Ahrens et al. EURASIP Journal on Advances in Signal
Processing (2019) 2019:27
https://doi.org/10.1186/s13634-019-0619-3

EURASIP Journal on Advances
in Signal Processing

RESEARCH Open Access

A machine-learning phase classification

Check for
updates

scheme for anomaly detection in signals with

periodic characteristics

Lia Ahrens'”

. Julian Ahrens! and Hans D. Schotten '~

Abstract

reasonable performance.

networks

In this paper, we propose a novel machine-learning method for anomaly detection applicable to data with periodic
characteristics where randomly varying period lengths are explicitly allowed. A multi-dimensional time series analysis
is conducted by training a data-adapted classifier consisting of deep convolutional neural networks performing phase
classification. The entire algorithm including data pre-processing, period detection, segmentation, and even dynamic
adjustment of the neural networks is implemented for fully automatic execution. The proposed method is evaluated
on three example datasets from the areas of cardiology, intrusion detection, and signal processing, presenting
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1 Introduction

Many real-world systems, both natural and anthro-
pogenic, exhibit periodic behaviour. Monitoring such sys-
tems necessarily produces periodic time series. In one
particular instance of such a monitoring application, one
is interested in automatically detecting changes in the
periodically repeating pattern and thus anomalies in the
systems operation. This type of anomaly detection occurs
in a wide range of different fields and applications, be they
medical, e.g. diagnosing diseases of the cardiovascular and
respiratory systems, in industrial contexts, e.g. monitoring
the operation of a transformer or rotating machinery, and
in signal processing and communications. The pursued
aims range from simple monitoring to intrusion detection
and prevention.

Traditionally, anomaly detection is performed in the
form of outlier detection in mathematical statistics.
Numerous methods have been proposed, including but
not limited to distance- and density-based techniques
[1, 2] and subspace- or submanifold-based techniques
[3-5]. Most of these approaches make no explicit use of
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the concept of time and are therefore usually less suited for
the analysis of time series. Methods making explicit use
of the temporal structure include classical models from
statistical time series analysis such as autoregressive—
moving average (ARMA) models [6], Kalman filters [7]
or more general hidden Markov models [8], and rolling-
window distance-based methods such as matrix profiles
[9]. Distance analysing methods are effective for clean data
but not robust against noise, whereas distribution-based
methods from mathematical statistics are still powerful in
the presence of noise, requiring data-specific parameteri-
sation. In the past few years, non-linear methods, such as
different types of recurrent neural networks (RNNs) and
in particular long short-term memory (LSTM) networks
have also come into use [10, 11]. Many of these meth-
ods are difficult to train [12-14] or need large amounts
of data in order to achieve reasonable performance while
avoiding overfitting. On the other hand, in recent years,
convolutional neural networks (CNNs) have gained pop-
ularity in image processing [15, 16] where they are used
mainly for classification tasks. The same principles that
are responsible for the success of CNNs in image process-
ing carry over to other types of signal processing when
the number of dimensions of the convolutional kernels is
changed accordingly. Most of the work using recurrent or
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convolutional networks for time series analysis focuses on
forecasting or detecting certain patterns explicitly known
at training time. On these tasks, convolutional networks
have recently been shown to outperform the previously
state of the art LSTMs [17].

In this paper, we consider data with periodic character-
istics and design a machine-learning algorithm for time
series analysis, in particular anomaly detection, apply-
ing convolutional neural nets in a manner which, to the
best of the authors’ knowledge, has not been proposed
previously. In contrast to existing methods and inspired
by machine-learning methods for image processing, we
employ a convolutional net acting not as a predictor or
estimator but as a classifier whose classes indicate phase,
i.e. the relative location in time. We also integrate gen-
eral procedures for data pre-processing and automated
phase reclustering so that no manual action is required in
between.

Our algorithm is tested on three datasets: a cardiology
dataset (ECG database) [18], an industrial network dataset
for cyber attack research (SCADA dataset) [19], and a syn-
thetic waveform dataset described in detail in Section 4.3.
It turns out that, to a certain extent, our method is robust
against unclean data, and the related neural networks do
not show high sensitivity to the hyperparameters and are
relatively easy to train.

The remainder of the paper is organised as follows.
In Section 2, we specify the types of anomaly detec-
tion considered in this paper, comment on traditional
methods, and introduce the concept of our solution.
In Section 3, our general approach to the considered
anomaly detection problems is described in detail, includ-
ing data pre-processing, mathematical basis of convo-
lutional neural networks, and training algorithm. In
Section 4, our method is fine-tuned for the three afore-
mentioned example datasets and in Section 5 the empir-
ical results are evaluated. In Appendix A, dealing with
the issue of randomly varying period length which shows
up in many real-world applications such as in the ECG
data (Section 4.1) and synthetic waves (Section 4.3), an
auxiliary period detection scheme is designed based on
classical principles of signal processing. In Appendix B,
we perform some comparisons with other methods for
anomaly detection in order to further highlight the advan-
tage of using a convolutional neural network in the
proposed manner.

2 Preliminaries

In preparation for the detailed description of our
machine-learning phase classification scheme given in
Section 3, in this section, we clarify the tasks of anomaly
detection in time series with periodic characteristics, dis-
cuss some common methods, and outline the essential
ideas of our approach.
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2.1 Context of this work

In general, a time series {X;};=0,152,.. (ie. a tempo-
ral sequence of observations Xy, X1, Xy, ..., also termed
signal) is said to exhibit periodic behaviour with
period length s if similarities occur after every s time
units, ie. observations that are s time units apart,
Xio» Xtg+s» Xtg+2s» - - - for any ¢y, are similar.

Periodic signals occur naturally in a wide range of appli-
cations and in a large number of fields such as audio
processing, vibration analysis, biomedical engineering,
climatology, and economic time series analysis. Often-
times, one wishes to monitor the behaviour of such a sys-
tem. In particular, a common task when observing a signal
is that of anomaly detection, i.e. the detection of devia-
tions from a certain normal mode of operation. This has a
variety of applications such as disease diagnosis, network
security, and fraud recognition in bank transactions.

The general approach to anomaly detection is to relate
a mathematical model (parametric or non-parametric) to
the normal behaviour of the underlying system based on
historic observations (training data) and set a confidence
region for data of normal type; applying the data-adapted
model to the ongoing observations (test data), whether the
output lies within or outside the pre-defined confidence
region decides if the corresponding input observation is
considered normal or abnormal, respectively.

As with most naturally occurring signals, many of the
aforementioned signals do not satisfy the exact mathe-
matical definition of periodicity. Instead, they exhibit a
property which is referred to as quasiperiodicity which
basically means that the signal does not exactly repeat
itself, but has deviations both in its values and in the
length of the actual periods. This behaviour is very
common for instance in biological or climatological sys-
tems. As a consequence for the task of anomaly detec-
tion, a sophisticated mathematical model is required to
capture the essence of the diverse and noise-corrupted
signals.

2.2 Tasks of anomaly detection

Mathematically, the approach to anomaly detection pro-
posed in this paper applies to the following two types of
problems:

Type A The historic observations of normal type
(training data) are made up of various signals
[[Xt(‘)] | ¢ € I (index set)}. The signals {Xt(‘)] ,
L € tI, share certain common normal—typet—
characterising features, but differ in their values
and exhibit periodic characteristics with individual
period length s which may also fluctuate over
time. The task of anomaly detection in such a setting
consists in rating each ongoing observation signal
{X¢}+ as normal or abnormal.
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Type B The historic observations of normal type (train-
ing data) are made up of consecutive single data
points Xo, X1,...,Xn—1 which jointly form a time
series {X;};=o,. .N—1. The occurrence of the data
points Xo,...,Xn—1 follows certain normal-type-
characterising patterns, which is reflected in the
corresponding time series {X;};—o, n—1 as seasonal
effects associated with period length s where s may
randomly vary over time. The task of anomaly detec-
tion in such a setting consists in specifying seg-
ments of ongoing observations {X};>nx which are
abnormal.

Problems of type A arise from areas such as disease diag-
nosis, climatology, and vibration analysis, whereas prob-
lems of type B are often addressed in the security sector
and building monitoring systems within the framework
of signal processing. In general, establishing an adequate
mathematical model for the normal behaviour of a sys-
tem requires a proper amount of training data. In our
experiments in Section 4, our approach to the considered
problems is applied to a cardiology dataset for detecting
heart disease (cf. ECG database [18]) as an example of
problems of type A, a relatively small industry dataset in
the context of network security (cf. SCADA dataset [19])
as an example of problems of type B, and a more exten-
sive synthetic waveform dataset injected with a variety of
noise and anomalies (cf. Section 4.3) again as an exam-
ple of problems of type B. The experimental results are
provided in Section 5.

From a mathematical perspective, problems of type A
are more challenging than those of type B. In the setting
of type A, a considerably complex mathematical model
is needed for capturing diverse variations of the normal
behaviour across a variety of training signals, whereas in
the setting of type B, the required mathematical model for
the normal behavior is to be fitted to a single training time
series. Many traditional methods for anomaly detection in
periodic signals may find direct applications to problems
of type B but fail to be applicable to problems of type A.
This will be further discussed in the subsequent section.

2.3  On common methods

Let us comment on the adequacy of some traditional
methods for detecting anomalies in periodic signals in our
context.

2.3.1 Distance-analysing methods

The most straightforward treatment of seasonal data goes
back to cross-correlation analysis, e.g. matrix profiles [9].
The basic idea therein is to apply a rolling window and
define a Euclidean-type metric which measures the dis-
tance of consecutive values within the rolling window
at different locations of the underlying time series from
one another or from a fixed reference sequence (e.g. a
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mean window consisting of seasonal means); data points
exhibiting large distance from the reference value are
considered abnormal.

