
RESEARCH Open Access

Adaptive parameter-tuning stochastic
resonance based on SVD and its
application in weak IF digital signal
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Abstract

Parameter-tuning stochastic resonance can effectively use noise to enhance signal energy, whereas its system
parameters are hard to select, and how to combine it with more practical signals needs to be researched. In this
study, the IF (intermediate frequency) digital signal with low SNR (signal-noise ratio) is selected as the research
object, and the measuring function based on SVD (singular value decomposition) that is not dependent on prior
knowledge is proposed as the evaluation function to optimize the parameters of stochastic resonance system. The
nature of the stochastic resonance is first described from the eigenspace of the signal. After the analysis of the
effects of different system parameters, amplitude normalization is employed to optimize only one parameter,
simplifying the algorithm. Finally, an adaptive parameter-tuning stochastic resonance method based on AFSA
(artificial fish swarm algorithm) is developed for three types of modulated signals, achieving an optimum
matching of noisy signals and non-linear systems at fast convergence speed. According to the simulation, the
proposed algorithm is proven effective, efficient, and robust, laying a solid foundation for the subsequent signal
processing work.
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1 Introduction
In the non-cooperative communication system as shown
in Fig. 1, the received digital signals are often weak and
at low SNR. Given that the prior knowledge of the trans-
mitted signals cannot be gained in advance, if the infor-
mation contained in the signals is to be acquired, the
blind signal processing technique must be used to esti-
mate the necessary parameters (e.g., carrier frequency,
symbol rate, modulation mode) before demodulation
and information recovery. Different parameter estima-
tion or modulation recognition algorithms will bring
different performances, whereas the quality of the signal,
as an important factor, will undoubtedly have huge im-
pacts on the algorithm results. Scholars have performed
a lot of research on signal processing at low SNR. The
high-order spectrum method [1–3] can suppress the

additive colored Gaussian noise of unknown power
spectrum. The wavelet transform technique [4, 5] is con-
sidered suitable for the noise removal of transient signals
and can inhibit the interference of high-frequency noise.
The method of calculating high-order cumulant [6] is
insensitive to Gaussian noise. The cyclic spectrum [7, 8]
has certain anti-noise performance, etc. These methods
primarily focus on suppressing noise to the greatest
extent. In recent years, however, with the in-depth study
of non-linear dynamics and statistical physics theory,
stochastic resonance (SR) method has been developed
[9] using a non-linear system to convert part of the
energy of the noise into signal, thereby enhancing the
signal and reducing the noise.
The initial study of SR was limited to periodic signals.

Later, the aperiodic stochastic resonance (ASR) proposed
by Collins et al. [10] and the parameter-tuning stochastic
resonance (PSR) proposed by Xu et al. [11] were broadly
used. On the one hand, ASR breaks through the
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conditional constraints of the input signals, demonstrat-
ing that aperiodic signals can also stimulate stochastic
resonance system. On the other hand, PSR solves the
problem that only the system parameters need to be
adjusted without adjusting the noise can achieve the best
output. Stochastic resonance is applied in a large num-
ber of fields: medicine [12], electromagnetics [13, 14],
mechanical fault detection [15, 16], signal processing
[17], etc. In the field of digital signal processing, Duan
and Abbott [18] explored the detectability of the SR
bistable receiver for detecting binary modulated signals.
Sun and Lei [19] studied the use of ASR processor to
detect the pulse amplitude modulation (PAM) signals
and applied it to the digital watermark. Dalabaev et al.
[20] studied the application of PSR in baseband digital
signals. Liu et al. [21] proposed a PSR receiver to
improve the reception performance of PAM signals.
Liang et al. [22] derived the expression of the bit error
rate of the bistable stochastic resonance system under
the coherent receiver. Zhan and Duan [23] applied PSR
to the parameter estimation of the signals. But all these
studies are carried out under the fixed stochastic re-
sonance system parameter and the fixed type of signal.
For adaptive PSR, the choice of system parameters

