
EURASIP Journal on Advances
in Signal Processing

Liu et al. EURASIP Journal on Advances in Signal
Processing         (2019) 2019:19 
https://doi.org/10.1186/s13634-019-0615-7

RESEARCH Open Access

Optimized implementation of digital
signal processing applications with gapless
data acquisition
Yanzhou Liu1* , Lee Barford2 and Shuvra S. Bhattacharyya1,3

Abstract

This paper presents novel models and design optimization methods for gapless deep waveform applications, where
continuous streams of data must be processed reliably without dropping any samples. The approaches developed in
this paper involve unified dataflow-based modeling of the interfaces and signal processing functionality of gapless
deep waveform analysis. Bottleneck actors (computational modules) in the resulting dataflow model are then
identified and tackled with approximate computing techniques. These techniques are developed and configured
carefully so that large performance gains are achieved while keeping reductions in signal processing accuracy to a
manageable level. Efficient actor- and graph-level code optimization techniques are also applied to further improve
real-time performance. In addition to providing accurate, real-time processing on the experimental platform used in
our experiments, the algorithm- and model-based formulation of the contributions in this part promotes their general
utility in deep waveform analysis and their retargetability to other platforms.

Keywords: Dataflow, Data acquisition, Graphics processing unit (GPU), Jitter measurement, Signal processing systems

1 Introduction
This paper is concerned with the design and implemen-
tation of an important class of digital signal processing
(DSP) applications that we refer to as gapless DSP appli-
cations. A gapless DSP application is characterized by
one or more continuous streams of input data, where the
data must be processed without gaps—that is, without
dropping any of the input samples. The strict real-time
processing requirements for gapless DSP applications can
be very challenging when input data rates are high, pro-
cessing requirements are intensive, or the target platform
is significantly resource constrained. The major objec-
tive of this paper is to provide structured models and
systematic methods for addressing this challenge.
We design gapless DSP applications using model-

based techniques based on dataflow models of com-
putation, which are widely used in signal processing
design and implementation. In this form of dataflow,

*Correspondence: yzliu@umd.edu
1Department of Electrical and Computer Engineering and Institute for
Advanced Computer Studies, University of Maryland, College Park, MD, USA
Full list of author information is available at the end of the article

signal processing applications are represented as directed
graphs in which vertices (actors) represent DSP hard-
ware/software components and edges represent first-in,
first-out (FIFO) buffers that store data as it passed from
the output of one actor to the input of another [1].
In this paper, we discuss the models and techniques in

the context of a specific gapless DSP application, which
is real-time jitter measurement of deep waveforms that
has important applications in instrumentation for digital
communication systems. Deep waveforms are signals with
long durations and high sample rates that result in large
numbers of samples that need to be processed. For con-
ciseness, we refer to jitter measurement in this context
as deep jitter measurement. However, the core approaches
developed in our paper are not specific to this applica-
tion and can be adapted to other relevant applications.
We develop techniques for optimized mapping of deep
jitter measurement onto a high-performance, heteroge-
neous computing platform. The techniques are designed
to address the challenges associated with gapless opera-
tion, real-time processing, and deep waveform analysis in
a systematic, model-based manner [2].

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-019-0615-7&domain=pdf
http://orcid.org/0000-0002-6641-7234
mailto: yzliu@umd.edu
http://creativecommons.org/licenses/by/4.0/


Liu et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:19 Page 2 of 13

An important aspect of the techniques that we develop
in this paper is the model-based integration of data acqui-
sition (DAQ) devices into dataflow-based design pro-
cesses. DAQ boards are widely used in numerous signal
processing application areas, such as astronomy, envi-
ronmental monitoring, biomedical instrumentation, and
satellite communication (e.g., see [3, 4]).
In the deep jitter measurement system, we employ as

the target platform a hybrid CPU-GPU computing plat-
form that is connected to a DAQ board. This provides
a state-of-the-art platform for high-speed, heterogeneous
signal processing of continuously arriving digital com-
munications waveforms. The methods developed focus
on optimizing the throughput of jitter measurement sub-
ject to the on-board memory constraints of a given DAQ
interface, GPU memory constraints, and the constraint of
gapless processing.
More broadly, the techniques developed in this paper

provide a novel framework for addressing in an integrated
manner the following important challenges of gapless
DSP system design: (1) the requirement for processing
unbounded data streams without DAQ buffer overflow,
(2) the need for efficient methods to trade-off signal pro-
cessing accuracy and throughput subject to the constraint
of gapless processing, and (3) iterative platform-based
optimization of dataflow actor implementations to maxi-
mize system throughput.
The remainder of this paper is organized as follows.

Section 2 provides introductions to dataflow modeling
and the DSPCAD Lightweight Dataflow Environment
(LIDE), which is a methodology and a tool, respectively,
that are applied extensively in this work. In Section 3,
we review related work on jitter measurement systems
and dataflow graph implementation. Section 4 presents
dataflow graph design approaches for efficient imple-
mentation of gapless DSP applications, using deep jitter
measurement as a concrete case study. In Section 5, we
present design optimization methods to improve the real-
time performance of the deep jitter measurement system.
Experiments and analysis of the optimized design are
presented in Section 6. Section 7 summarizes the con-
tributions of the paper and outlines directions for future
work.