In general, distance-analysing approaches are not resis-
tant against noise and fail to capture complex structures
in the data. In the Appendix B, we evaluate a simple
distance-based self-similarity approach in “Self-similarity
approach” section. We also provide a distance-based ver-
sion of our phase classification scheme (without artifi-
cial neural networks) for comparison in “Distance-based
phase classification” section.

2.3.2 ARIMA methodology and Kalman filtering

A more sophisticated class of methods arises from
mathematical statistics, e.g. autoregressive integrated
moving average (ARIMA) methodology, methods
based on structural component time series models or
more general Kalman filtering (based on the linear case of
the general state-space model or hidden Markov model),
cf. [20, 21] for detailed description of the corresponding
mathematical models. These approaches can be directly
applied to problems of type B described in Section 2.2 and
are based on relating a stochastic model with parameters
e = {91, .. ,9’} to the training part {X;};=01, n—1 of
the observed time series {X;}; so as to make short-term
(usually one-step ahead) forecasts, i.e. to estimate the
conditional expectation E[ X;4a; | XiXi—1,...;0] by
Xyya: for all ¢ (in particular for ¢ + At > N), which
basically relies on calculating the maximum likelihood
estimate © of the parameters ©, making use of available
observations. Setting a threshold value §, if the actual
observation X;, varies enough from the forecast value X,
in the sense that [X;, — X;,| > &, then the data point X,
observed at time £ is considered abnormal.

Among the aforementioned stochastic models, the
most demonstrative one is to decompose the underly-
ing time series into trend, seasonal, and independent
noise components, where the trend and seasonal com-
ponents are assumed to be deterministic functions of
time which can be fitted by a polynomial and con-
ducting Fourier analysis, respectively. In fact, this is a
special case of the general structural component time
series model with trend and seasonal components being
stochastic processes. Each structural component model
can be straightforwardly represented as a linear state-
space model for which Kalman filtering comes into use to
generate forecasts; it also has an equivalent ARIMA model
representation for which forecasting can be conducted
by following the ARIMA methodology. The ARIMA
approach is based on spectral theory. For seasonal time
series, a parsimonious form termed (multiplicative) sea-
sonal ARIMA (SARIMA) model may be considered. In
general, modelling a time series with an ARIMA repre-
sentation requires data-specific transformation (i.e. data
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pre-processing, e.g. logarithmising, power transforma-
tion, and differencing) and a data-adaptive hyperparam-
eter choice (i.e. the design of the parameter set ® =
{91, . ..,9’}, in particular the number of parameters r)
which relies on inspection of the autocorrelogram and
partial autocorrelogram. Each ARIMA model has an
equivalent linear state-space model representation allow-
ing Kalman filtering to be employed for forecasting.

The ARIMA approach and Kalman filtering are pow-
erful tools in many applications and in particular in
the presence of noise, provided that the hyperparameter
choice is reasonable. However, being the most technically
manageable segment of the general state-space models,
linear models lack complexity and therefore do not always
deliver a feasible approximation for real-world applica-
tions. In addition, the associated data-adapted model
selection including data pre-processing requires specific
expert knowledge and is therefore difficult to imple-
ment for fully automatic execution as in our machine-
learning framework. Furthermore, considering problems
of type A described in Section 2.2, it is unclear how
to choose a general representative time series {X;}, in
which the diverse variations arising from the individ-
ual training signals {{X;L)} el } are incorporated
so that the model fitted to {X;k} applies to all normal
signals.

t

2.3.3 Long short-term memory units

Long short-term memory units (LSTMs) are a special
type of recurrent neural network (RNN). As such, the
LSTM reads the input time series sequentially, transform-
ing at each point in time the input data into a hidden
state which is a non-linear function of the current input
and the hidden state one time step earlier. The advan-
tage of LSTMs over most other types of RNN is that the
dependency of the current on the previous hidden state
is designed in such a way that the LSTM obtains the abil-
ity to keep (parts of) its hidden state over a larger number
of time steps than is possible with other RNN archi-
tectures, i.e. LSTMs are able to “memorise” values from
the past.

Applying LSTMs to prediction tasks for the purpose of
anomaly detection works in a similar manner to the appli-
cation of statistical methods described in the beginning
of Section 2.3.2. The main differences are that LSTMs
allow for non-linear parameterisation and have the poten-
tial to support a much larger number of parameters which
are not estimated directly but instead are randomly ini-
tialised at first and then optimised during training (learnt)
to obtain the desired predictor. The complexity of the
LSTMs allows them to ingest characteristics of rich and
varied training data such as those from large training data
sets of type A as described in Section 2.2 through the pro-
cess of training with a stochastic gradient descent (SGD)
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type algorithm. The training set is processed repeatedly
and the parameters of the LSTM are adjusted to opti-
mise the quality of the forecast across the entire training
dataset.

Technically, the main drawback of LSTMs is the fact that
they are fundamentally still RNNs and hence also suffer
from some of the difficulties typical for training this class
of artificial neural network such as exploding gradients
and a high potential for overfitting.

As a general drawback of using one-step ahead pre-
diction for anomaly detection in time series, if the time
series is very complex and exhibits regions in which
it is difficult to make precise forecasts, such as when
analysing periodic signals containing steep edges or spikes
whose positions or values vary randomly over time, reli-
ably estimating the values in these regions can actually
be impossible for any type of one-step ahead prediction.
It is thus difficult to derive an anomaly detector from
such a predictor as the estimated values can have a large
distance to the actual ones and thus show up as false pos-
itives. In Appendix B section, this is illustrated in more
detail by training and evaluating an LSTM on the ECG
database.

2.4 Concept of this paper

Let us now introduce the concept of our machine-learning
phase classification approach to the problems specified in
Section 2.2.

2.4.1 Motivation of using convolutional neural networks for
phase classification

Convolutional neural networks (CNNs) are a specific
architecture of feed-forward neural networks. When com-
pared to a fully connected neural network, convolu-
tional neural networks need fewer parameters. Hence,
they do not require as large a training dataset and are
less prone to overfitting. CNNs make explicit use of the
temporal or spatial structure of the input signal; the sig-
nal is analysed locally (local receptive fields) and in a
shift invariant manner (translation invariance). Investiga-
tions on the internal representations present throughout
the layers of CNNs show a high tolerance to noise of
various kinds.

Like LSTMs, compared to statistical methods, CNNs
have the advantage that, through the use of multiple chan-
nels and non-linearities, they provide enough flexibility
to capture intricate structures of analysed signals and are
able to find representations for large and varied datasets.
They are however easier to train than RNNS, as they suffer
less from the vanishing and exploding gradient problems.
The capability of a CNN of being able to process high
amounts of complexity has been analysed in the field of
image processing, where it was shown [22] that the neu-
rons inside a convolutional neural network can activate on
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patterns ranging from simple edges to things as complex
as faces.

While CNNs can be used to make forecasts in time
series, they particularly excel at classification of spatial
or temporal data. Since the main problem of the LSTM-
based approach to anomaly detection in time series out-
lined above is the general unfeasability of using one-step
ahead forecasts, we capitalise on the strength of CNNs
in classification tasks and devise a new type of anomaly
detection scheme relying on phase classification instead of
one-step ahead forecasting. More details on the properties
and operation of CNNss are given in Section 3.2.

2.4.2 Phase classification and anomaly detection
Motivated by the advantages of convolutional neural net-
works in classification tasks when dealing with spatial or
temporal data, the machine-learning approach proposed
in this paper is based on the following key ideas:

1. Conducting multi-dimensional time series analysis
by means of multi-channel deep convolutional neural
networks, where each channel in the input layer
corresponds to a single feature (dimension) of the
considered time series

2. Identifying phases or, equivalently, relative locations
(order of occurrence) of subpatterns from time series
with periodic characteristics by means of training
data-adapted classifiers so that subpatterns over
different periods of the underlying time series are
properly separated into a certain amount of classes

To be more specific, considering a seasonal time series
{X:}; with period begins (e.g. time of local peak values)
{tk}x, for a pre-determined initial number of classes no,
sampling from the original signal ny overlapping seg-
ments per period with a sliding window of length T, each

subpattern {Xt(m)} o1 1with
t=0,...,T—

X,,EWI) ‘= Aq+(tgr1—1%) (m mod no) /no+t> k= m/no],
m € N, is assigned to the class labelled m mod #y.

For seasonal data, subpatterns sampled from the time
series occur repeatedly and in fixed order within each sin-
gle period. A successfully trained classifier outputs the
correct class indicating the phase or, equivalently, the rela-
tive location in time (i.e. time distance between subpattern
and period begin) of the input subpattern. Abnormal dat-
apoints in an input pattern are expected to cause false
classification results and therefore to be identified as
anomalies, which yields a direct solution to problems of
type B described in Section 2.2. For problems of type A
described in Section 2.2, setting a minimum expected
classification accuracy (threshold value) and evaluating
the classification accuracy of each test signal over a cer-
tain number of periods (which is denoted by K in the
sequel), those signals that fail to achieve this minimum are
considered abnormal.
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In order to optimise the classification accuracy of nor-
mal data and hence prevent false-positive anomaly detec-
tion results, we carry out a dynamic reclustering which
cancels confusing classes, i.e. subpatterns within a period
of the signal that are similar enough to one another are
merged into one class. This reclustering procedure along
with the optimisation of the stride length At := s/ng
(i.e. time distance between the segments to be classified) is
implemented as a dynamic model selection scheme inte-
grated in our training algorithm. In addition, we design an
auxiliary period detection scheme which is employed in
case of a randomly varying period length s.

