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Abstract

Constrained independent component analysis (ICA) is an effective method for solving the blind source separation
with a prior knowledge. However, most constrained ICA algorithms are proposed for the real-valued sources. In
this paper, a novel constrained noncircular complex fast independent component analysis (c-ncFastICA) algorithm
based on the fixed-point learning is proposed to address the complex-valued sources. The c-ncFastICA algorithm
uses the augmented Lagrangian method to obtain a new cost function and then utilizes the quasi-Newton method
to search its optimal solution. Compared with other ICA and constrained ICA algorithms, c-ncFastICA has better
separation performance. Simulations confirm the effectiveness and superiority of the c-ncFastICA algorithm.
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1 Introduction
Independent component analysis (ICA) [1–3] is very ef-
fective in separating the linear mixture of independent
sources. It has been widely used in many scenarios, such
as in array signal processing [4], speech signal processing
[5], and multivariate probability density function estima-
tion [6]. During the past decades, a lot of ICA algorithms
have been proposed for the separation of real-valued and
complex-valued signals. These algorithms can be divided
into the algebraic theory-based ones [7, 8], the informa-
tion criterion-based ones [9–12], and the iterative
projection-based ones [13, 14]. For example, Joint Ap-
proximate Diagonalization of Eigenmatrices (JADE) [7]
and alternating columns-diagonal centers (AC-DC) [8] are
algebraic theory-based algorithms; FastICA [9], complex
FastICA (cFastICA) [10], and noncircular complex
FastICA (ncFastICA) [11] are information criterion-based
algorithms; and auxiliary function-based ICA [13] is the it-
erative projection-based algorithm. In addition, independ-
ent vector analysis (IVA) [15, 16] and independent
low-rank matrix analysis (ILRMA) [17] are the extensions
of ICA to multidimensional cases. In many practical appli-
cations, such as wind measurements and digital commu-
nication, the sources are noncircular complex-valued [18,

19]. Thus, it is necessary to develop an efficient noncircu-
lar complex ICA algorithm. Among the aforementioned
ICA algorithms, one of the most effective and commonly
used algorithms for noncircular complex sources is the
ncFastICA algorithm [11]. It incorporates the noncircular
information of the original sources into the fixed-point it-
eration and provides better separation performance under
the case of noncircular sources. However, ncFastICA only
exploits the independence and noncircular property of the
original sources. It does not utilize the prior knowledge to
improve the separation performance.
To overcome the defect of the ICA, constrained ICA

has been proposed in [20–22]. It combines the prior infor-
mation and the statistical independence of the signals and
thus achieves better separation performance than ICA.
The constrained ICA algorithms are mainly derived from
information criterion, e.g., kurtosis-based constrained ICA
algorithm [23], and maximum likelihood (ML)-based con-
strained ICA algorithm [24]. [23] shows better perform-
ance in extracting the sources of the mechanical system.
[24] extends the solution space and thus has better per-
formance than other constrained algorithms. However,
both algorithms need to choose the threshold parameter.
To overcome this defect, Shi et al. proposed a new con-
strained ICA algorithm based on multi-objective
optimization recently [25]. The fixed-point learning is de-
rived based on Kuhn-Tucker conditions, and it does not
need to choose the threshold parameter. However, these
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algorithms are suitable only for the real-valued signals,
which severely limit their applications. To extend the ap-
plication of constrained ICA to complex sources, Wang et
al. [26] proposed a class of complex constrained ICA algo-
rithms based on gradient descent method, in which
circular complex signals are considered. However, the
aforementioned constrained ICA algorithms are not suit-
able for the general complex-valued signals.
In this paper, to improve the generality ability of the

constrained complex ICA, we propose a new constrained
noncircular complex fast independent component analysis
(c-ncFastICA) algorithm. In c-ncFastICA, a new cost func-
tion is built using the augmented Lagrangian method. The
prior information is then combined into the fixed-point it-
eration based on a quasi-Newton method. Stability ana-
lysis shows that the optimal solution corresponds to the
fixed point of c-ncFastICA.
The rest of this paper is organized as follows: Section 2

presents the system model, and Section 3 derives the
c-ncFastICA algorithm and gives the stability analysis.
The superiority of the c-ncFastICA algorithm is verified
by simulations in Sections 4, and the conclusion is drawn
in Section 5.