2 Background
In this section, we discuss background on dataflow graph
modeling that the developments of this paper depend on.
We also provide background on the DSPCAD Lightweight
Dataflow Environment (LIDE), which is a software tool for
dataflow-based design and implementation that we apply
in this work.
Dataflow is a form of model-based design that is widely

used in the design and implementation of DSP applica-
tions [2]. As described in Section 1, a dataflow graph is a

directed graph in which vertices are called actors and rep-
resent signal processing hardware/software components
and edges specify FIFO communication of data between
actors. In the form of dataflow that we apply in the work,
individual actors can have arbitrary complexity. Examples
of functions that are performed by dataflow actors include
digital filtering, fast Fourier transform (FFT) computa-
tion, and matrix operations. Conceptually, data values are
encapsulated in objects called tokens as they pass across
dataflow graph edges.
In dataflow, execution of actors is decomposed into dis-

crete units, which are called firings [1]. In a given firing, an
actor consumes and produces data from its input FIFOs
and onto its output FIFOs, respectively. For a given firing f
and output FIFO K, the number of tokens produced onto
K during f is referred to as the production rate associated
with f and K. Similarly, we can define the consumption
rate associated with a firing and an input FIFO. Produc-
tion and consumption rates are referred to collectively as
dataflow rates.
If for a given actor the dataflow rate on each FIFO con-

nected to the actor is constant, then we refer to the actor
as a synchronous dataflow (SDF) actor. A dataflow graph
in which all actors are SDF actors is called an SDF graph
[5].
An important task in the implementation of a dataflow

graph is the task of constructing a schedule for the graph.
A schedule specifies the assignment of actors to process-
ing resources and the execution order of actors that are
assigned to the same resource. If all of these assignment
and ordering decisions are made at compile time, the
schedule is said to be static, whereas if some of the deci-
sions are deferred to execution time, it is said to be a
dynamic schedule [6]. If the decisions are made after com-
pile time but prior to graph execution, the schedule is said
to be a just-in-time schedule [7]. Static and just-in-time
scheduling techniques offer increased predictability and
reduced run-time scheduling overhead at the expense of
generality—they cannot be applied to all types of dataflow
models.
In this paper, we focus primarily on static scheduling

techniques. In the dataflow graph execution model that
we apply, a statically constructed schedule is executed iter-
atively, where each iteration is triggered by the availability
of a new block of input samples from a DAQ device. The
dataflow graphs that we apply in this paper are sufficiently
predictable to enable this form of static scheduling.
The DSPCAD Lightweight Dataflow Environment

(LIDE) is a software tool for dataflow-based design and
implementation of signal processing systems [8, 9]. The
environment is based on a compact set of application
programming interfaces (APIs) for implementing design
components as dataflow actors. Dataflow programming
in LIDE is based on the core functional dataflow (CFDF)



Liu et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:19 Page 3 of 13

model of computation [10]. Each actor A in a CFDF graph
has an associated set ofmodes μ(A), which can be viewed
as alternative computational tasks that correspond to fir-
ings of A. Each firing of A has a unique mode associated
with it. Each actor mode has constant dataflow rates on all
input and output FIFOs, while the dataflow rates can vary
across different modes of the same actor.
Each CFDF actor has two associated methods, called

the invoke method and the enable method. The invoke
method is used to execute the actor in its current mode,
while the enable method is used to determine whether or
not there is enough data on the input edges and enough
empty space on the output edges to support firing the
actor in its current mode. The separation of concerns
between enable testing and invoking is an important fea-
ture of the CFDF model [10].
The LIDE APIs are formulated in terms of abstract

dataflow principles and are independent of any particular
programming language. This abstract formulation and the
compact nature of the APIs make the core of LIDE easily
retargetable to arbitrary languages for DSP implementa-
tion and simulation, such as C, C++, CUDA, MATLAB,
OpenCL, Verilog, and VHDL. In this work, we use C and
OpenCL versions of the LIDE APIs, which are referred to,
respectively, as LIDE-C, and LIDE-OCL.

3 Related work
There are two main purposes for deep jitter measure-
ment: (1) to increase the likelihood of capturing rare
events that can cause communication errors [11] and (2)
to enable estimation of tails in jitter probability distribu-
tions, as a replacement for or to improve the accuracy of
distribution extrapolation [12]. Implementations of tim-
ing jitter measurement are available in instruments such
as digital oscilloscopes. However, the computation time
andmemory requirements increase with waveform depth,
and so, it is desirable to seek methods for faster yet still
cost-effective jitter computation from deep waveforms.
To address this problem and help accelerate jitter mea-

surement, researchers have introduced parallel algorithms
for constant clock period computation. For example, [13]
exploits multi-core processors such as Intel central pro-
cessing units (CPUs) together with their streaming single
instruction multiple data extensions (SSE) [14] instruction
sets to enable fast and accurate jitter measurement. How-
ever, this design suffers from large memory requirements
and high latency due to its “swallow and wallow” charac-
teristic whereby the computation is started only after all
input data has arrived and has been stored in memory.
This limits the amount of signal data that can bemeasured
and results in high response time for engineers to start
seeing measurement results.
Another jitter measurement algorithm was demon-

strated in [15] that significantly improves measurement

response time by partitioning the overall data set into
windows and allowing jitter measurement results to be
reported for earlier windows before later windows are
received. This reformulation of jitter measurement elimi-
nates the swallow and wallow characteristic and provides
improved speed. However, a memory requirement lim-
itation still remains: the memory required (as in the
approach of [13]) is unbounded. In other words, the mem-
ory requirement grows without bound as the size of the
data set is increased. This characteristic again limits the
amount of signal data that can be measured, which is
problematic, for example, in measuring relatively long
signals or signals with high sample rates when memory
resources are limited.
A preliminary version of this paper was presented in

[16]. In this prior work, we presented a novel deep jitter
measurement system that loads and processes constant-
frequency signal data from an input file. The contribution
of the prior work was focused on streamlining mem-
ory requirements and efficiently trading off accuracy and
performance. The contribution improved the algorithm
of [15] to overcome its limitation of having unbounded
memory requirements. This led to a novel deep jitter mea-
surement system whose memory requirements are fixed
for a given system design configuration—in particular, the
memory requirements are independent of the amount of
data that is processed when the system operates. This
allows processing of unbounded signal streams: the mea-
surement system can process as much data as it receives
during a given execution of the system.
In this paper, we go beyond the preliminary version

in the following ways. First, we incorporate methods to
process input from a DAQ device under the constraint
of gapless processing. Second, we present design opti-
mization techniques that significantly improve memory
management efficiency and system throughput. Addition-
ally, we incorporate methods to dynamically monitor the
frequency of the input signal and adapt relevant sys-
tem parameters when changes in the input frequency are
detected.