The block diagram in Fig. 1 outlines the major steps
of our training algorithm and anomaly detection scheme
where the steps marked by dashed lines are conditioned
by some model-adequacy monitoring criteria which are
described in the subsequent section.

3 Method

In this section, we present the general procedure of our
phase classification scheme in detail and provide some
guidelines for the hyperparameter choice.

3.1 Data pre-processing

Prior to being fed into the classifier neural nets, all input
signals (including training, validation, and test data) are
processed by a period detector, cut into overlapping seg-
ments by a sliding window, and subsequently normalised,
where the segmentation and normalisation depend on the
initial number of classes ng.

3.1.1 Period detection

In general, the seasonal effects of a time series can
be recognised by examining the autocorrelogram (cf.
[20, 2.1.4]) or periodogram (cf. [20, 2.2.1]). In many cases,
the period length s is fixed and known. In case of a fluctu-
ating s (cf. e.g. data from cardiology), an auxiliary period
detector is designed in Appendix A, capturing the time
of local extremum values (considered as period begins
in our setting) {tx}x within individual periods and using
cross-correlations in order to achieve robust period detec-
tion. Note that in our setting for randomly varying period
length s, the stride length At = s/ny while segmenting
the signal varies proportionally to s so that the number
of overlapping segments from each period is fixed and
equal to ng.

3.1.2 Sliding window

The classification accuracy of our approach turns out not
to be highly sensitive to the length of the sliding win-
dow T. In the context of anomaly detection, the value of
T should be kept relatively small (e.g. less than or equal
to three times the average duration of a single abnormal
data sequence) in order to highlight the local effect of
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Fig. 1 Block diagram of training algorithm and anomaly detection
the abnormal data points on the time series. We use a 1= 9
window size of T = |35/no| (approximately three times obm .= T <X;’(m) - w’(”’)> .
the stride length) where 5 refers to the average value of t=0

s (recall that in general s may vary over time). Empiri-
cally, this has proven to be adequate for our purpose. Note
that the length of the sliding window remains constant
even in the case of randomly varying period length s, the
varying stride length merely affects the amount of overlap
between adjacent sliding windows.

3.1.3 Normalisation
In order to remove trend components and avoid skewed
results due to dominating extreme values, the samples
within the sliding window are normalised by adjusting the
local mean and variance, that is, each time considering
a d-dimensional time series {X;}; {Xé};zo’"'d_l with
period begins {tx}x to be processed by a classifier neural
network corresponding to initial number of classes g, for
is

i=0,...,d—1and m € N, the vector ()N(;'(m)> o 71
t=0,..,T—

fed into channel i of the convolutional neural net, where

XM _ iom)

)N(é’(m):: - for t=0,...,T—1
o b(m)
with
L(m) i _
X0 = Xty —m0 o mod o) pno+00 K = L/ o),

1 T-1 )
Mz,(m) — ? ZX;,(m)’
t=0

For the training and validation data, each subpattern
X0 .— {)N(,fm)}tzo,,_,j_l is initially labelled m mod no. If
reclustering occurs during the training so that the training
and validation inputs are relabelled (cf. Section 3.3.3 for
more details), then the test data are labelled in accordance
with the final labelling of the training and validation data.

3.2 Convolutional neural networks

The core of our phase classifier is a convolutional neural
network (CNN). CNNs are a special type of feedforward
neural network, which exploit structures of space or time
by sharing many of the weights among different neu-
rons. We provide a short description of the mathematical
basis of a convolutional neural network. For more detail
on the subject, we refer the reader to the literature, e.g.
[23, Ch.9].

Basically, a feedforward neural network is a function
f: RN @ xRP — R, mapping an input vector x € RN @
to an output vector y = f(x,p) € R”, using a vector of
parameters p € R’ to adapt the mapping. When acting
as a classifier, n is the number of classes and the pre-
dicted class of a given input x is taken to be arg max;_,,y;.
The network can be decomposed into layers, each of
which represents a different function mapping vectors to
vectors, i.e.
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f@,p) =f ( . fO <x,p<0>) . ,p(L—n)

where L is the number of layers and for / = 0,...,L — 1
the functions f®: RN < R — RN are the trans-
formations performed by each of the single layers and the

vectors p(l) e RP « are again parameter vectors used to
adapt the mapping and given as subvectors of p. For ease
of notation, let us denote the input to the function ¥ by
10, starting with x©@ = x and the output of the function
f® by £+, ending with x®™ = y.

In the most simple feedforward neural networks, each
of the transformations f is given by a multiplication with

. ) N+ , )
a matrix a® € RN >NV called the weight matrix fol-

lowed by an addition of a vector b € RN 1 called the
bias vector followed by the application of some non-linear
function g: R — R called the activation function to each
of the components of the resulting vector, i.e.

xHD = fO (D 5Dy
=g a4 p0)

NO_1

) ) )
()
i=0

The entries of the matrix 2 and the vector b are exactly
the components of the parameter vector p¥. This is called
a fully connected layer.

In the case of a one-dimensional convolutional layer, the
affine transformation x¥ — x® . 4® 4 p® is replaced
with a more restrictive kind of affine transformation, the
so-called batched convolution. For this, the vector x) =

j<N+D

(xl(l)) N0 is reindexed to form a two-dimensional array
<<

(xz(lt) ) with MO . T®O = NO and we say that
"t Si<MBp<T®

is fed into the ith channel of the

D)
" (+4)
the sequence |x; ; g

convolutional layer L' Similarly, the parameter vector p

is distributed not into a matrix ¥ and a vector 5%, but

into a matrix of vectors (k«(l) called

l’j’s)i<M(l),j<M<l+1),s<S<l)
. 0} MU+D
the convolution kernels and a vector b'Y € R . The
operation performed by the function f¥) is now given by
x(1+1)

—f0 (xa), pa))
=g (x0 kD +50)

_ 0] 0] [0)
=18 Z Kitrsh_1—s" kir/,s + bj
i<M®

s<s(O j<M(l+1)

t<TU+1)

and we have the constraint that 7¢+tD = 7O — 5O 4 1,
In many convolutional networks, the input vectors
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(xl(lt)) 0 are extended (padded) by additional zero
entriets<prior to being convolved. When padding with
exactly S — 1 zeros, the output vectors are of the same
size as the input vectors. If furthermore the padding
is performed symmetrically, i.e. if (S(l) - 1) /2 zeros are
added to both ends of the signal, this is referred to as
‘SAME’-padding.

We also use a type of layer called max pooling layer
between two convolutional layers. The transfer function

OE0) (+1) 5 T(+1) . .
f(l) c RMUXTY __, RMTUXT of this layer is given by
)
Fo (x(l)) = max  «” o
r<R® Jt-RO+r
tRO4r<T® j<M*D
t<T(l+l)

where R is a positive integer called the pool size
and we have the constraints MU*D M® and
THD = (T(l) /R(l)—|. Note that max pooling layers have
no adjustable parameters p*.

In our networks, we employ both convolutional and reg-
ular fully connected layers. We apply SAME-padding in
all convolutional layers and use the hyperbolic tangent
(tanh) as activation function g throughout the entire net-
work, which is a common choice in feedforward neural
networks.

The exact layout of the convolutional network used for
our task is displayed in Table 1. Here d, T, and #n denote
the dimension of the input time series, the sliding window
size, and the current number of classes, respectively. The
layer and kernel sizes are chosen to best adapt to varying
input time series dimensions, sliding window sizes, and
numbers of classes. In the convolutional layers, the num-
ber of channels is increased first by a factor of 6, then by
a factor of 3. Such increases are common in convolutional
neural networks and allow the layers to capture different
aspects of the incoming signal such as edges and more
complex patterns.

Table 1 Layers of classifier neural network

Layer Type Sizes
0 Convolutional MO =d 7O =T,
SO =(T/6]+1)-2+1
1 Max pooling MO =MO .6 7D = TO),
RO = 3ifapplicable, else R = 1
2 Convolutional M@ =MD, 7@ = [TD/pM7,

SO = (T/12] +1)- 241
MO = pm@D .3 76 = 7@

3 Fully connected NG = pmB) . TG
4 Fully connected N® = |V/NG . NO) |
5 Output N® =n
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The method, by which the parameter vector p is
adjusted and the network adapts, is the minimisation of a
function /s: R” — R applied to the output of the neural
network, called the loss function. Since we are classifying
phases, to each training input x (and hence to each output
), there corresponds alabel z € {0, ...,n—1}. In our case,
we use the cross entropy loss function, which is given by

expyz
h(y,z) = —w;log <_>
Yo expy;

where w, denotes a weight by which the losses of each
class are scaled. The weights are statically determined and
are in our case chosen to be proportional to the inverse of
the number of training examples for each class in order to
counteract bias caused by unbalanced classes.

3.3 Training algorithm

The neural networks in our algorithm are trained by the
ADAM training algorithm which is a refined version of
stochastic gradient descent (SGD). In SGD, the average
loss for a set Abych containing pairs of training inputs x
and corresponding labels z is minimised by changing the
randomly initialised parameters p of the neural network
according to the update rule

Y. Veh(fxp)2)

(,2) € Xbatch

b<~—p—
#Xbatch

where y is a tuning hyperparameter called the learning
rate and V,, is the gradient operator with respect to the
vector of parameters p. This minimises the average of
the loss values 4 (f (x, p), z). The gradient V,h(f (x, p), 2) is
computed in an efficient manner via reverse-mode auto
differentiation which is basically an application of the
chain rule. This is also known as the backpropagation
algorithm and more details on the process can be found
in the literature, e.g. [23, Ch. 4]. The set Apqch is called a
mini-batch and is taken to be a subset of the set of all avail-
able training inputs X. The update steps are performed
with changing disjoint mini-batches until the entire train-
ing dataset X is exhausted. Each pass through the entire
set of available training data is referred to as an epoch. To
enhance the training process (cf. [24]), for rich datasets,
we change the size of the mini-batches during training,
later epochs use larger mini-batch sizes. The adaptive
adjustments performed by the ADAM algorithm detailed
in [25] provide further enhancements to this process.