2 System model
In this section, the complex ICA model and its con-
strained model are introduced respectively.

2.1 Complex ICA model
The basic complex ICA model is [10].

z¼As ð1Þ
where z = [z1 ⋯ zM]

T ∈ℂM × 1 and s ¼ s1 ⋯ sN½ �T∈
ℂN�1 denote M observation signals and N original
sources, respectively; A ∈ℂM ×N is the mixing matrix;
and notation ℂ denotes the complex domain.
It is noted that the sources and mixing matrix are

complex-valued in complex ICA model, which is the main
difference between the complex ICA model and real ICA
model. In general, it assumes that the original sources are
zero mean and unit variance. In addition, A is of full-column
rank, and at most one original source is Gaussian [27]. The
purpose of complex ICA is to find a complex-valued
demixing matrix w for z to recover the original signal,
with ŝ ¼ wHz denoting the recovered signal.

2.2 Constrained complex ICA model
The constrained complex ICA model is described by the
complex ICA model with following constraints

hn wn; rnð Þ ¼ ρn−ε wn; rnð Þ≤0
and f n wnð Þ ¼ 0

ð2Þ

where hn and fn are the inequality constriction and the

equality constriction, respectively; ε and ρn are the meas-
urement function and the threshold for the inequality
constriction; wn is the n th column of the demixing
matrix w; rn is a reference vector for wn.
Typically, ε is a distance measurement and can be de-

scribed by an inner product in practice [24]. Thus, it is

chosen as εðwn; rnÞ ¼ jwH
n rnj2 in this paper.

3 Constrained ncFastICA algorithm
In this section, we incorporate the constraints into the ori-
ginal ncFastICA algorithm and thus obtain a new algo-
rithm, namely constrained noncircular complex FastICA
(c-ncFastICA) algorithm. The stability analysis shows that
the optimal solution corresponds to the fixed point of the
new algorithm.

3.1 Whitening
Whitening is necessary for the c-ncFastICA algorithm,
which is to make the observation data z uncorrelated
and unit variance. It is implemented by the transform

x¼Vz; with V¼Λ−1=2UH ð3Þ

where V is the whitening matrix; x is the whitened
data; Λ is a diagonal matrix, with N largest eigenvalues of
R = E(z zH) as its entries; U is a matrix consisting of the
corresponding eigenvectors; and N is the source number.
After whitening, the demixing matrix w for x is a uni-

tary matrix and the recovered signal can be represented
by ŝ ¼ wHx. The relationship between w and w is wH

¼ wHV.

3.2 Cost function
As shown in [11], the cost function of original ncFas-
tICA algorithm is

J wnð Þ¼E G wH
n x

�� ��2� �n o
ð4Þ

where G :ℝ+ ∪ {0}→ℝ is a smooth function, ℝ and ℝ+

correspond to the real domain and positive real domain,
respectively; wn ∈ℂ

N is the nth column of the demixing
matrix w, with ‖w‖2 = 1.
In practice, there are three choices for G [11]: G1(u) =

log(0.1 + u), G2ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1þ u

p
, G3ðuÞ ¼ 1

2u
2 . G1 and G2

provide more robust estimators, and G3 is motivated by
kurtosis. By using the augmented Lagrangian method [24],
the inequality constraint in (2) can be incorporated into
the cost function.
Then, the new cost function can be derived as

J c wn; μnð Þ¼E G wH
n x

�� ��2� �n o
þ 1
2γn

max 0; γnhn wn; rnð Þ þ μn
� �� 	2−μ2n� �

ð5Þ
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where μn and γn are the Lagrangian multiplier and positive
learning parameter, respectively, with ‖wn‖2 = 1. Thus, the
equality constriction is expressed as f nðwnÞ ¼ wnwH

n −1 ¼ 0.