plays a critical part in the performance of the output.
This is because only when the signal, noise, and system
are optimally matched, can the noise be weakened, and
can the target signal be enhanced to the greatest extent.
Thus, Tong et al. [24] studied the adaptive stochastic
resonance method of PSO (particle swarm optimization)
and analyzed the parameters that affect system stability
using the scale-transform stochastic resonance solution
procedure. The adaptive stochastic resonance method
based on artificial fish swarm algorithm (AFSA) [25, 26]

was studied only for sinusoidal signal and cannot be
applied to more complex aperiodic signals, which li-
mited its application [27, 28]. The AFSA is an effective
optimization algorithm, characterized by parallelism,
simplicity, and fastness. However, how to select the best
system parameters for various IF digital signals needs
further studies.
In this work, a weak IF digital signal enhancement

method based on adaptive parameter-tuning stochastic
resonance is proposed. Unlike the traditional stochastic
resonance, the evaluation function based on SVD com-
bined with AFSA is used to make the weak IF signal
tend to achieve the best enhancement by stochastic res-
onance with the most optimal system parameters. The
proposed method has a wider scope of application,
which can be used for three types of modulated signals
and is more suitable for engineering practice.
The rest of the paper is organized as follows. In

Section 2, the definition of IF digital signals, the stochas-
tic resonance theory, and AFSA algorithm are explained.
In Section 3, the method scheme is described, including
SVD evaluation function, system parameter analysis, and
module framework. In Section 4, the simulation results
and analysis are described. Finally, conclusions are given
in Section 5.

2 Background knowledge
2.1 IF digital signal
IF digital signal refers to the digital signal whose carrier
frequency is maintained at a predetermined value which
is between baseband and radio frequency (RF) after
down-conversion processing. There are three types of IF
signals studied in this study:
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Fig. 1 Signal processing steps under non-cooperative communication condition
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(1) Multiple amplitude shift keying (MASK) directly
maps the information of the symbol to the carrier
amplitude, and its time domain expression is:

sMASK tð Þ ¼ A
X
n

ang t−nTsð Þ
" #

cos 2πf ct þ θð Þ

ð1Þ

where an∈f2m−1−
ffiffiffiffiffi
M

p jm ¼ 1; 2;…;Mg.

(2) Multiple phase shift keying (MPSK) uses the phase
change of carrier to transmit digital information,
and its time domain expression is:

sMPSK tð Þ ¼ A
X
n

g t−nTsð Þ
" #

cos 2πf ct þ θ þ φnð Þ

ð2Þ
where φn ∈ {(2m − 1)π/M|m = 1, 2, … ,M}.

(3) Multiple quadrature amplitude modulation
(MQAM) is a method of mixed amplitude and
phase modulation whose time domain expression is:

sMQAM tð Þ ¼ A
X
n

ang t−nTsð Þ
" #

cos 2πf ct þ θð Þ

þ A
X
n

bng t−nTsð Þ
" #

sin 2πf ct þ θð Þ

ð3Þ
where an; bn∈f2m−1−

ffiffiffiffiffi
M

p jm ¼ 1; 2;…;Mg.
In (1), (2), and (3), A is the amplitude, g(t) is the pulse

shaping function and only rectangular shaping is consid-
ered, Ts is the symbol duration, fc is the carrier fre-
quency, θ is the initial phase of the carrier, and M is the
symbol mapping number(e.g., M = 2, 4, 8…).

2.2 Bistable system and adiabatic approximation theory
The bistable system is a typical type of non-linear system
that can be represented by the Langevin equation [29]:

dx
dt

¼ ax−bx3 þ s tð Þ þ Γ tð Þ ð4Þ

where a and b are the parameters of the system, s(t) is
the input signal, and Γ(t) is the Gaussian white noise
with mean value of 0 and intensity of D, conforming to

〈Γ(t)〉 = 0, 〈Γ(t)Γ(0)〉 = 2Dδ(t) where 〈⋅〉 represents the
time average.
IF digital signal, as the input, can be regarded as the

single frequency signal with the fixed amplitude and
phase in any non-zero symbol interval, which can be
expressed by the following equation:

s tð Þ ¼ A cos 2πf ct þ φð Þ ð5Þ

where kTs ≤ t ≤ (k + 1)Ts, k = 1, 2,… , N, and N is the
number of symbols.
In this way, the aperiodic IF digital signal can be

analyzed as the periodic signal within a symbol inter-
val. Therefore, it can be treated as a global aperiodic
signal for PSR processing and local periodic signal
for analyzing.
The potential function corresponding to (4) is:

U xð Þ ¼ −
1
2
ax2 þ 1

4
bx4

−x A cos 2πfct þ φð Þ þ Γ tð Þð Þ
ð6Þ

Equation (6) describes the particle’s overdamped mo-
tion in a double potential well driven by external force
and noise simultaneously. When there is no external
force and noise, the potential function curve is shown
in Fig. 2.

It can be seen that the two potential wells x1; 2 ¼ �ffiffiffiffiffiffiffiffi
a=b

p
are symmetric about the zero point, and the barrier

height is ΔU = a2/4b. When the system is excited by only
external force, as long as A is less than the critical value

Ac (Ac ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a3=27b

p
), the particle can only perform the

local periodic motion in a certain potential well. When
there is only noise, the particle switches between the two
potential wells according to Kramers’ transition rate rk,
which is expressed as rk ¼ affiffi

2
p

π
expð− ΔU

D Þ. When the sys-

Fig. 2 Potential function of bistable system
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tem is excited by both signal and noise, the particle can
exceed the barrier with the help of noise even if A <Ac
and periodically flips in the two potential wells according
to the signal frequency. Since the energy of the overstep-
ping barrier is much larger than the energy of the signal
itself, the periodic characteristic of the signal within one
symbol interval is amplified, which means the stochastic
resonance phenomenon occurs. The probability distri-
bution function ρ(x, t) of the variable x follows the
Fokker-Planck equation:

∂ρ x; tð Þ
∂t

¼ −
∂
∂x

ax−bx3 þ A cos 2πf ctð Þ� �
ρ x; tð Þ� �

þD
∂2

∂x2
ρ x; tð Þ

ð7Þ

where the initial condition is ρ(x, t0| x0, t0) = δ(x − x0).
When fc of the signal is small enough and the ampli-

tude and noise intensity are much less than 1 at the
same time, it can be considered that the time taken for
the system to reach the equilibrium state in potential
wells is much smaller than the time taken for the overall
equilibrium of the probability between two potential
wells, and is also much smaller than the time taken by
the system to change along with the input signal, which
is the adiabatic approximation [30, 31].
After analytic derivation [32], the power spectrum of

the system output can be obtained:

G ωð Þ ¼ GN ωð Þ þ GS ωð Þ

¼ 1−
rk2A2xm2

2D2 rk2 þ π2 f c2ð Þ
� �

rkxm2

rk2 þ π2 f c2

þ πA2xm4rk2

2D2 rk2 þ π2 f c2ð Þ δ ω−ωcð Þ þ δ ωþ ωcð Þ½ �

ð8Þ

where ωc = 2πfc and xm ¼ ffiffiffiffiffiffiffiffi
a=b

p
.

Equation (8) reflects the energy conversion result
which consists of two parts: noise energy and signal en-
ergy. During the stochastic resonance process, the signal
power spectrum appears amplified peak value, and the
total output power of the system is maintained as 2πxm

2

with no change.
In order to overcome the limitation of adiabatic ap-

proximation theory that the input must satisfy small
parameters, the following variables are introduced to
normalize the input [33]:

z ¼ x

ffiffiffi
b
a

r
; τ ¼ at ð9Þ

So, we can get the final expression as follows:

dz
dτ

¼ z−z3 þ
ffiffiffiffiffi
b
a3

r
A cos

2πf c
a

τ þ φ

� �

þ
ffiffiffiffiffiffiffiffiffi
2Db
a3

r
ξ τð Þ

ð10Þ

The normalization compresses the signal frequency
and scales the amplitude of the signal and the noise so
that the stochastic resonance can be applied to more ac-
tual signals.