In contrast to usual classifiers, our algorithm encapsu-
lates the gradient descent algorithm in a decision process
monitoring the necessity of dynamic reclustering which
aims to optimise the classification accuracy. The complete
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algorithm is given in Algorithm 1 (cf. also Fig. 1), the single
steps are described in more detail in the remainder of this
section.

Algorithm 1 Training algorithm
Hpest < 0
for ng € {nj,ny —2,...,4} do
if g < Mpest then
return stored net
end if
n < ngy
while true do
initialise net and labels
repeat
perform training iteration
until no improvement in validation loss
within 4 consecutive epochs
> training stop crit.
if minimum class accuracy > 1 — « then
> reclustering stop crit.

store net
Npest < N
break
end if
ifn —1 < 30rn—1 < npeg then
break
end if
n<n—1
recluster according to overall confusion matrix
update weights of loss function
end while
end for
if npest 7~ O then
return stored net
else
change « and rerun
end if

Each time having initialised the neural network for
separating the currently considered classes, the gradi-
ent descent optimiser is run until a training-progress-
monitoring stop criterion is fulfilled (cf. training stop cri-
terion in Section 3.3.2 for more details). The classification
ability of the underlying neural net is evaluated by means
of the so-called confusion matrices (cf. Section 3.3.1)
throughout the entire training. If at the end of training all
classes are evaluated with sufficient accuracy (cf. reclus-
tering stop criterion in Section 3.3.2), the trained neural
net is stored; otherwise, a relabelling procedure accord-
ing to the overall confusion matrix is conducted where
the class with least average evaluation accuracy is merged
into the class to which the corresponding inputs are most
commonly misclassified during training and the neural
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net is re-initialised with respect to the updated classes
(cf. Section 3.3.3). Among all stored neural nets, the ulti-
mate classifier is chosen as the one having the maximum
number of output classes (cf. Section 3.3.4).

In the subsequent subsections, the aforementioned
reclustering process and stop criteria are described in
detail.

3.3.1 Confusion matrix

In order to track the progression of classification accu-
racy during training, we record the confusion matrix
evaluated on the training data after each epoch. For a
current number of classes # and existing classes labelled
as 0,...,n — 1, the confusion matrix evaluated after the
kth epoch is an (n x n)-dimensional matrix denoted by

(n) if,(n)
v = (v )
k ko )ij=01,.n—1

to the number of training inputs labelled as i and pre-
dicted by the neural net during the kth training epoch as
classj, k > 0.

During the experimentation, we observe that classes
which are easily distinguishable can already be separated
after very few training iterations, whereas classes sharing
more similarity perform significantly worse in the begin-
ning and also show a slower increase of evaluation accu-
racy during training. Taking into account that the evalu-
ated value of the loss function commonly follows a convex
decreasing trend throughout the entire training, the above
observation motivates us to assess the separation ability
of the underlying neural net during training by weight-
ing the confusion matrix with the respective contribution
to the training progress and to introduce the overall con-

fusion matrix denoted by V" = (Vij'(”)> o and
ij=0,...,n—

defined as

, where the entry V,il ) refers

EM_1

i G (0 )

V= 3 VI (- 1), (1)
k=1

where 1, E™, and H,E") refer to the current number of
classes, the number of training epochs that are performed
until the training stop criterion (cf. Section 3.3.2) is satis-
fied, and the average training loss during the kth epoch,
respectively.

In our setting, the confusion matrices serve as the key
objects of the decision criteria for our dynamic reclus-
tering (cf. Sections 3.3.2 and 3.3.3). The definition of the
overall confusion matrix in terms of (1) by taking the
weighted average throughout the entire training and drop-
ping the values from the initial epoch (k = 0) aims to
mitigate the random effect of the initialisation of the neu-
ral network. Empirically, this yields robust reclustering
results during different test runs for fixed no.
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3.3.2 Stop criteria
The criteria for stopping the loops are related to param-
eterised effectiveness and accuracy requirements in the
following manner:

Training stop criterion We monitor the training
progress by evaluating the average loss of vali-
dation data over each training epoch. For each
(re-)initialised neural network, training is stopped
if no improvement in the average validation loss
during the latest four epochs can be observed.

Reclustering stop criterion Allowing a maximum per-
class margin of error a € [0, 1), the reclustering pro-
cedure is stopped if

ii,(n)

L

— 7 Ym0 Vi
where 1, E®, and Véﬁz)_ | refer to the current num-
ber of classes, number of epochs for training the
related network (i.e. until the training stop criterion
is fulfilled), and the respective confusion matrix eval-
uated at the end of training (recall the definition in
Section 3.3.1), respectively.

By definition of the confusion matrix in Section 3.3.1,
for k = E™ — 1and each i = 0,...,n — 1, the
diagonal element V,il'(”) divided by the respective row

sum ;’2_01 14 ‘" of the confusion matrix is the share of
correctly classified training inputs in all training inputs
labelled as i evaluated during the last epoch while train-
ing the classifier neural network with #n existing classes.
Therefore, for a pre-defined margin of error o€ [0, 1),
the above reclustering stop criterion requires that at the
end of training the corresponding classifier neural net-
work should correctly classify the training inputs of each
existing class at least at the rate of 1 — «.

3.3.3 Reclustering

As long as the reclustering stop criterion is not fulfilled,
the subsequent reclustering procedure is considered nec-
essary.

For a current number of classes # and existing classes
labelled as 0,...,n — 1, let i° and j° denote the worst
evaluated class, and the corresponding most misassigned
class during the entire training of the respective neural net
(i.e. until the training stop criterion is fulfilled) which are
defined as

T
i°:= argmin —yo
i=0,...,n—1 ijo \Vas

and
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j° = arg max V' "

j=0,...n—1
Vall

respectively (recall the definition of V™ in (1)). The class
labelled as i° is merged into class j°. Furthermore, since
we always assume the labels to be consecutive, the train-
ing and validation inputs with the largest label #» — 1 are
assigned the label of the dropped class i°.

Each time after relabelling, the weights corresponding
to the remaining classes in the cost function are adjusted
to be again inversely proportional to the current shares of
the classes in order to warrant a well-balanced training of
the updated classifier and the neural net is re-initialised.

3.3.4 Final number of classes

In the context of anomaly detection, we are dealing with
the trade-off between optimising the classification accu-
racy of normal data preventing false positives (i.e. to
cancel confusing classes) and maintaining the ability of
misclassifying abnormal data for the sake of anomaly
detection (i.e. to still retain sufficiently many classes char-
acterising different phases within a period). Keeping this
in mind, the final number of classes determining the ulti-
mate classifier neural network is selected in the following
manner:

Given a maximum allowed number of classes nj with
nj; an even number #j > 3, the starting initial number of
classes is set to 1o := nj;. Each time for an updated initial
number of classes 7, the relabelling procedure described
in Section 3.3.3 is run at most (ny — 3)-times (i.e. with
at least 3 remaining classes). If the reclustering stop crite-
rion is fulfilled after relabelling An"-times, the candidate
final number of classes related to ng is set to n' =
nop — An"™ and the corresponding neural net is stored.
If max,; e ug n" > ny — 2, the updating processes of
no is finished; otherwise ng is reduced by 2. The over-
all final number of classes refers to the maximum of #™
taken along the entire path of ny, i.e. maX, s 4 n" and
the final classifier neural network is the one stored when
this overall maximum was achieved. If this maximum was
achieved more than once, we choose the neural network
corresponding to the highest ng such that #" achieved
this maximum. This is because a high value of ny corre-
sponds to a narrow sliding window (cf. Section 3.1.2) and
hence maximises the sensitivity of the anomaly detector.

If in the end no suitable network has been stored, we
increase « and rerun the algorithm.

Finally, it is worth mentioning that once all the
hyperparameters are determined, the whole training
algorithm introduced above, including data pre-
processing and dynamic reclustering, is implemented
in a machine-learning manner so that the classification
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and anomaly detection process can be accomplished fully
automatically.

3.4 Anomaly detection

Once training is finished and in particular when the ulti-
mate classifier neural network determined by the model
selection process turns out to use initial number of
classes np and final number of classes n™, each test sig-
nal is pre-processed following the procedure described in
Section 3.1 with respect to ng, labelled with respect to
n" in accordance with the training and validation data
(recall the relabelling step along with the dynamic reclus-
tering described in Section 3.3.3), and then processed by
the trained ultimate classifier neural network.

For problems of type A described in Section 2.2, a min-
imum expected per-signal average classification accuracy
3 (threshold value) should be set depending on individ-
ual needs. For instance, § could be determined on the
basis of classification accuracy on validation data. For each
test signal {X;}; recorded over K periods of time with
period begins {tx}x=o, x—1, if the normalised segments
X, m =0,...,Kng— 1 (recall Section 3.1.3), processed
by the ultimate classifier neural net are evaluated with
an average classification accuracy rate less than §, i.e. if
#{m | X(m)correctly classified}/Kng < §, then the signal
{X¢}¢ is considered abnormal.