3.3 Fixed-point iteration
By using the quasi-Newton methods, we derive the one
unit iteration of c-ncFastICA as

μn← max γnhn wn; rnð Þ þ μn; 0
� � ð6Þ

w mþ1ð Þ
n ¼ −E g yj j2� 	

y�x
� �þ E g

0
yj j2� 	

yj j2 þ g yj j2� 	n o
w mð Þ

n

þE xxT
� �

E g
0
yj j2� 	

y�2
n o

w mð Þ�
n

þ sign μnð Þ � 2γn w mð ÞH
n rn

�� ��2 w mð ÞH
n rn

� ��
rn

ð7Þ

where y ¼ wðmÞH
n x , g(u), and g'(u) denote the first-order

and second-order derivative of G(u); m represents the
number of iteration. The detailed derivation can be seen
in Appendix A.
The one unit iteration can be extended to the whole

demixing matrix w by the symmetric way or the defla-
tion way [10]. In the symmetric way, w is orthogonalized
by w← (wwH)1/2w. In the deflation way, w is orthogo-
nalized by a Gram-Schmidt-like method. In this paper,
we use the symmetric scheme.
In short, the c-ncFastICA algorithm is summarized in

Table 1.

3.4 Stability analysis
In this subsection, we present the stability analysis of the
fixed-point iteration. We show that the optimal solution
to the c-ncFastICA algorithm corresponds to the fixed
point of the (7). The detailed proof is shown as follows:

Proof By making the orthogonal transformation qn =
(VA)Hwn, the fixed-point iteration for the constraint
optimization problem (5) becomes

q mþ1ð Þ
n ¼ −E g yj j2� 	

y�s
� �þ E g

0
yj j2� 	

yj j2 þ g yj j2� 	n o
q mð Þ
n

þE ssT
� �

E g
0
yj j2� 	

y�2
n o

q mð Þ�
n

þ sign max γnhn q mð Þ
n ; rn

� �
þ μn; 0

n o� �
� 2γn q mð ÞH

n rn
�� ��2 q mð ÞH

n rn
� ��

rn

ð8Þ
where rn ¼ ðVAÞHrn.
As we know, the optimal solution qn of c-ncFastICA

algorithm satisfies the conditions that only the nth elem-
ent is non-zero and ‖qn‖2 = 1. Without loss of generality,

the non-zero element is assumed to be e jθn . Thus, y

¼ qðmÞH
n s ¼ e− jθn sn and

q mþ1ð Þ
n ¼ −E g snj j2� 	

e jθn s�ns
� �þ E g

0
snj j2� 	

snj j2 þ g snj j2� 	n o
q mð Þ
n

þE ssT
� �

E g
0
snj j2� 	

y�2
n o

q mð Þ�
n

þ sign max γnhn q mð Þ
n ; rn

� �
þ μn; 0

n o� �
� 2γn q mð ÞH

n rn
�� ��2 q mð ÞH

n rn
� ��

rn

ð9Þ
For the first term in the right hand of Eq. (9), it can be

derived that the nth element is −Efgðjsnj2Þjsnj2ge jθn and
other elements are zero since the original sources are in-