2.3 Artificial fish swarm algorithm
Artificial fish (AF) is the virtual entity of the real fish,
which simulates four instinctive behaviors of fish: preying,
swarming, following, and moving to survive in the
surrounding environment. Through each evaluation, it
selects a current optimal behavior to carry out, obtaining
higher food concentration.
As shown in Fig. 3, the current state of an AF is X,

Visual is its visual distance, and the state XV is the po-
sition in Visual at a certain moment. The AF compares
the X with the XV, thereby deciding to move forward or
continue to patrol other locations within the Visual. The
greater the number of patrols, the more comprehensive
the understanding about the states of the Visual, which
helps to make correspondingly intelligent judgments and
decisions to maintain colonies. Of course, it is not ne-
cessary to traverse the environment with multiple or in-
finite states, which allows AF to have local optimization
with some uncertainty and it is helpful for finding the
global optimum.
The variable part includes M (number of AF), GEN

(number of reproductions), X (state of the AF, which

Fig. 3 Visual concept map of artificial fish
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is a vector of the variable to be optimized), Step
(maximum step size of movement), Visual (visual
distance of AF), T (maximum number of attempts), δ
(crowd factor), dij = |Xi −Xj| (distance between AF
individuals i and j), and Y (food concentration).
AF reaches the highest concentration of food through

the following four behaviors.

1. Prey: Suppose the artificial fish i has a current state
Xi and selects a state Xj within its Visual randomly:

X j ¼ Xiþ Visual � Randð Þ ð11Þ
If Yj < Yi, then goes forward a step in that direction;

otherwise, if the condition is still not satisfied after T
times, it moves a step randomly.

Xtþ1
i ¼ Xt

i þ
X j−Xt

i

X j−Xt
i

		 		 � Step � Randð Þ ð12Þ

2. Swarm: Suppose nf is the number of its partners in
the current neighborhood and Xc is the center
position of them, if Yc/nf > δYi, then moves one step
towards Xc, otherwise executes the preying.

3. Follow: Let Xj has the maximum value Yj among
partners, if Yj/nf > δYi, then moves one step towards
Xj, otherwise preys.

4. Move: Default behavior of preying.

3 Methods
Since the signal is received without any prior knowledge,
it is not possible to be processed only in one symbol
duration. The target signal contains a large unknown
number of symbols, so it is aperiodic with a certain
bandwidth. Therefore, the stochastic resonance result
cannot be measured by the signal-to-noise ratio of the
single-frequency signal, which is defined as the ratio of
the amplitude at the signal frequency in the power
spectrum of the output signal to the same-frequency
background noise [32]. Later, scholars proposed the
cross-correlation function as a measurement for
aperiodic signals [34], but it is based on the simple
waveform matching of input and output signals. There is
also a measurement of bit error rate for digital signals
[35], but in fact, it cannot be measured based on the
received signals without knowing the correct sequence
of symbols. Therefore, we need a measuring function that
does not require any prior knowledge.
In this section, singular value decomposition (SVD) is

used to measure the effect of the stochastic resonance
output and is combined with AFSA as evaluation

function to find the optimal system parameters for weak
IF digital signals.

3.1 Evaluation function based on SVD
There is an important parameter in AFSA: food con-
centration Y, which is the evaluation function in the
optimization process.
SVD can be used to estimate the signal-to-noise ratio

in digital communications [36]. As a measuring function
of ASR, it does not need accurate estimation and is just
a relative quantity. In other words, the value of the func-
tion itself is not important, and it is significant that it
can vary with the system parameters and reach the peak
at the optimum situation.
It is assumed that the signal s(t) passes through the

additive white Gaussian noise channel and is expressed
as y(n) = s(n) +w(n) after sampling, where w(n) is the
noise with zero mean and σ2w variance. The distributions
of the signal and noise are independent. The autocorre-
lation matrix of the signal is:

Ryy ¼ E y nð ÞyΗ nð Þ� �

¼ E s nð Þ þ w nð Þ½ � s nð Þ þ w nð Þ½ �Η
n o

¼ Ef s nð ÞsΗ nð Þ� �þ Ef w nð ÞwΗ nð Þ� �

¼ Rssþ Rww

ð13Þ

Since the matrices Ryy, Rss, and Rww in (13) are
symmetric, SVD can be diagonalized as:

Ryy ¼ Rssþ Rww ¼ VΛyVΗ

¼ V Λsþ Λwð ÞVΗ ð14Þ

where V is an orthogonal matrix and

Λs ¼ diag λ1;⋯; λp; 0;⋯0ð Þm�m
Λw¼ diag σ2

w; σ
2
w;⋯σ2w

� �
m�m

Λy¼ diagðλ1þ σ2w; λ2þ σ2
w;⋯;

λpþ σ2w; σ
2
w;⋯σ2

wÞm�m
λ1 > λ2 > ⋯ > λpð Þ

ð15Þ
for which m is the order and λi, i = 1, 2,… p are

singular values.
Taking the BPSK signal as an example, we use two

different sets of stochastic resonance system parameters
including a and b to process it, and then perform SVD
with an order of 10 on the original signal and two out-
put signals to observe the effect of stochastic resonance
from the perspective of the eigenspace. The singular
values of all signals are compared from large to small, as
shown in Fig. 4.
For the original signal, λ1 = 0.349, λ2 = 0.111, λ3 =

0.043, …, λ10 = 0.037; after stochastic resonance
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processing under the first set of system parameters (here-

after called SR output1), λ
0
1 ¼ 1:095, λ

0
2 ¼ 0:280, λ

0
3 ¼ 0:02

8, …, λ
0
10 ¼ 0:001, and under the second set of system pa-

rameters (hereafter called SR output2), λ
00
1 ¼ 0:580, λ

00
2 ¼ 0:

216, λ
00
3 ¼ 0:061, …, λ

00
10 ¼ 0:003. Comparing the original

signal with the SR output 1, we can conclude that the sto-
chastic resonance causes the first three singular values’ in-
crease and the latter seven values’ decrease, which proves
that the enhancement of signal energy is related to the vari-
ation of the singular values. Furthermore, comparing the
SR output 1 with the SR output 2, we can infer that the de-
gree of the singular value change varies with the different
system parameters. In addition, it shows that the stochastic
resonance can indeed use the noise energy to enhance the
signal, and at the same time, the noise energy is suppressed,
which demonstrates some of the noise energy is transferred
to signal after processing. To sum up, this experiment
proves that it is feasible to find the optimal system parame-
ters to achieve the maximum energy conversion by using
SVD.
In the application of SNR estimation, the minimum

description distance (MDL) [37] is needed to determine
the dimension of the signal space. However, the measu-
ring function represents the relative meaning rather than
the absolute, so it is unnecessary to determine the opti-
mal dimension p. There are two advantages: one is the
invalidation of the MDL in the case of weak signals is
avoided and the other is the simplicity of the algo-
rithm is guaranteed. p is fixed to 3 in this paper; thus,
we define the measuring function (SRIF stands for
stochastic resonance of IF digital signals), which is
expressed by:

YSRIF ¼ 10� log

Xp
k¼1

λk−σ2w
� �

m� σ2w
ð16Þ

3.2 Analysis of the parameters of the stochastic
resonance system
Research shows that the system parameters play a
crucial part in Kramers’ transition rate rk of the sys-
tem. The adjustment of the parameter a can adapt to
the input signals with different changing speeds. It is
known from (10) that the normalization stretches the
signal for a times in time domain, which is also
equivalent to 1/a time compression in the frequency
domain. Also, the amplitude scale of the input is nor-

malized by
ffiffiffiffiffiffiffiffiffiffi
b=a3

p
. Above conclusions demonstrate

that the parameter a mainly determines whether
stochastic resonance can occur, and both a and b
affect the amplitude. In order to prove the effect of
different system parameters, we take BPSK as an example,
as shown in Fig. 5.
As shown in Fig. 5, when a = b = fc, the BPSK signal is