Considering problems of type B described in
Section 2.2, if a normalised segment {Xt(m)}mo,...,T—l
(recall Section 3.1.3) of the test signal {X;};>n is mis-
classified by the ultimate classifier neural net, then the
| With

original segment {Xt(m) }t=0 e

Xt(m) = A+ (Trg1— %) (m mod no) /no+t> k= m/no]

is considered abnormal.

4 Experiments

In this section, we apply our machine-learning algo-
rithm proposed in Section 3 to three example datasets
choosing from the domains of cardiology, industry, and
signal processing, aiming to show the feasibility of the
method in a range of applications. The cardiology dataset
is the most complex and challenging dataset represent-
ing problems of type A described in Section 2.2, as the
recordings taken from healthy control patients exhibit a
high level of diversity which needs to be captured by
the classifier. This diversity mandates the use of a more
complex representation which is one of the strengths
of deep neural networks over other parametric models.
The other two datasets demonstrate the applicability of
the method in different contexts, including the detection
of anomalies occurring only at certain instances in time
and thus representing problems of type B described in
Section 2.2.
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4.1 Cardiology dataset

The PTB Diagnostic ECG Database is a database cre-
ated by the Physikalisch-Technische Bundesanstalt (PTB)
consisting of 549 electrocardiogram (ECG) recordings
gathered from 290 subjects aged 18 to 87. The ECGs
were recorded using a non-commercial PTB prototype
recorder, the specifications of which can be found on the
database website?. The dataset is part of PhysioNet [26]
and is further described in [18].

4.1.1 Inputdata

We use 3/5 and 1/5 of the measurements from healthy
patients for training and validation, respectively. The
trained classifier is tested on the remainder of the data
from healthy patients and data from all ill patients.

Due to the large data volume, we manually resample
the input data to a sample rate of 50 samples per sec-
ond instead of the original 1000 before feeding it into the
neural network (i.e. the actual time unit applied in our
training amounts to 1 time unit = 20ms). This opera-
tion is not strictly necessary, but it speeds up the training
process. Also, we only use the first 60 periods of each
recording during training and for testing. We train our
classifier with resampled time series from healthy patients
and use the data coming from all 12 conventional leads
and 3 Frank leads (cf. [27]) for the ECG diagnostic, result-
ing in a convolutional neural net with 15 channels on the
input layer.

4.1.2 Period detection

The first challenge when analysing ECG data consists
in detecting the randomly varying periods of individ-
ual patients, for which we design a period detector. This
detector is described in greater detail in Appendix A. The
detector has a number of parameters which need to be
adjusted to the dataset, the actual values used here are
given in Table 2. For this dataset, the entire time series
for feature ‘I’ is used as both the reference and input
time series to the period detector. However, in order to
ensure the requirement that no trend component exists
in the signal, the first difference of the signal is used
instead of the raw signal. In order to adjust for the off-
sets thus introduced at peak detection, between steps 4
and 5 described in Appendix A, the reference window

Table 2 Parameters for period detector on ECG database

Parameter Value
Prefilter window half-length n 10
Minimum base period length smin 500
Maximum base period length smax 2000
Maximum period length deviation factor o 1/2
Reference window half-length factor A 1/3
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is adjusted to be precisely centred on the correspond-
ing peak in the original (smoothed but not differentiated)
signal, i.e. its midpoint T}, is changed to

argmax  X;.
Tio—10=t=<Tj,+10

The maximum allowed adjustment of 10 has empirically
been found to yield satisfactory results.

The median of all observed period lengths approxi-
mately amounts to s = 700 ms = 35 time units.

4.1.3 Hyperparameters

During the training, the maximum allowed number of
classes and per-class margin of error are set to n := 10
and & := 27, respectively.

As per description in Table 1, each of the classifier neu-
ral networks encountered during the run consists of two
convolutional layers with M© = 15 and M = 90
channels, respectively, with max pooling of size RV = 3
applied in between, followed by two fully connected lay-
ers, and the output layer. During the classifier selection
process, the length T© of the input sequence, the kernel
sizes S, S@ of the convolutional layers, and the size N
of the first fully connected layer vary proportionally to the
sliding window length T = |35/no] = [105/n9] where ng
runs over the values in {10(= #), 8, 6,4} if not stopped
earlier. The size N of the second fully connected layer is
determined by the geometric mean of the sizes N®, N
of its adjacent layers and the size N® of the output layer
is equal to the current number of classes # which runs
over the values in {ng,ny — 1,...} during the dynamic
reclustering.

The ADAM optimiser with learning rate y = 0.1 is
employed for training with SGD. We start at a mini-batch
size of 800 and increase it after every 2 or 3 epochs up to
4800.

4.2 SCADA dataset

In [19], Antoine Lemay and José M. Fernandez describe
a simulation of an industrial control system, specif-
ically designed for providing supervisory control and
data acquisition (SCADA) network datasets for intrusion
detection research. The generated datasets are openly
available on GitHub? and contain periods of regular oper-
ation, manual interactions with the system, and anomalies
caused by network intrusions. Since the operation of the
simulated system is cyclic, the resulting data is mostly
periodic.

4.2.1 Inputdata

Among the available datasets with common characteris-
tics, we choose the first 4/5 and the last 1/5 of the dataset
named ‘characterization_modbus_6RTU_with_operate’
with a duration of 5.5 min in total for training and
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validation, respectively, where neither the injected mali-
cious activities nor the manual operations included
are labelled, both resulting in a certain proportion of
noise in the corresponding time series. The trained
classifier is tested on the only three correctly labelled
datasets ‘moving_two_files_modbus_6RTU’ (‘Test Data
1), ‘CnC_uploading_exe_modbus_6RTU_with_operate’
(“Test Data 2’), and ‘send_a_fake_command_modbus_
6RTU_with_operate’ (‘Test Data 3’), including no manual
operations, a small portion of manual operations, and a
large amount of noise, e.g. manual operations (causing
non-intrusion anomalies), respectively. In each dataset,
four features are considered: number and total size of sent
packets, and number of active IP address and port pairs.
At 1-sintervals, we record the increase in each feature and
consider the corresponding 4-dimensional time series.

The given 10-s polling interval yields periodic charac-
teristics of the considered time series with a fixed period
length of s = 10s.

4.2.2 Hyperparameters
We set « := 273 and nj := 10 for training the classifier
neural networks.

According to Table 1, all convolutional neural networks
considered during the entire run include M©® = 4 and
M® = 24 channels on the first and second convolu-
tional layers, respectively, and two fully connected layers
placed between the last convolutional layer and the out-
put layer. Considering the short input sequence length
TO® = |3s/ng] = [30/mp] with ngy taking values in
{10(= n}),8,...}, we do not apply any max pooling,
ie. RY = 1. During the classifier selection process, the
sizes S, S@, and N® of the convolution kernels and the
first fully connected layer, respectively, vary proportion-
ally to the input length T(®. The size of the output layer
N® is equal to the current number of classes # which
runs over the values in {rng, n9p — 1, . . .} during the dynamic
reclustering and the size of its preceding fully connected
layer N is the geometric mean of N and N©®.

The ADAM optimiser with learning rate y = 0.01 and a
mini-batch size of 4 are used for training with SGD.

4.3 Wave dataset

The waves dataset is a synthetic dataset loosely mod-
elled on a system transmitting a periodic signal. From the
theory of Fourier analysis, every differentiable periodic
signal {x;}; with frequency f can be decomposed into its
frequency components

o0
% =ao+ ) aycos2r (fkt + ¢p)),
P

cf. [28, Theorem 2.1], which motivates the principal rule
of our wave generator. In our consideration, the generated
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waves have no DC offset, i.e. ap := 0, and components
only up to frequency 4f, i.e. a; := O for all k > 5. The
signals are supposed to be transmitted over a noisy chan-
nel which we assume to add filtered Brownian and white
noise. The wave generator also has some inherent ran-
domness in the form of clock jitter, amplitude noise, and
phase noise. There are also a number of fault conditions
which form the basis of the anomalies to be detected.

4.3.1 Wave generator
The waves in this dataset are of the form

X, = 24: R cos (27r (fth + RPM )) + RMOe 4 N,

k=1
t=0,1,2,...,with T; given by
t—1 )
Ty =) Ry™ fort=0,1,2,...
u=0

and f := 278, Here, {N;}; is a Gaussian white noise pro-
cess, i.e. No,N1,No,... are independent and identically
distributed (i.i.d.) random variables with N; ~ N (O, 02)
forallt=0,1,2,...,and {R?mpk}t, {thk}t, {R?Oise}t, and
{Rgime}t are independent (discrete) Ornstein-Uhlenbeck
processes with individual sets of parameters. In general,
an Ornstein-Uhlenbeck process {R;}; obeys the stochastic
differential equation

dR; = 0(u — Ry) dt + o dW, (2)

where u € R, 0 > 0,60¢€[0,1], and {W;}; is a standard
Brownian motion, cf. e.g. [29, Ex.6.6]. In discrete time,
a process {R;};=0,1,2,.. following (2) can be approximated
by generating i.i.d. random variables No,Ni, Ny, . .. with
Ny ~ N (1, (0/6)?) forall £ = 0,1,2,... and exponen-
tially smoothing them:

Riy1:=60N;, +(1—0)R; fort=0,1,2,.... (3)
Indeed, letting

N
= R e =0,1,2,..,
a/b

the process {W;}1=0,1,2,... with

t—1
Wy =Y N
u=0

is a random walk with Gaussian increments and thus
corresponds to a discretely sampled standard Brownian
motion [30, (1.9)]. Therefore, (3) can be written as

O . x
Riy1 — Ry =0 M+§Nt —0R;

=0(uw—R) +0 (W1 — Wp),
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which yields a discrete counterpart of (2). The Ornstein-
Uhlenbeck process can be thought of as a process per-
forming a random walk where the increments are biased
towards the mean p. As such, it behaves locally like a
Brownian motion, causing the power of the higher fre-
quency parts of its spectrum to average 1/f> (Brownian
noise). The process can be used to model parameters
of systems that tend to shift over time, while generally
remaining close to a certain average value.