dependent. Thus, the first term is rewritten as −Efgðjsnj2Þ
jsnj2gqðmÞ

n . Similarly, for the third term in the right hand

of Eq. (9), the nth element is Efs2ngEfg
0 ðjsnj2Þsn�2ge jθn and

other elements are zero. For the fourth term, the nth

element is signð maxfγnhnðqðmÞ
n ; rnÞ þ μn; 0gÞ � 2γne

jθn

and other elements are zero.
Thus, (9) is rewritten as

q mþ1ð Þ
n ¼ α1 þ α2 þ α3 þ α4ð Þq mð Þ

n ð10Þ
where α1 = − E{g(|sn|

2)|sn|
2}, α2 = E{g'(|sn|

2)|sn|
2 + g(|sn|

2)},

α3 ¼ Efs2ngEfg
0 ðjsnj2Þsn�2g , and α4 ¼ signð maxfγnhnð

qðmÞ
n ; rnÞ þ μn; 0gÞ � 2γn.
Considering the constraint of ‖qn‖2 = ‖wn‖2 = 1, we can

remove the real-valued coefficient α = α1 + α2 + α3 + α4
from (10) if it is not equal to zero. Therefore, qðmÞ

n is the
fixed point of (10).

Remark

1) The parameters γn, μn, and ρn influence the
convergence of the c-ncFastICA algorithm.
If γnhnðqðmÞ

n ; rnÞ þ μn≤0, then α4 = 0. In this case,
the constraints have no effect on the c-ncFastICA
algorithm. Thus, the convergence of the

Table 1 c-ncFastICA algorithm

Step 1. Whiten the observed data to make it uncorrelated and unit variance;

Step 2. Initialize the demixing matrix as an identity matrix, μn = 0, γn to
be a small positive valued number, set ρn and G;

Step 3. If the reference is available, update w based on (7); otherwise,
update w based on the fixed-point iteration of original ncFastICA;

Step 4. Orthogonalize the demixing matrix W;

Step 5. Repeat steps 3 and 4 until convergence;

Step 6. Compute the demixing matrix W ¼ ðWHVÞH and obtain the

recovered signal ŝ ¼ W
H
z.
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c-ncFastICA algorithm is the same as the original

ncFastICA algorithm. On the contrary, if γnhnðqðmÞ
n ;

rnÞ þ μn > 0, then α4 = 2γn. In this case, the value
of γn should be chosen to make sure the real-valued
coefficient α is not equal or close to zero.

2) If the prior information is accurate enough, it is
suggested to choose a big ρn; if the prior information
is not accurate enough, it is suggested to choose a big
ρn at the first several iterations and then choose a
small ρn at the rest iterations. In practice, both G and
ρn are usually chosen by trials.

3) As a byproduct, we can also see that the assumptions
for the constrained sources can be a little relaxed in
the constrained complex ICA model, i.e., the
constrained source sn can be Gaussian, since γn
can be properly chosen to make sure the real-valued
coefficient is not equal to zero even if the source
is Gaussian (−Efgðjsnj2Þjsnj2g þ Efg 0 ðjsnj2Þjsnj2 þ
gðjsnj2Þg þ Efs2ngEfg

0 ðjsnj2Þsn�2g ¼ 0).

4 Results and discussion
In this section, the superiority of the c-ncFastICA algo-
rithm is demonstrated by some simulations. We employ
the normalized Amari index [28] to measure the per-
formance of the different algorithms

IA ¼ 1
2M M−1ð Þ

XM
i¼1

XM
j¼1

pij

��� ���
maxk pikj j−1

0
@

1
A

2
4

�þ
XM
j¼1

XM
i¼1

pij

��� ���
maxk pkj

��� ���−1
0
B@

1
CA
3
75 ð11Þ

where P =wHVA. The lower of IA indicates the better of
the separation. For all the simulations, the Amari index
is obtained by the average of 100 Monte Carlo trials. We
compare the c-ncFastICA algorithm with the symmetric
gradient descent method [26] since it is the only algo-
rithm which can be applied to complex-valued signals
among the constrained ICA algorithms in [20–26]. In
addition, we also compare c-ncFastICA with the ncFas-
tICA algorithm since it is widely used for the separation
of noncircular signals.
In the first simulation, we use the complex generalized

Gaussian distributed (cGGD) signals [11] as the original
sources. For each trial, the source number is eight and half
of the sources are made noncircular with the same noncir-
cularity index. The shape parameters and noncircularity
index for each source are listed in Table 2. The sample size
of the original sources varies from 250 to 1000. The
complex-valued mixing matrix A is 8 × 8 dimensional.