4 System design
In this section, we discuss our methods for dataflow graph
design of gapless deep waveform analysis applications.
As described in Section 1, we present these methods in
the context of a concrete application—deep jitter mea-
surement. The deep jitter measurement system that we
develop is a gapless DSP system where a DAQ subsys-
tem supplies continuously arriving input samples, and
these samples are processed to analyze the jitter of input
waveform.
The primary challenges when integrating jitter mea-

surement algorithmswith DAQdevices for real-time anal-
ysis include adhering to memory capacity constraints,



Liu et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:19 Page 4 of 13

ensuring that system throughput does not fall below the
sampling rate of the DAQ device, and avoiding exces-
sive latency in the jitter measurement computation. The
methods developed in this section provide our system
design foundations for addressing these challenges. The
core dataflow-based system architecture presented in this
section is built upon in Section 5 with various optimiza-
tion techniques. These optimizations further improve the
trade-offs among memory cost, throughput, and latency
that are achieved by our deep jitter measurement system
design.

4.1 Window-based analysis
The dataflow graph for our deep jitter measurement sys-
tem is designed to measure jitter continuously so that
intermediate results of jitter analysis and the recovered
clock period are accessible and so that computational
latency is streamlined while meeting throughput con-
straints.
A windowing method is applied to reduce the mem-

ory requirements of the jitter measurement system. The
windowing method decomposes the input stream into a
set of fixed-size subsequences. The fixed size is referred
to as the window size Ws. In our implementation, the
dataflow graph memory requirements are dependent only
on Ws and not on the number of windows that is pro-
cessed. Thus, the jitter measurement dataflow graph can
be executed on an unbounded number of windows with
predictable, boundedmemory requirements. The window
size is a system parameter that can be configured by the
designer to control an associated trade-off between mea-
surement accuracy and memory requirements for deep
jitter measurement. Larger values of Ws in general lead
to improved accuracy at the expense of higher mem-
ory requirements. We discuss this trade-off further in
Section 5.1.

4.2 DAQ interfacing
In design and implementation of gapless DSP systems,
we are concerned with processing data that arrives con-
tinuously from one or more DAQ subsystems. The data
processed by the system dataflow graph is accessed from
one or more internal buffers on the DAQ devices rather
than from files that are stored on disk.
In our deep jitter measurement system, we employ a

single DAQ device. To integrate use of the device into
the system-level dataflow graph, we develop a source
actor that encapsulates the functionality associated with
acquiring data from the DAQ device. Here, by a source
actor, we mean a dataflow actor that has no inputs; such
actors are commonly used to model interfaces between
dataflow graphs and sources of input data. Similarly, sink
actors, which have no outputs, are used to model output
interfaces of dataflow graphs.

We use the dataflow subgraph shown in Fig. 1 to model
the process of acquiring data from the DAQ subsystem
and converting the data to a stream of digital input sam-
ples that is to be processed by the rest of the enclosing
dataflow graph. The subgraph consists of two actors: the
DAS (data acquisition source) actor handles configuration
of the DAQ subsystem as well as acquisition of raw data,
while the DAT (data acquisition transformation) actor
performs any preprocessing required on the raw data (to
extract individual samples), as well as the sending of the
preprocessed data to a GPU device for the core signal
processing tasks in the given gapless DSP application.
In the remainder of this section (Section 4.2), we

demonstrate concrete implementations for the DAS and
DAT actors that target the specific type of DAQ device
that we have used in our experiments. The targeted DAQ
device is the Keysight U5303A PCIe High-Speed Digitizer.
For conciseness, we refer to this specific DAQ device in
the remainder of this paper as the targeted DAQ device
(TDD). The implementations of the DAS and DAT actors
are developed using LIDE-OCL (see Section 2).

4.2.1 DAS actor implementation
The design of the DAS actor is decomposed into three
CFDF modes, called the initialization, inject, and error
modes. Before acquiring data from the TDD, a DAQ con-
figuration, including selection of the sample rate, needs
to be set up. The triggering process for the device also
needs to be set up. The initialization mode handles these
setup tasks, and then transitions the actor to the inject
mode, which can be viewed as representing the steady
state functionality of the actor.
Upon each firing in the inject mode, a new frame of data

is fetched from the internal buffer of the TDD and made
accessible to the rest of the dataflow graph for processing.
A new frame corresponds to a new window based on the
window-based analysis described in Section 4.1. The actor
is enabled (allowed to fire) only when there is a new frame
of data available within the TDD internal buffer and there
is sufficient empty space on the actor’s output edge eout for
transfer of the new frame to the DAT actor. If we model
the internal buffer as a self-loop edge connected to the
DAS actor, then the enable method involves checking for
sufficient data on this self-loop edge. In a dataflow graph, a
self-loop edge is an edge whose source and sink vertices are

Fig. 1 Subgraph for acquiring data



Liu et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:19 Page 5 of 13

identical. Self-loop edges are an established method for
modeling actor state in signal processing dataflow graphs
(e.g., see [17]).
Instead of copying raw data from the internal buffer to

eout, only a pointer value pout is written to eout. This value
contains the starting address of the block of memory in
the internal buffer where the next frame of acquired data
is stored. The DAT actor can then use this pointer value
to access the acquired data directly from the TDD internal
buffer so that the data does not need to be copied.
Once the actor is in the inject mode, it remains in this

mode indefinitely until the system is stopped or reset
through external control or until an error, such as overflow
of the TDD internal buffer, is detected. Upon detection
of an error, the actor transitions to the error mode and
remains in that mode until the system is reset. As one
might expect, further data acquisition from the TDD is
disabled while the DAS actor is in the error mode.

4.2.2 DAT actor design
The TDD packages pairs of adjacent input samples as
two 16-bit data items within a single 32-bit packed pair
of samples. In our hybrid CPU-GPU implementation, the
TDD actor sends packed pairs to a GPU to be unpacked
and then injected into the dataflow subgraph that caries
out the core signal processing functionality for deep jit-
ter measurement. The overall dataflow graph for deep
jitter measurement, including the subgraph of Fig. 1 and
the subgraph for core signal processing, is presented in
Section 4.3. Within the GPU, the accesses of the packed
pairs and the operation of all of the core signal processing
actors are parallelized to optimize real-time performance.