For each single wave, a set of parameters controlling
the governing processes is randomly generated using the
parameters in Table 3. The means of the processes for
amplitude and phase variation are sampled according to
the following law:

log, ™K ~ 17(~1,1) and P ~ 1(0,1)

for k = 1,2,3,4, where U(a, b) denotes the uniform dis-
tribution on the interval [a,b). They remain constant
throughout the wave and determine the overall shape of
the wave.

4.3.2 Generated anomalies

Based on the parameters and processes employed by the
wave generator, we inject the following four types of
anomalies or noise:

Amplitude anomalies The amplitude process {Rimpk} :

of one of the frequency components (i.e. for a single
k € {1,2,3,4}) is increased by a, where a is ran-
domly sampled for each anomaly according to the
law log, a ~ U(1,2).

Phase anomalies The phase process {thk} , of one of
the frequency components is changed. The amount
of change is randomly sampled for each anomaly
from the distribution U(1/4, 3/4) resulting in a ran-
dom phase change of at least 90° and at most 270°.

Pulse anomalies A pulse of random amplitude is added
onto the wave. For each anomaly, the amplitude p of
the pulse is randomly sampled according to the law
logyp ~ U(2,4) and the pulse width is a random
integer drawn from the interval [ 2°, 2°).

Table 3 Parameters for processes governing generated waves
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White noise The white noise process {IN;}; is amplified
by a factor o which is randomly sampled for each
anomaly according to the law log, o ~ U(2, 6).

For each wave, a segment of 21® samples is generated.
Then 16 segments, each consisting of 212 samples are gen-
erated, the last 211 samples of which the anomaly or noise
is injected into. For the evaluation, we use 24 generated
waves, resulting in a number of 290 anomalies and 94
waves with increased white noise in the test dataset.

4.3.3 Input data and period detection

The generated waves are considered in 24 groups, where
each group consists of a normal wave recorded over 28 =
256 periods and further recordings, each injected with a
single type of anomaly with a normal start-up time of at
least 211 = 2048 time units (i.e. the first entrance time of
anomalies following the respective normal wave is to the
right of the time stamp 2'! = 2048). In each group, we
take the first 7/8 and the remainder of the normal wave for
training and validation, respectively, and subsequently test
the trained classifier on the respective anomaly-injected
test recordings.

Since the simulated waves contain interference in the
time component which results in random period lengths
s, we again make use of the period detector described in
Appendix A using the parameters specified in Table 4.
Note that in contrast to the treatment of ECG data, in each
data group, the reference window is selected among the
subpatterns extracted from the training data.

By construction, the average period length equals 5 =
28 = 256 time units.

4.3.4 Hyperparameters

Throughout the entire training, we set the maximum
number of classes and allowed per-class margin of error
to nj := 10 and o := 27, respectively.

As presented in Table 1, for each of the 24 waves, the
corresponding classifier neural nets are all endowed with
M@ = 1 channel and MY = 6 channels on the first
and second convolutional layers, respectively, where max
pooling of size RV = 3 is applied between the con-
volutional layers, and two fully connected layers are set
between the last convolutional layer and the output layer.
During the classifier selection process, the length 7@ of
the input sequence, the sizes S 0§ of the convolution

(k=1,23,4) Table 4 Parameters for period detector on wave dataset

Process n o 0 Ro Parameter Value
{Rime}, 1 28 P 0 Prefilter window half-length n 8
{Rfmpk}r APk 28 28 wAMPK Minimum base period length smin 240
{thk}[ uPhk 210 2-8 uPhk Maximum base period length smax 272
{eroise}r 0 276 28 0 Maximum period length deviation factor & 1/4
{Ne}e 0 24 N/A N/A Reference window half-length factor A 1/3
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kernels, and the size N® of the first fully connected layer
vary proportionally to the sliding window length T =
|3s/ng] = |768/ny] where ny runs over the values in
{10(= uf)), 8, 6,4} if not stopped earlier. The size N® of
the second fully connected layer is the geometric mean of
the sizes N® and N® of its adjacent layers and the size
N® of the output layer is equal to the current number
of classes # which runs over the values in {ng,ng — 1, ...}
during the dynamic reclustering.

The ADAM optimiser with learning rate y = 0.01 is
employed for training with SGD. The mini-batch sizes are
dynamically increased after every 2 or 3 epochs from 40
to 360.

5 Experimental results

In this section, we present the empirical results of the
treatment of the example datasets given in Section 4 fol-
lowing our general phase classification scheme described
in Section 3. Here, we provide both the results of selecting
and training the optimal classifier neural networks and the
results of anomaly detection obtained by evaluating the
trained classifier neural networks on the test data (recall
Section 3.4).

5.1 Cardiology dataset

The ultimate classifier resulting from the dynamic model
selection process turns out to be a classifier neural net-
work corresponding to initial number of classes nyp = 6
and final number of classes W = 4, cf. Table 5 for the
layout of the final CNN. The label history recorded along
with the dynamic reclustering is shown in Table 6. The
average validation loss recorded during the training of
the respective neural nets is presented in Fig. 2. A train-
ing accuracy of 99% and a validation accuracy of 96% are
achieved.

Figures 3 and 4 illustrate the result of testing the
trained classifier on three patients from the category
‘healthy control’ and three ill patients: the measurements
on feature i’ from the test patients are presented in a

Table 5 Layers of final classifier neural network for ECG dataset

Layer type Sizes

0 Convolutional MO = 1570 =17,
O —7

1 Max pooling MDD =090, 7D =17,
RO =3

2 Convolutional M@ =90, 7@ =g,
s@ —5
M® =270,70) =6

3 Fully connected NG = 1620

4 Fully connected N® =80

5 Output NGO =4
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Table 6 Label history

Epochs Merge New Labels

0-9 N/A [0,1,2,3,4,5]
9— 10 3to2 [0,1,2,2,4,3]
24 — 25 4t02 [0,1,2,2,2,3]
25-43 N/A [0,1,2,2,2,3]

temporal resolution of 20 ms and the bars in the upper and
lower halves of the figures refer to the predicted classes
and the true labels of the segments from the considered
test signals, respectively*.

Figure 5 presents a statistical evaluation of the per-
patient test results on patients from the seven most
recorded categories in the considered database: ‘dys-
rhythmia; ‘valvular heart disease; ‘cardiomyopathy/heart
failure, ‘bundle branch block; ‘hypertrophy, ‘myocardial
infarction, and ‘healthy control’ The lines in different
colours represent the empirical distribution functions of
the per-patient classification accuracy from the aforemen-
tioned categories. Observe that the blue line related to
healthy patients is located in the bottom right corner of
the diagram, to the left of which all other lines corre-
sponding to ill patients are centred (cf. the median for
each category), which enables us to distinguish ill patients
from healthy patients in some cases. For instance, accord-
ing to the figure, if we take the average validation accuracy
of 96% as the threshold for the per-patient classification
accuracy, all test patients from the categories ‘dysrhyth-
mia’ and ‘valvular heart disease, 90% and nearly 85% of
the patients from the categories ‘cardiomyopathy/heart
failure’ and ‘myocardial infarction, respectively, and over
70% of the patients from the categories ‘bundle branch
block’ and ‘hypertrophy’ will be considered as anoma-
lies, whereas up to three false-positive results (25% of)
all tested patients from the category ‘healthy control’ will
be assessed as normal. Since the sample sizes provided

0.5 1

0.4

0.3 A

0.2

0.14

0.0 1

0 10 20 30 40

Fig. 2 Validation loss over 44 epochs for training the classifier neural
nets with ng = 6,n™ =4
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Fig. 3 Classifier applied to patients from category ‘healthy control’

for the individual categories vary a lot (e.g. there are 148
subjects for myocardial infarction whereas the entire cate-
gory healthy control consists of only 52 subjects including
training, validation and test data applied in our context),
we are not in the position to make a general statement on
the choice of an ideal threshold value. Table 7 provides
a statistical evaluation of the per-disease average classi-
fication accuracy. It turns out that the category healthy
control presents by far the best test result compared to all
other categories related to heart disease (anomaly).

Note that our anomaly detection scheme does not
incorporate any specific cardiological knowledge. It gives
an indication whether a patient may be ill or not, it
detects deviations from the known healthy data and does
not classify the diseases separately. It also only gives a
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Fig. 4 Classifier applied to ill patients. a Classifier applied to a
dysrthythmia patient, b Classifier applied to a valvular-heart-disease
patient, ¢ Classifier applied to a myocardial-infarction patient

statistical indication, which is a result somewhat similar
to the one reported in [31] where it was observed that the
ECGs of ill patients showed deviations in certain affine
dependencies usually present between the 12-lead and
3-lead ECGs of healthy patients.

5.2 SCADA dataset

The final classifier determined by means of the dynamic
model selection scheme uses ng = 10 and #® = 4, cf.
Table 8 for the layout of the final CNN. The respective
label history recorded during the dynamic reclustering
and the evolution of the average validation loss are pre-
sented in Table 9 and Fig. 6, respectively.
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Fig. 5 Distribution of per-patient classification accuracy evaluated on

test patients from different categories

In Fig. 7, the number of active port pairs extracted from
‘test data 1’ is plotted against time (in seconds) and the
bars in the upper and lower halves represent the classes
predicted by our trained neural net and the true labels of
the test segments, respectively; segments which result in
prediction errors are considered anomalies.