enhanced by stochastic resonance to some extent; how-
ever, when a = 50fc, b = fc, waveform distortion occurs in
the output signal, which proves that the parameter a
affects the quality of the output. On the contrary, if a =
fc, b = 50fc, the enhancement level of the output does
not change, but the amplitude is increased by about 10
times, which proves that the parameter b mainly affects
the amplitude of the output. According to this feature,
the influence of the parameter b can be neglected by
normalizing the amplitude of the stochastic resonance
output, so that the complexity of the optimization can
be reduced by half. In the optimization process, b and a
remain the same size specifically.
The previously defined SVD-based measuring func-

tion YSRIF is used as the evaluation function in
parameter optimization. As shown in Fig. 6, YSRIF
has an optimal value within a certain range of the
parameter a, which means that the system and the
signal and noise are optimally matched and the noise
triggers the maximum transfer of power to the signal
in the system with optimal parameters.

3.3 Module framework
Design the stochastic resonance module as Fig. 7.
Step 1: Normalize the amplitude of the input to pre-

vent the amplitude from being too large or too small.
Step 2: Determine the system parameters. Make b = a

and h = 1/fs, which is the iteration step for step 3. How
to choose a adaptively will be discussed later.
Step 3: Use the fourth-order Runge-Kutta method [33]

to iterate and calculate the output.
Step 4: Pass the signal through the moving average

filter. As shown in Fig. 8, the direct output signal has
an amplitude drift phenomenon in which the ampli-
tude of the symbol is unstable. The moving average
filter can be expressed as:

Fig. 4 Comparison of signal singular values before and after
stochastic resonance processing
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S
0
kð Þ ¼ S kð Þ− 1

2K þ 1

XK
i¼−K

S k þ ið Þ ð17Þ

where S and S' represent the signals before and after the
filter, respectively, and K is the sliding length.
Step 5: Normalize the amplitude of the output to

remove the influence of the parameter b, and finally ob-
tain the processed signal.

The stochastic resonance module is embedded into
the whole algorithm framework which is shown in Fig. 9
to complete the weak IF digital signal enhancement
based on AFSA.
The overall structure is divided into three parts,

namely the input module, the AFSA module, and the
output module.

(1) Input module: The received signal is usually the RF
signal. It is sampled with being roughly measured
the carrier frequency, then moved to the
intermediate frequency, and intercepted as the
input of the next module. The specific value of the
intermediate frequency can be unknown, except for
the order of magnitude, e.g., 1 K Hz, 10MHz, etc.

(2) The AFSA module is the core part, and the specific
steps of which are as follows:

First, initialize the parameters. Assuming the IF is on the
order of 1 × 10mHz, the initial optimization range of a is
set as [1 × 10m ‐ 1, 1 × 10m + 1], the Visual is set as 0.5 ×
10m ‐ 1, and the settings of the remaining parameters T, δ,
GEN, and M can be properly set regardless of the
magnitude order.

Fig. 5 Effect of different system parameters on the stochastic resonance output

Fig. 6 Effect of a on YSRIF
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Second, the stochastic resonance module is used to
calculate the food concentration, and YSRIF is used
to evaluate and select the current optimal
parameter.
Third, AF performs behavior functions sequentially,
iterated, updated, and recorded generation after
generation;
At last, when the number of iterations reaches the preset
value, the current optimal parameter is the output.

(3) Output module: The received signal is passed
through the stochastic resonance module under the
optimal parameters to obtain the enhanced signal.

4 Results and discussion
4.1 Experiment 1: Effectiveness validation
First, the IF digital signals are simulated, including seven
kinds: 2ASK, 4ASK, BPSK, QPSK, 8PSK, 16QAM, and
64QAM. The parameters of the signals are uniformly set
as amplitude A = 1, symbol rate Rs = 1000 Bd, carrier fre-
quency fc = 1 × 104 Hz, number of symbols N = 20, sam-
pling rate fs = 1 × 106 Hz, and SNR = 0 dB. The AFSA
parameters are set as M = 50, GEN = 10, T = 20, Visual =
1000, Step = 500, and δ = 0.5, and the initial optimization
range is [1 × 103, 1 × 105].
The AFSA module is used to acquire the optimal system