4.3 Dataflow graph for deep jitter measurement
Figure 2 illustrates the overall dataflow graph for our
deep jitter measurement system. Here, as described in

Section 4.2, the DAS and DAT actors provide the input
interface for the deep jitter measurement system. The out-
put interface is provided by the SKC and SKT actors,
which store measurement results in output files. Descrip-
tions of these actors along with all of the other actors in
Fig. 2 are summarized in Table 1. For further background
on computations involved in jitter measurement, we refer
the reader to [13, 15, 16].
In the context of a gapless DSP application, we say that

a CFDF actor is a single-mode steady state (SMSS) actor
if it contains a unique mode, called the signal processing
mode, that is intended to be executed during the continu-
ous data processing (“steady state”) phase of the enclosing
application. If an SMSS actor has one or more modes in
addition to its signal processing mode, then those modes
must be executed during system initialization or during
error handling (e.g., as illustrated in Section 4.2.1 for the
DAS actor). Since CFDF modes must have constant pro-
duction and consumption rates on all actor ports (see
Section 2), the steady state behavior of an SMSS actor can
be represented by an SDF actor that corresponds to only
the signal processing mode.
In the dataflow graph of Fig. 2, all of the actors are SMSS

actors. The edges in the figure are annotated with the pro-
duction and consumption rates associated with the signal
processing modes of the actors. For example, the signal
processing mode of the RRE actor consumes two tokens
on each of its input edges and produces one token on its
output edge on each firing. Recall from Section 4.1 that
Ws, which appears in the annotations associated with edge
(DAS,DAT), represents the window size.
The token types associated with the edges in Fig. 2

are summarized as follows. The edge (DAS,DAT) has
long type. The edges (GCC, SKC) and (GCT, SKT) have
double type. All of the other edges in Fig. 2 haveOpenCL
memory object token type. Amemory object in OpenCL is

Fig. 2 Dataflow graph for deep jitter measurement system



Liu et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:19 Page 6 of 13

Table 1 Actors in the dataflow graph of Fig. 2

Actor Description

DAS Data acquisition source. Interface for acquiring data
from the TDD.

DAT Data acquisition transformation. Sends packed pairs
of samples to the GPU and unpacks the samples on
the GPU.

DVL Determine voltage level. Sorts the input data in the
current window and determines high and low
voltage thresholds.

STR State representation. Converts samples that
encapsulate voltage values into digital form
(high/low voltage states).

FSM Finite state machine. Determines voltage transitions
from high to low voltage states or low to high
voltage states.

TRT Compute transition time. Computes the transition
time for each voltage transition in the current
window.

RE Rough estimation. Derives a preliminary estimation of
the clock period.

RRE Refine rough estimation. Refines the rough
estimation of the clock period to improve its accuracy.

LFT Linear fitting. Further refines the estimated clock
period with linear fitting. Computes time interval
errors (TIEs) using the refined clock period estimate.

TSD Compute TIE standard deviation. Computes the
standard deviation of the TIEs for the current window.

GCC GPU to CPU data transfer. Transfers clock period
result from GPU memory to CPU memory.

GCT GPU to CPU data transfer. Transfers TIE standard
deviation from GPU memory to CPU memory.

SKC Corrected refined estimation sink actor. Produces the
result of the corrected refined estimation for the
recovered clock period.

SKT Standard deviation of TIE sink actor. Produces the
standard deviation of the TIEs.

a pointer that points to a linear arrangement of bytes that
resides on the GPU and can be accessed by the host.
After each complete firing of the DAS actor, the fol-

lowing static subschedule of the remaining 13 actors in
the graph is executed to process the next frame of data
acquired from the TDD.

DAT DVL STR FSM TRT
RE RRE LFT TSD GCC GCT
SKC SKT

(1)

Acquisition of a new frame of data by the TDD can then
proceed concurrently with execution of the subschedule
in Eq. 1. The subschedule of Eq. 1 involves no run-time
scheduling overhead since the ordering is constructed as
a topological sort, which respects all of the data depen-
dencies among the actors. The run-time testing of data
availability in the system is limited to just the DAS actor,

which is polled for availability of a new data frame when-
ever an iteration of the static subschedule (Eq. 1) com-
pletes and there is no input data on the (DAS,DAT) edge
that is available to trigger the next subschedule iteration.

5 Performance optimization
Gapless DSP applications generally require high through-
put to process input streams without missing data points
and while reliably avoiding memory overflow. In this
section, we demonstrate algorithm- and implementation-
based optimization methods to help address these multi-
faceted implementation constraints. Taking the dataflow
graph presented in Section 4 as a starting point, we
improve the design by applying a sequence of optimiza-
tions. These optimization techniques are described in
Section 5.1 through Section 5.3. Experimental results
from applying these optimization are then presented in
Section 6.

5.1 Window size optimization
In this section, we discuss optimized, dynamic configu-
ration of the the window size parameter Ws, which was
introduced in Section 4.1. In our deep jitter measure-
ment system, the window size, along with sorting-related
parameters (discussed in Section 5.2) that are directly
influenced by Ws, has significant impact on trade-offs
among measurement accuracy, execution time perfor-
mance, and memory requirements.
In jitter measurement systems, the frequencies of the

input signals are typically not known at design time and
vary dynamically at run-time. A larger window size in gen-
eral improves the accuracy of signal frequency and TIE
estimation. For lower frequencies (larger clock periods), a
larger window size is preferred to encapsulate a sufficient
number of signal periods per signal frame. Larger window
sizes also provide improved accuracy, as demonstrated in
[16]. Larger window sizes also improve throughput.
However, memory requirements increase linearly with

the window size. Thus, we initialize execution of our jit-
ter measurement system to support an initial minimal
frequency of finit, and we increase the window size dynam-
ically if we encounter signals that have lower estimated
frequency levels than the currently supported minimum
frequency.
More specifically, in our deep jitter measurement sys-

tem, the window size is dynamically optimized by moni-
toring the number of high/low signal transitions found in
each window. If the number of transitions falls below a
threshold Ctrt_num, then the window size for subsequent
signal frames is doubled.
In our experiments, we use finit = 130 kHz, and we use

the empirically determined value of Ctrt_num = 32 tran-
sitions per frame. The value of Ctrt_num can be varied to
tune system-level trade-offs—lower threshold values lead



Liu et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:19 Page 7 of 13

to lower memory requirements and faster execution time
at the expense of decreased accuracy of gapless signal
analysis.