The final results of our anomaly detection algorithm on
the entire test data are summarised in Table 10. In the
first two (cleaner) test datasets with no or only a small
amount of manual operations (noise), all cyber attacks in
the test data are detected along with a single false-positive
detection (corresponding to 1% false detection rate in
‘test data 1’), whereas the classifier tested on the last test
dataset including a large amount of noise performs not
as good, which is not surprising taking into account that
only malicious activities but no manual operations or any
other types of interference are labelled as anomalies and
our time series analysis does not include the respective
context consideration.

Indeed, the SCADA datasets which are applicable in
our setting are quite small. Due to the non-compatibility
between datasets with small and large amounts of noise
(i.e. non-intrusion anomalies appearing in the form of
pulses), it is difficult to choose one suitable dataset for

Table 7 Results of per-disease classification accuracy

Disease Classification accuracy (%)
Valvular heart disease 56
Dysrhythmia 60
Cardiomyopathy/heart failure 64
Myocardial infarction 73
Bundle branch block 76
Hypertrophy 86

Healthy control 97
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Table 8 Layers of final classifier neural network for SCADA dataset

Layer type Sizes

0 Convolutional MO =4, 7O =3
SO =3

1 Max pooling MD =24 T = 3,
RO =1

2 Convolutional M@ =24 7@ =3,
S@ =3
M =72,T® =3

3 Fully connected NG =216

4 Fully connected N® =29

5 Output NO =4

training and to test the intrusion detector on datasets with
incompatible characteristics, e.g. it would be unfeasible to
train an anomaly detector on one of the cleaner datasets
and then test it against a noisy dataset, or vice versa. For a
more extensive treatment of anomaly detection of type B
described in Section 2.2 using a richer dataset and the
corresponding results, cf. Section 4.3 and Section 5.3.

5.3 Wave dataset
Overall, an average classification accuracy of 99% is achieved
on both training and validation data.

Figures 8, 9, 10, and 11 present the detection results
of our classifiers trained by individual example waves
and tested on segments injected with different types of
anomalies and white noise, respectively. Again, in each
diagram the bars in the upper and lower halves refer to
the predicted classes and true labels of the data from the
test segments fed into the trained classifier, respectively.
Notice that in Fig. 11, slightly increased white noise does
not lead to any classification errors, which suggests some
robustness property of our classifier against noise.

The final results of our anomaly detection algorithm
tested on the 24 groups of synthetic waves are shown
in Table 11. The amount of anomalies and white noise
are obtained by counting the number of test waves
injected with the respective type of interference, whereas

Table 9 Label history

Epochs Merge New Labels

0-34 N/A [0,1,2,3,4,5,6,7,8,9]
34 — 35 1to4 [0,4,2,3,4,5,6,7,8,1]
68 — 69 3to4 [0,4,2,4,4,5,6,7,3,1]
92 — 93 7t04 [0,4,2,4,4,5,6,4,3,1]
1M0— 111 5to4 [0,4,2,4,4,4,5,4,3,1]
128 — 129 2t04 [0,4,4,4,4,4,2,4,3,1]
143 — 144 2t04 [0,2,2,2,2,2,2,2,3,1]
144 - 160 N/A [0,2,2,2,2,2,2,2,3,1]
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Fig. 6 VValidation loss over 161 epochs for training the classifier neural
nets with ng = 10,n™ =4

the denominator for evaluating false positives equals the
number of available prediction windows (test segments)
in the clean test data. Overall, our algorithm yields high
detection rates of all types of injected anomalies (99% on
average); the small rate of false positives (< 1%) confirms
the model adequacy of our phase classification scheme;
the low error rate in the presence of increased white noise
shows the robustness of our classifier neural networks
against noise to a certain extent.

6 Conclusion

In this paper, we proposed a novel approach to detect-
ing anomalies in time series exhibiting periodic char-
acteristics, where we applied deep convolutional neural
networks for phase classification and automated phase
similarity tagging. We evaluated our approach on three
example datasets corresponding to the domains of cardi-
ology, industry, and signal processing, confirming that our
method is feasible in a number of contexts.
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Fig. 7 Classifier applied to test data
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Table 10 Results of intrusion detection

Dataset Detection rate False positives
Test data 1 4/4 0

Test data 2 3/3 1%

Test data 3 0/1 8%

Appendix A: Period detection scheme

In this section, we provide the details for the period
detection scheme used for the ECG and synthetic wave
datasets. This period detection scheme is primed using
a reference signal {Y;*"}, and then applied to the actual
input signal {X;*"};. It is assumed that the input signals do
not have a trend component, which can be achieved by a
suitable transformation of the input signals, such as taking
the first difference as in the ECG data case, cf. Section 4.1.
The detection is now performed in the following steps:

1. Smooth the signals by applying a rolling mean

2. Infer approximate base period using the
autocorrelation of the reference signal

3. Detect peaks in the reference signal spaced
approximately one base period apart using a simple
peak detection logic

4. Take the average of segments around the detected
peaks and find one reference segment which most
closely matches this average

5. Cross-correlate the input signal with the reference
segment

6. Detect peaks in the cross-correlation spaced
approximately one base period apart using again the
simple peak detection logic

The steps are described in more detail in the following
paragraphs.

Step 1: The raw signals {X;*"} and {Y;*"}, are sub-
jected to a rolling mean filter, resulting in smoothed
signals {X;}; and {Y%};, respectively, i.e.

2600 2800 2900 3000 3300

Fig. 8 Classifier with ng = 10, n"® = 10 applied to wave with pulse
anomaly injected at time stamp 3072

2700 3100

3200

3400
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The window length 2z + 1 of this filter is chosen to pro-
vide just enough filtering to dampen some of the noise
contained within the input signal.
Step 2: The sample autocorrelation pY of the
(smoothed) reference signal {Y;}; at lag 7 is computed via
AY

R 7
er :=§ fort =0,...,Ny —1
7
0

with
1 Ny—1—1
=N ; (Yeyr — V)Y, = 1)

(cf. [20, 2.1.5]), where Ny and Y denote the sample size
and sample mean of the reference signal Y, respectively.
Now the mean period length § is inferred by taking the
arg max of g, restricted to some interval [ Smin, Smax], i-€.

I

1600 1700 1800 1900 2000

Fig. 10 Classifier with np = 10, " = 9 applied to wave with

2100 2200 2300

abnormal amplitudes starting at time stamp 2048

1600

1700 1800 1900 2000 2100 2200 2300 2400

Fig. 11 Classifier with ng = 10, n"® = 8 applied to wave with slightly
increased white noise (o = 4.77) starting at time stamp 2048

§:= argmax p).

Smin =T =Smax
A plot of an example autocorrelation function is shown in
Fig. 12, and the inferred mean period length is displayed
by the vertical line.
Step 3: The reference signal is now fed into a simple
peak detector which proceeds to inductively find peaks Ty
spaced approximately one base period apart via

To:= argmax Y,
0<t<[3(140)]
Ty := arg max Y:,

Ti+185(1—0) | <t<Ti+[5(14+0)]

where 0 €[0,1) is a tolerance value to account for the
variability of period lengths in the signals.

Step 4: The detector now extracts subpatterns
{Ut(k)} Iﬁ—&)\ | from the reference signal Y; centred at the

peaks T, i.e. Ut(k) = Yr1,4¢ Here, A € (0,1/2] is another
tolerance parameter to mitigate the effects of period
length variability. Then the seasonal means

1M—1
7 k
Ut:ﬁ]gut()

Table 11 Results of anomaly detection

Type Detection Rate %
Phases 83/85 98%
Amplitudes 102/102 100%
Pulse 102/103 99%
Total anomalies 287/290 99%
False positives 115/26798 0.43%
White noise (o < 6) 11/19 58%

White noise (o > 6) 64/75 85%
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Fig. 12 Autocorrelation function of one of the ECG database records

are computed. Here M denotes the total number of sub-
patterns. Let now

[sA1
ko := arg max Z uPi, and urt= Ut(k").
LSy
The choice of k that {175} i the subpat
e choice of ko ensures that {I;'}, " ., is the subpat-

(511

tern with maximum similarity to the mean {I:[t}t:L—QA |

and is thus suited as a reference pattern.

Step 5: The reference pattern is now used for detecting
the periods in the input signal by computing the cross-
correlation function:

3]
= Y Xewl, 120
t=|—5A]

C; := (X* Uref)

T

Step 6: Finally the simple peak detector from step 3 is
applied to the cross-correlation {C;}; to obtain the final
segment beginnings.

A comparison of the periods detected by the simple
peak detector from step 3 and the cross-correlating period
detector from step 6 can be seen in Fig. 13. The top graph
shows the input to the simple peak detector, the bot-
tom graph shows the cross-correlation; the gray boxes in
the top half of the backgrounds represent the segments
inferred by the simple peak detector, those in the bot-
tom half represent those found by the cross-correlating
period detector. Notice how glitches in the input signal
easily manage to confuse the simple peak detector while
the cross-correlating period detector is robust to such
perturbations.

Appendix B: Comparison with other methods

In this section, we perform some comparative evaluation of
other methods in order to highlight in particular the
utility of phase classification via convolutional neural networks
for anomaly detection. We consider two classes of me-

2000

6000 8000 10000 12000 14000

Fig. 13 Comparison of periods detected in the steps 3 and 6

thods: distance-based approaches employing various types of E
uclidean distance comparison (cf. “Self-similarity approach”
and “Distance-based phase classification” sections) and
one-step ahead forecasting (cf. “Long short-term memory
predictor approach” section). In the first class of compar-
ison, we demonstrate that even in a phase classification
framework, simply comparing the Euclidean-type norm of
segments of the underlying signals is less suited for cap-
turing the essence of complex and noise corrupted data.
In the second class of comparison, we show that even with
the highly complex parameterisation of LSTMs, anomaly
detection based on one-step ahead prediction is prone
to false-positive results. Since the ECG dataset exhibits
the highest level of diversity and is thus most difficult to
treat among all example datasets introduced in Section 4,
for this demonstration we only evaluate the reference
methods on this dataset.