parameter, and the optimal values and the maximum food

Fig. 7 Stochastic resonance module

Fig. 8 Comparison before and after moving average filtering
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concentration are recorded with the increasement of the
iteration number, as shown in Fig. 10.
Taking the convergence curve of the 64QAM as an ex-

ample, the optimum parameter of the first AF generation
is about 1.45 × 104 with the food concentration of 3.408,
indicating that the food concentration under this value
is the highest among these 50 AFs in the initial search-
ing stage. Next, the second generation continues to go
ahead in a large step, and the food concentration reaches
6.641. In the third generation, it is close to arrive at the
optimal parameter position with the highest food con-
centration with a small step. Finally, it reaches the opti-
mal position in the fifth generation. The curves illustrate
that in the early reproduction stage, the AF can optimize

Fig. 9 System composition block diagram

a

b

c

d

e

f

g

Fig. 10 Convergence curve. a 2ASK. b 4ASK. c BPSK. d QPSK. e 8PSK.
f 16QAM. g 64QAM
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with a fast speed and approach the optimal position
gradually with a small step in the later stage, thus
achieving an ideal convergence result. The results mani-
fest that under the preset condition of signal and noise,
the optimal parameter a found by AFSA is 9792. If the
parameter is used for stochastic resonance processing,
the evaluation function of the output signal can reach
the maximum value of 8.53.
To sum up, for the seven different signals, the algo-

rithm reaches the convergence state with the fastest
three generations and the slowest six generations, and
the optimal system parameters that maximize the evalu-
ation function are obtained, which proves the effective-
ness of the algorithm.
Taking 2ASK, BPSK, and 16QAM as examples, the in-

put and output waveforms are compared in Fig. 11,
which prove PSR can strengthen the signal and remove
the noise efficiently.

4.2 Experiment 2: Robustness test
In a real environment, the parameters of the signal are
various. Therefore, the 16QAM with high universality,
which is often used in satellite communication, will be
set as an example with different parameters and repeated
tests to verify the robustness of the algorithm. In the
process of enlarging the symbol rate from 1 × 103 to
1.6 × 104 Bd, the carrier frequency is set to 4, 6, 8, 10,
and 12 times, respectively, and the sampling rate is uni-
formly set as fs = 100fc. Because the oversampling rate
(fs/Rs)varies, the signal length is different under the
same number of symbols, so the signal is uniformly
intercepted by 1 × 104 points with SNR = 0 dB. The
experiments are repeated 100 times for each parameter,
and the parameters of AFSA keep the same as ex-
periment 1. Finally, the average convergence times
were recorded.

The data in Table 1 indicate that the average conver-
gence times remain stable when the symbol rate and car-
rier frequency change, which can prove two points: first,
the convergence speed of the algorithm is not affected
by the signal parameters; second, the algorithm can con-
verge to the signals with different parameters and obtain
the optimal system parameters adaptively. The robust-
ness of the algorithm under different signal parameters
is significant because the target signal is unknown. Ex-
periment 2 shows that the proposed method is robust.

4.3 Experiment 3: Quality improvement test
The purpose of this study is to find the optimal stochas-
tic resonance parameters so that the signal quality can
be improved. In order to quantitatively measure the sig-
nal enhancement effect, we employ the measuring func-
tion YSRIF to test the signals under different SNR.
Define YI (YSRIF improvement) as follows:

YI ¼ YSRIF out‐YSRIF in ð18Þ

YSRIF _ in and YSRIF _ out are the measuring func-
tions of the input and output signals, respectively. It is
actually a relative signal-to-noise ratio gain measuring
method, which can reflect the improvement of signal
quality by stochastic resonance processing. In order to
clearly present the results, we take 2ASK, BPSK, and
16QAM as examples. Let the SNR of the signals be ex-
panded from − 15 to 10 dB at intervals of 1 dB. The rest
of the signal parameters are the same as experiment 1.
Draw the curve of YI as SNR grows as Fig. 12.
In the change of the SNR from low to high, YI is firstly

increased and then gradually decreased. The overall
values of YI are positive, meaning that the algorithm im-
proves the signal energy to different degrees. When SNR
is − 10 dB, YI is most significant. When the SNR is high,
the degree of the enhancement is little, which is because
the signal energy is already strong and the noise energy
is already weak on the contrary. It can be deduced from
experiment 3 that stochastic resonance can highlight the
excellent performance at low signal-to-noise ratio and is
suitable for weak IF signal enhancement.

