in healthy heartbeats; however, in heart-
beats with arrhythmia, the T wave is deformed [37-40].
The PQ segment is completely visible in healthy heart-
beats (Fig. 2i); nevertheless, due to increased heart rate,
the PQ segments are reduced in heartbeats with arrhyth-
mia (Fig. 2j), in some cases a consequence of the AV
blocked [41].
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Table 3 Average accuracy of the classifiers (LDA, k-NN, SVYM) using the proposed data extraction

Average accuracy %

R-R o VX Ky of + yx 0f + kx ¥x + kx 0f + yx + Kx
Arrhythmia
LDA 84.40 92.07 9143 93.02 96.73 99.45 99.28 99.78
k-NN 84.40 92.07 9143 93.02 96.73 9945 99.28 99.78
SVM 84.40 92.07 9143 93.02 96.73 9945 99.28 99.78
Atrial fibrillation
LDA 85.70 94.73 93.45 95.52 97.72 99.97 99.78 100
k-NN 85.70 94.73 93.45 95.52 97.72 99.97 99.78 100
SVM 85.70 94.73 93.45 95.52 97.72 99.97 99.78 100

LDA linear discriminant analysis, k-NN k-nearest neighbors, SVM support vector machine, (a)f) variance, yx skewness, ky kurtosis
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The proposed method proved to be efficient in solv-
ing global (accuracy is up to 99.78% in the arrhythmia
classification) and local (accuracy of 100% in the AF classi-
fication) heartbeat problems. The improvement in perfor-
mance is due to the information obtained from the voltage
variability and the morphology of the ECG signal, i.e., in
addition to the frequency modulation information used
in the HRV calculation, we added the amplitude modula-
tion. The variation of k values (2—5 nearest neighbors) in
the classification of the heartbeats was lower than 0.07%.
The accuracy rate of the moments (variance, skewness,
and kurtosis) when used separately is up to 9.82% and
together is up to 15.38% when compared to the R-R inter-
val (Table 3). The invariance in the average accuracy of
the classifiers used (LDA, k-NN, SVM) is due to separabil-
ity between healthy and with arrhythmia patients (Fig. 3a)
and also between healthy and with AF patients (Fig. 3b).

The separability between healthy and those with
arrhythmia patients (Fig. 3a), also between healthy and
those with AF (Fig. 3b), is due to the information obtained
from the voltage variability and the morphology of the
ECG signal, i.e, in addition to the frequency modula-
tion information used in the heart rate variability (HRV),
we added the amplitude modulation. Thus, to classify
different types of arrhythmias, we use two modulation
information of the ECG signal (frequency and amplitude).
In addition, the value in the right part of the image (cross
red) corresponds to a single beat that is located at the
beginning of the ECG signal. Of course, the 1% rejection
window used in this work was not large enough to exclude
this beat.

Table 4 compares the proposed methodology with the
performance in the literature for arrhythmia and AF clas-
sification.
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Autor (year) Feature® Classifier? SENS % SPEC % ACC %
Arrhythmia
This work (2018) Voltage variation LDA 99.64 99.91 99.78
k-NN 99.64 99.91 99.78
SVM 99.64 99.91 99.78
Mihandoost et al. (2018) [3] Sparse decomposition SVM 9147 85.88 99.11
Raj etal. (2018) [42] Spectral analysis SVM, k-NN 9147 85.88 99.11
Jovicetal. (2017) [6] AlphEn. HRV Random forest 91.10 97.01 91.20
Kim et al. (2016) [7] HRV from 5s SYM - - 91.69
Elhaj et al. (2016) [8] PCA, DWT, ICA, HOS NN 98.90 98.90 98.90
Martis et al. (2012) [23] DWT, HOS NN 98.61 9841 94.52
Atrial Fibrillation
This work (2018) P wave voltage variation LDA 100 100 100
k-NN 100 100 100
SVM 100 100 100
Andersen et al. (2019) [24] 30R-R CNN, RNN 99.82 87.94 89.30
Xia et al. (2018) [25] STFT, SWT CNN 98.79 97.87 98.63
Kennedy et al. (2016) [26] CoSEN+CV+RMSSD+MAD Random forest 92.80 98.30 -
Orchard et al. (2016) [43] P wave absence Proposed algorithm 95.00 99.00
Petrenas et al. (2015) [27] R-R Threshold 97.10 98.30 -
Zhou et al. (2014) [28] SD+SE Threshold 97.53 98.26 98.16

The symbol (-) represent the values not specified in the works

AlphEn alphabet entropy, HRV heart rate variability, PCA principal component analysis, DWT discrete wavelet transform, ICA independent component analysis, HOS higher
order spectra, CoSEn coefficient of sample entropy, CV coefficient of variance, RMSSD root mean square of the successive differences, MAD median absolute deviation, SD
symbolic dynamics, SE Shannon entropy, RR R-R intervals, STFT short-term Fourier transform, SWT stationary wavelet transform, LDA linear discriminant analysis, k-NN
k-nearest neighbors, SVM support vector machine, NN neural network, CNN convolutional neural network, RNN recurrent neural network

Table 4 shows that even when compared with linear
techniques such as SVM or nonlinear techniques like neu-
ral network, this study showed superior results in the
arrhythmia classification (accuracy of 99.78%) and AF
classification (accuracy of 100%). The improvement in
performance is due to the information obtained from the
voltage variability and the morphology of the ECG signal,
i.e., in addition to the frequency modulation information
used in the HRV calculation, we added the amplitude
modulation. Thus, to classify different types of arrhyth-
mias, we use two modulation information of the ECG
signal (frequency and amplitude), not just one as in the
calculation of HRV.

4.1 Limitation

The proposed data extraction is measured by statistical
moments. The statistical moments are dependent on the
average of the samples; actually, a large number of out-
liers can complicate the analysis of the data. In addition,
the temporal information of the ECG signal can not be

obtained directly, that is, it is not trivial to verify changes
in the heart rate by the proposed method.

5 Conclusions

The main implication of this study is the complete analysis
of the heartbeat. The critical factor that improved per-
formance was the information obtained from the voltage
variability and ECG morphology rather than the classi-
fiers (LDA, k-NN, SVM). Unlike the R-R interval, in which
each heartbeat is associated with a single real number, the
proposed method associates each heartbeat with a set of
points, that is, a vector. This factor provides an informa-
tion gain so that techniques for extracting characteristics
based on signal statistics are able to obtain the presented
results. Therefore, it is enough to know the duration time
of the region of interest (Table 1). Furthermore, the sim-
plicity of the proposed method allows for application in
imbedded systems similar to the 24-h Holter. Thus, this
system will be able not only to record the electrical activ-
ities of the heart and its variations, but will also provide
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a prognosis for various arrhythmias. Our next challenge
is to implement and evaluate the proposed method in
real time.
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