Each element is zero mean and unit variance, with the real
part and imaginary part normally distributed. We use the
third and seventh columns of A as reference.
Figure 1 shows the time sequences and histograms of

original sources 3 and 7, and Fig. 2 shows the time se-
quences and histograms of recovered sources 3 and 7 by
c-ncFastICA algorithm, where ρn = 0.9, γn = 3, and the
nonlinear function is selected as G3. One can see that the
constrained sources 3 and 7 are successfully recovered by
c-ncFastICA even though they are almost Gaussian.
Figure 3 depicts the separation results of c-ncFastICA al-
gorithm, ncFastICA algorithm, and the symmetric gradi-
ent descent method [26], where ρn = 0.9 and γn = 3. It
shows that the c-ncFastICA algorithm performs signifi-
cantly better than other two methods. This is due to the
fact that ncFastICA does not take the constrained condi-
tion into consideration, and symmetric gradient descent
method cannot make full use of the noncircular character-
istic of the sources. Moreover, the performance gap
widens slightly with the increase of the sample size. It also
shows that the ncFastICA algorithm cannot perform well
even when the sample size is 1000. This is due to the fact
that source 1, source 3, and source 7 are almost Gaussian
in this simulation. On the contrary, the c-ncFastICA algo-
rithm can get desirable separation result in this case,
which verifies the stability analysis in the Section 3.
Figure 4 compares the convergence curves of c-ncFastICA
under different nonlinear functions, with the sample size
fixed at 1000. One can observe that c-ncFastICA con-
verges quickly under different nonlinear functions. Figure 5
shows the influence of ρn on the performance of
c-ncFastICA, with the sample size fixed at 1000. It can be
seen that the algorithm performs better when ρn is bigger,
which is due to the fact that the prior information is ac-
curate in this simulation.
In the second simulation, we use three real-world

frequency-modulated (FM) signals as the original sources.
The powers of three sources are 1, 1, and 10, respectively.
The first and third sources are the interference signals, and
the second source is the desired signal. For each trial, the
parameters for carrier frequency and maximum frequency
deviation are set as 80 kHz and ± 75 kHz, respectively. The
original FM sources are received by the linear uniform

Table 2 The shape parameters and noncircularity index for the
original sources

Source 1 2 3 4

Parameter, p 0.9 0.7 0.9 0.7

Noncircularity index 1 1 1 1

Source 5 6 7 8

Parameter p 2 2 1.1 2

Noncircularity index 9.95 9.95 9.95 9.95
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array, and the sensor number is five. The array interval is
equal to the half of the wavelength. In this case, the mixing
matrix is related to the directions of arrival (DOAs) of the
original sources. The DOAs of the original sources are 30o,
− 8o, and − 7o, respectively. We assume that the DOA of
desired signal can be roughly detected, and thus, the second
column of A (denoted as a2) is considered as a prior know-
ledge. The additive white Gaussian noise is added to the re-
ceiver and the variance is 0.1. Figure 6 depicts the
separation results of the c-ncFastICA algorithm, ncFastICA
algorithm, and symmetric gradient descent method [26],
where ρn = 0.95 and γn = 3. One can see that the

c-ncFastICA algorithm performs better than other two
methods. Figure 7 shows the influence of ρn on the per-
formance of c-ncFastICA algorithm. It can be seen that the
performance of c-ncFastICA improves a lot when ρn ≥ 0.85
(G1 and G3) or ρn ≥ 0.9 (G2). However, this does not mean
that the bigger the ρn, the better the performance. Figure 8
shows the influence of the accuracy of prior knowledge on
the performance of c-ncFastICA, where ρn = 0.95, γn = 3,
and the prior knowledge for each element of a2 is contami-
nated by Gaussian noise with zero mean and σ2. One can
see that with ρn = 0.95, the performance of c-ncFastICA be-
comes worse when the prior knowledge is not accurate.