5.2 Sorting optimization
Sorting operations are involved in two actors of our jitter
measurement system, the DVL and RE actors. These oper-
ations account for significant portions of the overall com-
putation in a given dataflow graph iteration. We employ
bitonic sort [18] in an effort to enhance the efficiency of
the sorting process.
To further improve the efficiency of sorting, we sort only

part of the relevant data associated with each signal frame
and perform the required analysis on the partially sorted
data. This again represents a way to trade-off reduced
accuracy for improved real-time performance. We config-
ure the optimized sorting process carefully to ensure that
the reduction in accuracy stays within a reasonable level.
In the DVL actor, the input data in a given signal frame

is sorted to select high and low voltage thresholds. These
thresholds are then used to find the high-to-low and low-
to-high signal transitions in the given frame.We randomly
select a subset of the data samples in each data frame to
sort. The size SDVL of this subset is determined as

SDVL = power(kDVL × ceil(Ws/Ntrans)), (2)

where kDVL is a positive integer parameter, ceil(x) gives
the smallest integer that is greater than or equal to the
real-valued argument x, power(y) gives the smallest power
of two that is greater than or equal to the integer argument
y, and Ntrans is the number of signal transitions that were
detected in the previous frame. In other words, (SDVL/Ws)
gives the fraction of available samples that are used in the
sorting process.
For example, suppose that kDVL = 4,Ws = 65, 536, and

Ntrans = 135, then:

SDVL = power(4 × ceil(65536/135))
= power(4 × 486) = 211 = 2048.

(3)

In each firing of the RE actor, a sorting operation is per-
formed as part of the process for deriving a rough clock
period estimate. In each signal frame, the differences in
pairs of neighboring transition times are sorted, and the
25th percentile of the sorted transition time differences is
taken as the rough estimate.
Here, we use a threshold CRE to determine the size SRE

of the subset (of all transition time differences) that is
sorted. If Ntrans > CRE, then SRE is set to CRE for the
current frame; otherwise, SRE is set to Ntrans.
In our experiments, we use kDVL = 4 and CRE = 1, 024.

Through experimentation, we have determined these val-
ues to provide improvements in sorting efficiency without
significantly degrading jitter measurement accuracy.

5.3 Throughput optimization
In this section, we focus on further methods that we have
applied to optimize the throughput of computationally
intensive actors in the proposed deep jitter measurement
system. As discussed previously, we targeted our imple-
mentation to a hybrid CPU-GPU platform with C and
OpenCL as the actor implementation languages for CPU-
and GPU-based mapping, respectively.
All of the computationally intensive actors in our jitter

measurement system employ GPU acceleration. Specif-
ically, the following actors employ GPU kernels: DAT,
DVL, STR, FSM, TRT, RE, RRE, LFT, and TSD. However,
some GPU-mapped operations are not fully parallelized
[16]. In particular, sorting, prefix sum, and reduction
operations significantly limit the performance of several
actors. Both the DVL and RE actors involve sorting, the
TRT actor includes prefix sum computation, and the RRE
and LFT actor include reduction operations.
For the RE and DVL actors, we described in Section 5.2

how we employed approximate computing techniques
that trade-off acceptable decrease in accuracy for
improvement in execution time. In addition to these
techniques, we employ dynamic configuration of the
vectorization degree to further improve processing
efficiency.
By the vectorization degree of a kernel, we mean the

number of data parallel instances of a kernel that are
launched simultaneously. In OpenCL terminology, the
vectorization degree is commonly referred to as the num-
ber of global work items. Careful optimization of vector-
ization degrees can have major performance benefit for
GPU acceleration of dataflow graphs [19].
For the sorting operation within the RE actor, an effi-

cient value for the vectorization degree is SRE. However,
as discussed in Section 5.2, the value of SRE is determined
dynamically. Thus, in our implementation, the vectoriza-
tion degree of the sorting kernel K is adapted at run-time.
After computation of the number of transitions Ntrans
on the GPU, the value of Ntrans is communicated to the
CPU, and then used by the CPU to configure the vec-
torization degree of K before executing the kernel. The
performance benefit here of dynamically optimizing the
vectorization degree significantly overshadows the over-
head of communicating the Ntrans value from the GPU to
the CPU.
The prefix sum operation in the TRT actor and the

reduction operations in the RRE, LFT, and TSD actors
also represent performance bottlenecks. For these actors,
we optimize the prefix sum and reduction implemen-
tations in a number of ways. First, we perform inter-
leaved addressing so that active kernels have consecutive
indices (IDs). We also implement sequential addressing
for memory read and write operations in the GPU to avoid
shared memory bank conflicts. Furthermore, we apply



Liu et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:19 Page 8 of 13

loop unrolling (e.g., see [20–22]) for further performance
improvement.

6 Results and discussion
In this section, we present experimental results of our
novel system for gapless deep jitter measurement. The
TDD that we apply is the Keysight U5303A PCIe High-
Speed Digitizer [3]. This is a fast 12-bit PCIe digitizer with
programmable on-board processing. The U5303A device
stores acquired data on its on-boardmemory, and the data
can then be transferred from the on-board memory to the
host computer through a PCIe bus. The host computer
that we use in our experiments contains a hybrid CPU-
GPU platform. The platform includes an Intel Core i7-
3820 quad-core CPU with an NVIDIA GeForce GTX680
GPU running Windows 7. OpenCL 1.2 and Visual Studio
2010 are used for code compilation.