Self-similarity approach

One way of detecting anomalies in periodic signals is
to take a sliding window of roughly one period length,
normalise it, and look for a similar segment in the data
preceding the window by, e.g. one to two periods. A
threshold is then used to determine whether the consid-
ered window is similar enough to one of the preceding
segments. This principle is used in the so-called matrix
profiles approach, cf. e.g. [9]. No training data is used in
this method and thus no particular characteristics of the
normal data themselves are employed during the anomaly
detection. The only point where training data can be use-
ful in this approach is to determine the similarity thresh-
old mentioned above, choosing it so as to avoid having too
many false positives on non-anomalous data.

Method
Formally, if {X}, is the input signal and T is the window
length, normalise each segment X© = {(Xt+¢}e=0,..,7—1
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for r > 0 in an analogous manner to that of Section 3.1.3
and denote by X®, 7 >0, the respective normalised seg-
ments. Now choose a minimum shift d,j, and a maximum
shift dimax and compute for each © > dpax

ar = min X — x@)2
T'=T—dmax,-»T—@min
where ||X @) _ X®)|| denotes the Euclidean distance of

X to X® e

X - X0 = ZnX‘” X 1Za

t=0

a. is called the self-dissimilarity of {X;}; at time t.

Now depending on the type of problem, there are two
ways to decide whether a signal is anomalous: If the task
is one of type A described in Section 2.2, the average self-
dissimilarity of the test signal is computed and compared
against some threshold which can for instance be deter-
mined by the average self-dissimilarities of the training
signals. If on the other hand the task is one of type B
described Section 2.2, a threshold is chosen close to the
maximum self-dissimilarity of the known normal part of
the signal and the self-dissimilarity for the remaining part
of the signal is compared against this threshold.

Results

For the sake of comparison, we evaluate the performance
of the self-similarity-based approach on the ECG database
in a similar manner as in our main result in Section 5.1
and first transform the self-dissimilarity computed as
described above into a self-similarity rating via the trans-
formation x +— 1/(x + 1). We then average the self-
similarities for each recording and plot the distributions
of these averages grouped by disease. This plot is shown
in Fig. 14a. One can clearly see that, apart from patients
of the category ‘dysrhythmia’ which have the lowest self-
similarity, this approach does not manage to produce any
separation of ill from healthy patients.

Distance-based phase classification

A distance analysing method similar to that of “Self-similarity
approach” section but more closely related to our main
approach is to compute reference windows for the dif-
ferent phases of non-anomalous signals and use these to
classify the corresponding segments of the other signals
by assigning the class whose reference window has maxi-
mum similarity. Basically, this is the same method as our
phase classification scheme but with the classifier neural
network replaced by a simple nearest reference classifier.

Method
For this method, the same data pre-processing with
respect to a chosen number of classes ny as described

(2019) 2019:27
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Fig. 14 Distribution of per-patient values for different comparison
algorithms. a Distribution of per-patient self-similarity evaluated on
test patients from different categories. b Distribution of per-patient
distance-based classification accuracy evaluated on test patients from
different categories. ¢ Distribution of per-patient forecasting precision
evaluated on test patients from different categories

in Section 3.1 is applied to training, validation, and test
signals.

For the training dataset X consisting of normalised
segments X? labelled as belonging to class 6 for 6§ =
0,...,np — 1 (recall the set X' in Fig. 1 for both types A
and B), we compute for each class of phase 6 the seasonal
averages
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The classification of a normalised segment X" =
{Xfm)}tzo,_,_j,l (labelled 71 mod ng) of a test (or valida-
tion) signal {X;}; is now performed by computing

arg min X0 — XOmean
6=0,...,n9—1

where again ||-|| denotes the Euclidean norm as described
in “Self-similarity approach” section.

The remaining part of anomaly detection is performed
as in Section 3.4.

Results

To evaluate the performance of the distance-based phase
classier on the ECG database, just as in our main result
in Section 5.1 we record the classification accuracy on
the different types of heart disease and analyse the distri-
bution of the per-patient classification accuracy grouped
by the corresponding disease. The separation into train-
ing, validation, and test data is the same as in our main
experiment on the ECG database (cf. Section 4.1.1). For
the number of classes, a setting of ng = 6 shows the
best results, which conforms to our model selection result
(cf. optimal ng presented in Section 5.1). The average vali-
dation accuracy amounts to 79%. The per-disease average
classification accuracy is evaluated in Table 12. A plot of
the distribution of per-patient classification accuracy eval-
uated on test patients from different categories is shown
in Fig. 14b. As can be seen from both the table and the plot
when compared to the results of our approach (cf. Fig. 5
and Table 7), the convolutional classifier neural network
delivers generally better classification performance with
far better results being obtained on the healthy control
patients. In particular, we see that the blue line represent-
ing the healthy test patients in Fig. 5 is located much closer
to the bottom right corner than in Fig. 14b, indicating
better modelling of the normal data by our convolutional
classifier neural network. An anomaly detection using the
distance-based classifier thus would have a higher false

Table 12 Results of per-disease classification accuracy

Disease Classification accuracy (%)
Valvular heart disease 28
Dysrhythmia 37
Cardiomyopathy/heart failure 44
Myocardial infarction 51
Bundle branch block 59
Hypertrophy 60
Healthy control 78

(2019) 2019:27

Page 21 of 23

positive rate than one using the convolutional neural net-
work for classification when achieving comparable detec-
tion performance. For instance, according to Fig. 14b, if we
use the average validation accuracy of 79% as the thresh-
old value as discussed in our main result in Section 5.1,
a similar detection rate in most of the ill categories but a
higher false-positive rate of 38% on healthy test patients
will be achieved compared to the result of our approach
(25% on healthy test patients, cf. Section 5.1).

Long short-term memory predictor approach

As described in Section 2.3.3, one can use a long short-
term memory unit (LSTM) to predict the signal one time
step ahead, then use a threshold on the difference of this
prediction to the actual signal to decide whether the signal
behaves as expected or should be considered anomalous.
We choose to demonstrate this method in preference
to the statistical forecasting approaches mentioned in
Section 2.3.2, as no further adjustment to the method
is needed for handling problems of type A described
in Section 2.2 and, more importantly, the forecasting
performance of LSTMs on data with complex patterns has
been shown to be better than that of linear models in
general.

Method

Since LSTMs are a somewhat complex type of recurrent
neural network, we will not describe their construction
here and instead refer the reader to the literature on the
subject, e.g. [32]. In our treatment of the ECG database,
we use an LSTM with an input layer size of 15, a hidden
layer size of 60, and an output layer size of again 15. We
use a mean-squared-error loss function, discarding the
first 200 predictions (4 s) to allow the LSTM to first align
with the given signal. We use the same ADAM algorithm
for the training of the LSTM that we also employed for
training our convolutional classifier neural networks with
a learning rate of y = 2719 and 21° training epochs. The
separation into training, validation, and test data is also
the same as in our main experiment on the ECG database
(cf. Section 4.1.1).

Results

To evaluate the performance of the LSTM on the ECG
database, we analyse the distribution of the forecast-
ing precision on the patients coming from the different
groups. A plot of this distribution is shown in Fig. 14c. The
measure of performance used here is given by 1/(MSE+1)
where MSE denotes the mean squared error of the pre-
dictions on the ECG recording. This transformation is
applied again for the sake of easier comparability with
our main result in Section 5.1. Using the same measure
of performance, the prediction precision evaluated on the
training and validation data are 91% and 63% on average,
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respectively. The large gap between the training and val-
idation performance suggests the presence of the over-
fitting phenomenon mentioned in Section 2.3.3, whereas
our classifier CNN approach does not suffer from this
problem (see the consistency of training and validation
accuracy results presented in Section 5.1). As presented
in Fig. 14c, if we choose a threshold value of 63% based
on the validation performance as discussed in our main
result in Section 5.1, this will lead to a false positive
anomaly detection rate of 31% on healthy test patients,
which is higher than that of our approach (25%); at the
same time, the detection performance of the LSTM-based
detector is lower, with e.g. only about 75% of the patients
labelled myocardial infarction (the largest category) being
detected as anomalous, compared to the almost 85% of
our approach. Furthermore, for illustration purposes, two
examples of the predictions coming from the LSTM are
displayed in Fig. 15. Notice that for both patients, the pre-
diction fails to guess the (randomly varying) values at the
spikes in the signals correctly. This (randomly) contributes
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Fig. 15 Example prediction results of LSTM predictor. a Prediction for
a healthy patient. b Prediction for a patient with myocardial infarction
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to the mean squared error and thus results in a weaker
separation ability of the anomaly detector.

Endnotes

1 Vice versa, when placing a fully connected layer after a
convolutional layer, the inverse reindexing is performed.
When using a convolutional layer as the first layer of an
artificial neural network and the input is in fact a segment
of a multivariate time series {X;:}i<am, with M = MO
features, no reindexing is required. This is the case in all
of our set-ups.

2 https://physionet.org/physiobank/database/ptbdb/

3https://github.com/antoine-lemay/Modbus_dataset

*Note that here and in the sequel the coloured bars in
these diagrams are always plotted between the beginnings
of adjacent segments to be classified, thus only covering
approximately the first third of each segment.
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