Fig. 1 a Time sequences of original sources 3 and 7. b Histograms of original sources 3 and 7
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5 Conclusion
The constrained ICA for complex sources is a challenging
problem. In this paper, we focus on this problem and extend
the noncircular complex FastICA (ncFastICA) algorithm to
the constrained case. By adding the constrained conditions
to the cost function and utilizing the quasi-Newton method,
we derive a new fixed-point algorithm, namely constrained
ncFastICA (c-ncFastICA) algorithm. Stability analysis shows
that the optimal solution to constrained ICA corresponds to
the fixed point of the c-ncFastICA algorithm. Simulations
verify the correctness of the stability analysis and the super-
iority of the c-ncFastICA algorithm.

6 Appendix
6.1 Derivation of the fixed-point algorithm
The Lagrangian function for the constrained ICA is

Lc wn; λ; μnð Þ ¼ J c wnð Þ þ λ wH
n wn−1

� 	 ð12Þ

As the cost function is not analytic in wn but analytic
in wn and w�

n independently [11], we derive the
quasi-Newton update as follows:

Fig. 2 a Time sequences of recovered sources 3 and 7. b Histograms of recovered sources 3 and 7
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Fig. 3 Separation results for cGGD signals

Fig. 4 Convergence curves of c-ncFastICA
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Fig. 5 Influence of ρn on the performance of c-ncFastICA

Fig. 6 Separation results of different methods
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Δ~wn ¼ −
∂2Lc

∂~w�
n∂~w

T
n

����
wn¼w mð Þ

n

 !−1
∂Lc

∂~w�
n

����
wn¼w mð Þ

n

¼ − ~HwnL
c

� 	−1 ~∇�
wn
Lc

ð13Þ

where

wn ¼ w1;w2;…;wN½ �T∈ℂN

~wn ¼ w1;w
�
1;…;wN ;w

�
N


 �T∈ℂ2N ð14Þ

and Δ~wn ¼ ~wðmþ1Þ
n −~wðmÞ

n ; ~HwnL
c and ~∇wnL

c are the

Hessian matrix and gradient vector of the Lagrangian
function, respectively.
Combining (12, 13), we can derive

Δ~wn ¼ − ~Hwn J
c þ λ~I

� 	−1 ~∇
�
wn
J c þ λ~w mð Þ

n

� �
ð15Þ

and

~Hwn J
c þ λ~I

� 	
~w mþ1ð Þ
n ¼ −~∇

�
wn
J c þ ~Hwn J

c ~w mð Þ
n ð16Þ

1) If γnhn(wn, rn) + μn > 0,

Fig. 7 Influence of ρn on the performance of c-ncFastICA

Fig. 8 Influence of the accuracy of prior knowledge
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where e = g'(|y|2)|y|2 + g(|y|2), d = g'(|y|2)y∗2.
Rewrite the ~Hwn J

c as two parts

where

and
Then,

~∇wn J
c ¼ E

∂ J c

∂w1
∂ J c

∂w�
1

⋮
∂ J c

∂wN
∂ J c

∂w�
N

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼

E g yy�ð Þyx�1
� �

E g yy�ð Þy�x1f g
⋮

E g yy�ð Þyx�N
� �

E g yy�ð Þy�xNf g

0
BBBB@

1
CCCCA− γnhn þ μn
� 	

w mð Þ
n

H
rn

� �
r�1

w mð Þ
n

H
rn

� ��
r1

⋮
w mð Þ

n
H
rn

� �
r�N

w mð Þ
n

H
rn

� ��
rN

0
BBBBBBBB@

1
CCCCCCCCA

ð17Þ

~Hwn J
c ¼ E

∂2 J c

∂~w�
n∂~w

T
n

� 

¼ E

x1x
�
1e x21d ⋯ x1x

�
Ne x1xNd

x�21 d� x̂�1x̂1e ⋯ x�1x
�
Nd

� x�1xNe
⋮ ⋮ ⋱ ⋮ ⋮

x�Nx
�
1d

� x�Nx1e ⋯ x�Nx
�
Nd

� x�NxNe

2
664

3
775

8>><
>>:

9>>=
>>;

− γnhn þ μn
� 	 w mð Þ

n
H
rn

� ��
r1r

�
1 0 ⋯ w mð Þ

n
H
rn

� ��
r1r

�
N 0

0 w mð Þ
n

H
rn

� �
r�1r1 ⋯ 0 w mð Þ

n
H
rn

� �
r�1rN

⋮ ⋮ ⋱ ⋮ ⋮
0 w mð Þ

n
H
rn

� �
r�N r1 ⋯ w mð Þ

n
H
rn

� �
r�N rN

2
666664

3
777775

þ

w mð Þ
n

H
rn

� ��
r1

w mð Þ
n

H
rn

� �
r�1

⋮
w mð Þ

n
H
rn

� ��
rN

w mð Þ
n

H
rn

� �
r�N

0
BBBBBBBB@

1
CCCCCCCCA

w mð Þ
n

H
rn

� �
r�1 w mð Þ

n
H
rn

� ��
r1 ⋯ w mð Þ

n
H
rn

� �
r�N w mð Þ

n
H
rn

� ��
rN

h i

ð18Þ

~H
a
wn
J c ¼ E

x1x
�
1e 0 ⋯ x1x

�
Ne 0

0 x�1x1e ⋯ 0 x�1xNe
⋮ ⋮ ⋱ ⋮ ⋮
0 x�Nx1e ⋯ 0 x�NxNe

2
664

3
775

8>><
>>:

9>>=
>>;− γnhn þ μn
� 	 r1r

�
1 0 ⋯ r1r

�
N 0

0 r�1r1 ⋯ 0 r�1rN
⋮ ⋮ ⋱ ⋮ ⋮
0 r�N r1 ⋯ r�N rN

2
664

3
775

þγn

w mð Þ
n

H
rn

��� ���2r1r�1 0 ⋯ w mð Þ
n

H
rn

��� ���2r1r�N 0

0 w mð Þ
n

H
rn

� �2
r�1r1 ⋯ 0 w mð Þ

n
H
rn

� �2
r�1rN

⋮ ⋮ ⋱ ⋮ ⋮

0 w mð Þ
n

H
rn

� �2
r�N r1 ⋯ 0 w mð Þ

n
H
rn

� �2
r�N rN

2
6666664

3
7777775

ð20Þ

Hb
wn
J c ¼ E

0 x21d ⋯ 0 x1xNd
x�21 d� 0 ⋯ x�1x

�
Nd

� 0
⋮ ⋮ ⋱ ⋮ ⋮

x�Nx
�
1d

� 0 ⋯ x�Nx
�
Nd

� 0

2
664

3
775

8>><
>>:

9>>=
>>;þ γn

0 w mð Þ
n

H
rn

� ��2
r21 ⋯ 0 w mð Þ

n
H
rn

� ��2
r1rN

w mð Þ
n

H
rn

� �2
r�21 0 ⋯ w mð Þ

n
H
rn

� �2
r�1r

�
N 0

⋮ ⋮ ⋱ ⋮ ⋮

w mð Þ
n

H
rn

� �2
r�N r

�
1 0 ⋯ w mð Þ

n
H
rn

� �2
r�2N 0

2
666664

3
777775
ð21Þ

~Hwn J
c ¼ ~H

a
wn
J c þ ~H

b
wn
J c ð19Þ
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~Hwn J ~wn ¼ ~H
a
wn
J ~wn þ ~H

b
wn
J ~wn ð22Þ

Taking (20) and (21) into consideration, and retaining
only the odd-numbered rows, we can obtain