6.1 Sorting in the optimized DVL and RE actors
In this section, we examine results related to the opti-
mization techniques for sorting that were discussed in
Section 5.2. Figure 3 shows the throughput speedup mea-
sured for the DVL actor as the ratio Rsort of data used for
sorting is varied. Different colors in the figure illustrate
different window size configurations. For example, when
Rsort = 0.25 (3 out of 4 samples are ignored), a speedup
of 4.63 is obtained when the window size is Ws = 220.
The range of speedup values represented in Fig. 3 is from
2.13 (when R = 0.5) to 822.57 (when R = 0.00012)
when the window size is 220. The trends of throughput

speedup versus Rsort are similar for all of the window size
configurations evaluated in this experiment.
Figure 4 shows the boxplots for the relative error of

results produced by the DVL actor for varying values of
Rsort. Figure 4a shows the relative error of the high voltage
threshold, and Fig. 4b gives corresponding results for the
low voltage threshold. Figure 4c and Fig. 4d show results
on the recovered clock period and TIE standard deviation,
respectively.
There are outliers when Rsort is small. The median

values of the relative errors in Fig. 4 decrease nearlymono-
tonically with increasing Rsort. In Fig. 4a, the median
values of the relative error for the high voltage threshold
do not vary in a strictly monotonic manner when Rsort is
very small. For higher values of Rsort, we see a lower occur-
rence of outliers.We anticipate that the non-monotonicity
effects in these results arise from the randomized selec-
tion of data for sorting.
The input data set for this experiment is as described in

[16]. The results in Fig. 4 show that low levels of relative
error (high levels of analysis accuracy) are observed across
the entire range of Rsort values evaluated.
Figure 5 summarizes experimental results on the

throughput speedup and relative error for different val-
ues of Rsort in the RE actor. Figure 5a demonstrates
the relative error of results for different values of Rsort,
and Fig. 5b shows the throughput speedup for different
values of Rsort.
The data in Fig. 5 exhibits the same general trends

observed in Fig. 3 and Fig. 4—significant speedups

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Percentage of number of data for sorting in DVL

101

102

103

T
hr

ou
gh

pu
t s

pe
ed

 u
p

Throughput speed up in DVL

Window size = 2,097,152
Window size = 1,048,576
Window size = 524,288
Window size = 262,144

Fig. 3 Throughput speedup for the DVL actor for varying values of Rsort



Liu et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:19 Page 9 of 13

2-13 2-12 2-11 2-10 2-9 2-8 2-7 2-6 2-5 2-4 2-3 2-2 2-1

Ratio of sorted data R
sort

0

2

4

6

8

10

A
bs

ol
ut

e 
R

el
at

iv
e 

E
rr

or

10-3

(a)

high voltage

2-13 2-12 2-11 2-10 2-9 2-8 2-7 2-6 2-5 2-4 2-3 2-2 2-1

Ratio of sorted data R
sort

0

0.005

0.01

0.015

0.02

A
bs

ol
ut

e 
R

el
at

iv
e 

E
rr

or

(b)

low voltage

2-13 2-12 2-11 2-10 2-9 2-8 2-7 2-6 2-5 2-4 2-3 2-2 2-1

Ratio of sorted data R
sort

0

0.5

1

1.5

2

2.5

3

3.5

A
bs

ol
ut

e 
R

el
at

iv
e 

E
rr

or

10-10

(c)

clock period

2-13 2-122-11 2-10 2-9 2-8 2-7 2-6 2-5 2-4 2-3 2-2 2-1

Ratio of sorted data R
sort

0

2

4

6

8

A
bs

ol
ut

e 
R

el
at

iv
e 

E
rr

or

10-3

(d)

TIE standard deviation

Fig. 4 a–d Relative error of results produced by the DVL actor for varying values of Rsort

achieved with relatively low reduction in accuracy—
although the magnitudes of throughput speedups are
somewhat lower. Also, the throughput speedup is not
linear. We expect that this is due to nonlinear effects
related to memory cache operations and work group size
organization in OpenCL.

6.2 Optimization of reduction and prefix sum operations
Table 2 shows the throughput speedup achieved for the
three actors—TRT, RRE, and LFT—that contain reduction
and prefix sum operations. The design optimizations that
produced these speedups were discussed in Section 5.3.
The throughput values listed in the third and fourth

Ratio of sorted data  R
sort

10-3 10-2 10-1

R
el

at
iv

e 
er

ro
r 

of
 r

ou
gh

 e
st

im
at

io
n

10-5

10-4

10-3

10-2

10-1

(a)
Ratio of sorted data  R

sort

10-3 10-2 10-1

T
hr

ou
gh

pu
t s

pe
ed

up

100

101

(b)
Fig. 5 a, b Relative error and throughput speedup for varying values of Rsort in the RE actor



Liu et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:19 Page 10 of 13

Table 2 Throughput speedup for TRT, RRE, and LFT actors

Actor Window size
(samples)

Baseline
throughput

Optimized
throughput

Speed up

TRT 1,048,576 1.38 × 107 1.63 × 108 11.79

RRE 1,048,576 2.08 × 108 6.88 × 109 33.12

LFT 1,048,576 5.02 × 107 2.17 × 109 43.26

columns of the table are in units of samples per second
(SPS). A representative window size (given in the second
column) is used in this experiment. Compared to the pre-
vious work [16], all three of these actors exhibit over 10X
speedup. Unlike the optimizations related tomanipulating
Rsort, the optimizations examined in Table 2 do not affect
signal processing accuracy.