Fig. 11 Signal enhancement result after PSR. a 2ASK. b BPSK. c 16QAM

Table 1 Average convergence times under different signal
parameters

Rs ¼
1� 103

Rs ¼
2� 103

Rs ¼
4� 103

Rs ¼
8� 103

Rs ¼
1:6� 104

fc = 4Rs 4.5 5.1 4.6 4.8 4.7

fc = 6Rs 5.4 4.3 4.7 5.4 4.5

fc = 8Rs 4.8 4.7 4.9 4.3 5.0

fc = 10Rs 5.0 4.4 4.4 4.7 5.0

fc = 12Rs 4.6 4.3 4.8 4.8 4.9
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4.4 Experiment 4: Contrast test
The previous three experiments can prove that the
proposed method is feasible and applicable from the
aspect of algorithm performance. In order to justify it
more comprehensively, we need to compare it with
existing methods. However, before this study, no one
deals IF digital signals with adaptive parameter-tuning
stochastic resonance. Therefore, we use the fixed par-
ameter which is set according to the lower limit of
the optimization range as the contrast and the opti-
mal parameter obtained from the proposed method,
to process the noisy signals respectively and compare
them by YI. Take 2ASK, BPSK, and 16QAM as exam-
ples and keep the signal parameters as same as ex-
periment 1 except from SNR. The optimal parameter
is obtained from the average value after 100 experi-
ments. ΔYI is the increasement of YI.
From Table 2, we can see that compared with the

stochastic resonance under fixed system parameter,
this method can get the optimal system parameter for

noisy signals to achieve the best enhancement. For
example, we can get the optimum parameter of 5545
for 2ASK with − 5 SNR. Compared with the fixed
parameter 1000, ΔYI can reach positive 8.2 dB, which
means the enhancement effect of the weak signal
reaches the highest level under the optimum
parameter.

5 Conclusions
An adaptive parameter-tuning stochastic resonance
method for three types of weak IF digital signals
(MASK, MPSK, and MQAM) is proposed, and a
frame of signal enhancement preprocessing is pre-
sented here. The method is capable of adaptively
adjusting the SR system parameters in accordance
with different noisy signals, enhancing the characteris-
tics and improving the quality of signals by AFSA.
According to the theoretical analysis and simulation
experiments, the algorithm is proven effective. It has
the following advantages: First, the method of SVD
with fixed order is employed to build the evaluation
function of the output signal, effectively measuring
the aperiodic signals from non-cooperative recipient.
Second, the effects of different system parameters on
the signal are investigated, and the optimization pa-
rameters are reduced by half, significantly increasing
the efficiency of calculation. Third, the algorithm does
not require accurate prior knowledge and can adap-
tively deal with the large-parameter digital communi-
cation signals in non-cooperative environment, which
is of practical importance. Fourth, the application of
stochastic resonance is expanded, and some innova-
tive ideas for signal processing are provided.
In the meantime, there are undoubtedly many other

types of signals in digital communication. The subse-
quent step will focus on expanding the applicable signal
types to make it a more complete receiver architecture.

Fig. 12 The change curve of YI with SNR growth

Table 2 Contrast experiment results

Signal SNR
(dB)

Traditional method Proposed method ΔYI
(dB)Fixed parameter YI (dB) Optimal parameter YI (dB)

2ASK − 5 1000 5.44 5545 13.64 + 8.2

− 10 7.26 6976 15.13 + 7.87

− 15 3.37 6037 10.55 + 7.18

BPSK − 5 1000 5.03 8329 13.34 + 8.31

− 10 6.98 8003 14.65 + 7.67

− 15 4.86 8536 10.68 + 5.82

16QAM − 5 1000 5.03 5067 12.53 + 7.5

− 10 6.64 6543 14.36 + 7.72

− 15 3.94 5500 10.44 + 6.5
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