6.3 Window size configuration
In our system design, we consider only powers of two for
the window size. That is, the window size is always of the
formWs = 2k for some positive integer k. This power-of-
two constraint is motivated by our use of bitonic sort and
parallel computations for prefix sum and reduction oper-
ations, as described in Section 5. In our design, all of these
critical operations are performed more efficiently (e.g., by
avoiding the need for zero padding) when the window size
is a power of two.
In general, hardware characteristics may impose con-

straints on Ws for a given implementation. For example,
the TDD that we apply has a minimum sampling rate
of 125M SPS. From our experiments involving system
throughput (presented in Section 6.5), we have deter-
mined empirically that this minimum sample rate con-
straint leads to a minimum window size of Wmin = 221.
This minimum window size is required to provide suffi-
cient processing throughput to use the TDD. On the other
hand, the memory constraints on the GPU of our target
platform impose a maximum limit of Wmax = 222 on
the window size. Thus, most of our experiments in the
remainder of this section apply window sizes within the
set {Wmin,Wmax}.

6.4 Overhead analysis for dynamic adaptation
As described in Section 5.1 and Section 5.2, the window
size Ws and the ratios Rsort of data samples to sort—for
both the DVL and RE actors—are adapted dynamically
based on continuously monitored characteristics of the
input signal.
Table 3 shows the execution time overhead measured

for these dynamic adaptation operations. The overhead
includes both the cost of computations to perform the
relevant signal monitoring and the cost of changing the
relevant parameter settings in memory. The columns of
the table correspond to the overhead of adaptingWs, Rsort

Table 3 Adaptation overhead in gapless jitter measurement
system

Window size con-
figuration

Sorting configuration
for DVL actor

Sorting configuration
for RE actor

0.74% 0.0034% 0.0018%

for the DVL actor, and Rsort for the RE actor. The overhead
is reported as a percentage of the total execution time for
the optimized jitter measurement system as the window
size is dynamically changed fromWmin toWmax.

6.5 System throughput
Figure 6 shows the measured throughput of the jitter mea-
surement system for different values of the window size
Ws. These results are shown for a set of representative
input signal frequencies varying from 300 to 893 kHz.
There is no data point when the frequency is 300 kHz
and window size is 8,192. This is because if the win-
dow size is set to 8,192, the system dynamically doubles
the window size to (8,192 × 2) due to insufficient num-
bers of intra-window transitions with the original window
size setting. The implementation is tested with 10 dif-
ferent window sizes from 213 to 222 (Wmax), with each
value of Ws corresponding to a different power of 2.
The results demonstrate that system throughput increases
consistently with increases in Ws. We expect that this
trend is due to the enhanced performance of parallel oper-
ations with increased window sizes. However, increases in
Ws also result in CPU-GPU communication and memory
operations accounting for larger percentages of the over-
all execution time. Thus, with increases in Ws, we see a
decrease in the rate of throughput increase.
Figure 7 shows the system throughput for different sig-

nal frequencies when the window size is varied from 217
toWs = Wmax.
The results show relatively small variation in throughput

for different frequencies. More specifically, the relative
difference between different levels of throughput is less
than 3%.
In summary, the experimental results presented in this

section demonstrate significant improvements achieved
by the design optimization techniques applied in our
novel system for deep jitter measurement. Additionally,
the results demonstrate low levels of accuracy loss in
the approximate computing approaches that we applied
to improve the performance of sorting operations. Fur-
thermore, our results provide quantitative insight into
other relevant trends in dynamic adaptation overhead and
overall system performance.

7 Conclusions
In this paper, we have developed a novel framework
for addressing in an integrated manner a number of



Liu et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:19 Page 11 of 13

0.5 1 1.5 2 2.5 3 3.5 4

Window size 106

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
hr

ou
gh

pu
t o

f s
ys

te
m

 (
sa

m
pl

es
/s

)

108

Signal Frequency = 300KHz
Signal Frequency = 503KHz
Signal Frequency = 699KHz
Signal Frequency = 893KHz

Fig. 6 System throughput versus window size

300 400 500 600 700 800 900

Input Signal Frequency (KHz)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
hr

ou
gh

pu
t o

f s
ys

te
m

 (
sa

m
pl

es
/s

)

108

Window Size = 131,072
Window Size = 262,144
Window Size = 524,288
Window Size = 1,048,576
Window Size = 2,097,152
Window Size = 4,194,304

Fig. 7 System throughput versus input signal frequency



Liu et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:19 Page 12 of 13

important challenges in the design and implementation
of gapless signal processing systems. These challenges
include the requirement for processing unbounded data
streams without input buffer overflow, the need for effi-
cient methods to trade-off signal processing accuracy and
throughput subject to the constraint of gapless process-
ing, and iterative platform-based optimization of dataflow
actor implementations to maximize system throughput.
The contributions of this paper also include systematic
integration of data acquisition devices into dataflow-
based design processes for signal processing systems. For
concreteness, we have demonstrated the proposed design
and implementation framework throughout the paper in
the context of a specific gapless signal processing applica-
tion, which is an application involving jitter measurement
of deep waveforms.
In the development of the proposed deep jitter mea-

surement system, we have applied gapless processing of
input data acquired from a data acquisition (DAQ) device.
Techniques were incorporated in the system to adaptively
optimize window size configurations and the ratio of the
selected data for sorting. These optimizations are impor-
tant to improve system throughput and allow the system
to keep up with high input sample rates.
In this paper, we have focused mainly on static schedul-

ing techniques to execute dataflow graphs for gapless DSP
applications. If scheduling decisions are made after com-
pile time but prior to graph execution, the schedule is said
to be a just-in-time schedule [7]. Extension of the static
scheduling techniques proposed in this paper to just-in-
time deployment contexts is an interesting direction for
future work.
Abbreviations
API: Application programming interface; CFDF: Core functional dataflow; CPU:
Central processing unit; DAQ: Data acquisition; DSP: Digital signal processing;
FFT: Fast fourier transform; FIFO: First-in, first-out; GPU: Graphics processing
unit; LIDE: The DSPCAD Lightweight Dataflow Environment; SMSS:
Single-mode steady state; SPS: Samples per second; SSE: Streaming single
instruction multiple data extensions; TDD: Targeted DAQ device

Acknowledgements
The authors appreciate the constructive feedback provided by the
anonymous reviewers. Their comments have helped to improve the paper.

Funding
This work was sponsored in part by the U.S. National Science Foundation and
Keysight Technologies.

Availability of data andmaterials
The data for experiments is described in [16].

Authors’ contributions
YL is the primary author of the paper. She developed and conducted the
experiments and wrote the initial draft of the paper. LB and SSB have
supervised the research work and acted as research advisors. They provided
guidance and feedback throughout the research work and throughout the
process of revising the initial draft. All authors have reviewed and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Electrical and Computer Engineering and Institute for
Advanced Computer Studies, University of Maryland, College Park, MD, USA.
2Keysight Laboratories, Keysight Technologies, Inc., Reno, USA. 3Laboratory of
Pervasive Computing, Tampere University, Tampere, Finland.

Received: 29 November 2018 Accepted: 21 February 2019

References
1. E. A. Lee, T. M. Parks, Dataflow process networks. Proc. IEEE. 83(5),

773–799 (1995)
2. S. S. Bhattacharyya, E. Deprettere, R. Leupers, J. Takala, Handbook of Signal

Processing Systems, 2nd edn. (Springer, New York, 2013)
3. Keysight Technologies, Keysight U5303A PCIe High-Speed Digitizer with

On-Board Processing: Data Sheet. (Keysight Technologies, 2015)
4. L. Giannone, et al., Data acquisition and real-time signal processing of

plasma diagnostics on ASDEX upgrade using LabVIEW RT. Fusion Eng.
Des. 85(3–4), 303–307 (2010)

5. E. A. Lee, D. G. Messerschmitt, Synchronous dataflow. Proc. IEEE. 75(9),
1235–1245 (1987)

6. E. A. Lee, S. Ha, in Scheduling strategies for multiprocessor real time DSP.
Proceedings of the Global Telecommunications Conference, vol. 2,
(Dallas, 1989), pp. 1279–1283

7. J. Heulot, M. Pelcat, J. Nezan, Y. Oliva, S. Aridhi, S. S. Bhattacharyya, in
Proceedings of the IEEE Global Conference on Signal and Information
Processing. Just-in-time scheduling techniques for multicore signal
processing systems, (Atlanta, 2014), pp. 175–179

8. C. Shen, W. Plishker, H. Wu, S. S. Bhattacharyya, in A lightweight dataflow
approach for design and implementation of SDR systems. Proceedings of
the Wireless Innovation Conference and Product Exposition,
(Washington, DC, 2010), pp. 640–645

9. C. Shen, L. Wang, I. Cho, S. Kim, S. Won, W. Plishker, S. S. Bhattacharyya, The
DSPCAD lightweight dataflow environment: Introduction to LIDE version 0.1.
Technical Report UMIACS-TR-2011-17. (Institute for Advanced Computer
Studies, University of Maryland at College Park, 2011). http://hdl.handle.
net/1903/12147

10. W. Plishker, N. Sane, M. Kiemb, K. Anand, S. S. Bhattacharyya, in
Proceedings of the International Symposium on Rapid System Prototyping.
Functional DIF for rapid prototyping, (Monterey, 2008), pp. 17–23

11. D. Murray, in Using RF recording techniques to resolve interference problems.
Proceedings of AUTOTESTCON, (Schaumburg, 2013), pp. 1–6

12. W. Maichen, Digital TimingMeasurement: From Scopes and Probes to Timing
and Jitter. (Springer, USA, 2006). Chap. 9.3

13. T. Loken, L. Barford, F. C. Harris, inMassively parallel jitter measurement from
deepmemory digital waveforms. Proceedings of the IEEE International
Instrumentation and Measurement Technology Conference,
(Minneapolis, 2013), pp. 1744–1749

14. Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s
Manual— Volume 3 (3A, 3B, 3C & 3D): System Programming Guide. (Intel
Corporation, 2016)

15. Y. Liu, L. Barford, S. S. Bhattacharyya, in Proceedings of the IEEE International
Instrumentation andMeasurement Technology Conference. Constant-rate
clock recovery and jitter measurement on deep memory waveforms
using dataflow, (Pisa, 2015), pp. 1590–1595

16. Y. Liu, L. Barford, S. S. Bhattacharyya, in Proceedings of the IEEE International
Instrumentation andMeasurement Technology Conference. Jitter
measurement on deep waveforms with constant memory, (Taipei, 2016),
pp. 1161–1166

17. E. A. Lee, in Recurrences, iteration, and conditionals in statically scheduled
block diagram languages. Proceedings of the International Workshop on
VLSI Signal Processing, (1988)

18. K. E. Batcher, in Proceedings of the AFIPS Spring Joint Computer Conference.
Sorting Networks and Their Applications (Atlantic City, 1968), pp. 307–314

19. S. Lin, J. Wu, S. S. Bhattacharyya, Memory-constrained vectorization and
scheduling of dataflow graphs for hybrid CPU-GPU platforms. ACM Trans.
Embed. Comput. Syst. 17(2), 50–15025 (2018)

http://hdl.handle.net/1903/12147
http://hdl.handle.net/1903/12147


Liu et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:19 Page 13 of 13

20. S. Sengupta, M. Harris, M. Garland, Efficient parallel scan algorithms for
GPUs. Technical Report NVR-2008-003 (2008). NVIDIA Corporation

21. G. E. Blelloch, Prefix sums and their applications. Technical Report
CMU-CS-90-190 (1990). School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213-3890

22. C. Harris, K. Haines, L. Staveley-Smith, GPU accelerated radio astronomy
signal convolution. Exp. Astron. 22(1–2), 129–141 (2008)


	Abstract
	Keywords

	Introduction
	Background
	Related work
	System design
	Window-based analysis
	DAQ interfacing
	DAS actor implementation
	DAT actor design

	Dataflow graph for deep jitter measurement

	Performance optimization
	Window size optimization
	Sorting optimization
	Throughput optimization

	Results and discussion
	Sorting in the optimized DVL and RE actors
	Optimization of reduction and prefix sum operations
	Window size configuration
	Overhead analysis for dynamic adaptation
	System throughput

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