Hwn Jwn ¼ E g
0
yj j2� 	

yj j2 þ g yj j2� 	n o
w mð Þ

n

þ E xxT
� �

E g
0
yj j2� 	

y�2
n o

w mð Þ�
n

þ 2γn w mð ÞH
n rn

�� ��2 w mð ÞH
n rn

� ��
rn

− γnhn þ μn
� 	

rnrHn w
mð Þ
n

ð23Þ

Similarly, we can get

Kw mþ1ð Þ
n ¼ −∇�

wn
J þHwn Jw

mð Þ
n ð24Þ

where K = (HJc + λI).
Combining (23) and (24), we can obtain

Kw mþ1ð Þ
n ¼ −E g yj j2� 	

y�x
� �þ E g

0
yj j2� 	

yj j2 þ g yj j2� 	n o
w mð Þ

n

þE xxT
� �

E g
0
yj j2� 	

y�2
n o

w mð Þ�
n

þ2γn w mð ÞH
n rn

�� ��2 w mð ÞH
n rn

� ��
rn

ð25Þ
At the optimal solution,

Kqn
� �

n ¼
�
2E g

0
snj j2� 	

snj j4
n o

þ E g snj j2� 	
snj j2� �

þλþ 2γn− γnhn þ μn
� 	Þe jθn

and Kqn

� �
i ¼ 0 i≠n

ð26Þ

where qn = (VA)Hwn and K ¼ KðVAÞ.
The Lagrangian function for qn, λ, μn can be written

as

Lc qn; λ; μnð Þ ¼ J c qnð Þ þ λ qHn qn−1
� 	

: ð27Þ

Calculating the derivative of Lagrangian function for
qn at the optimal solution

∂Lc qn; λ; μnð Þ
∂qn�

¼ E g sij j2� 	
sij j2� �

qn

þ λqn− γnhn þ μn
� 	

qn ð28Þ

and solving ∂Lcðqn;λ;μnÞ
∂qn�

¼ 0, we can get

λ ¼ −E g sij j2� 	
sij j2� �þ γnhn þ μn

� 	 ð29Þ

Thus,

Kqn ¼ kqn ð30Þ
i.e.,

Kwn ¼ kwn ð31Þ
where

k ¼ 2E g
0
snj j2� 	

snj j4
n o

þ 2γn∈ℝ ð32Þ

Therefore, K can be removed due to the constraints
‖wn‖ = 1. The fixed-point iteration becomes

w mþ1ð Þ ¼ −E g yj j2� 	
y�x

� �þ E g
0
yj j2� 	

yj j2 þ g yj j2� 	n o
w mð Þ

n

þE xxT
� �

E g
0
yj j2� 	

y�2
n o

w mð Þ�
n

þ2γn w mð ÞH
n rn

�� ��2 w mð ÞH
n rn

� ��
rn

ð33Þ
2) If γnhn(wn, rn) + μn < 0, we can similarly derive

w mþ1ð Þ
n ¼ −E g yj j2� 	

y�x
� �þ E g

0
yj j2� 	

yj j2 þ g yj j2� 	n o
w mð Þ

n

þE xxT
� �

E g
0
yj j2� 	

y�2
n o

w mð Þ�
n

ð34Þ

Combining (33) and (34), we can get

w mþ1ð Þ
n ¼ −E g yj j2� 	

y�x
� �þ E g

0
yj j2� 	

yj j2 þ g yj j2� 	n o
w mð Þ

n

þE xxT
� �

E g
0
yj j2� 	

y�2
n o

w mð Þ�
n

þ sign max γnhn wn; rnð Þ þ μn; 0
� �� 	

� 2γn w mð ÞH
n rn

�� ��2 w mð ÞH
n rn

� ��
rn

ð35Þ
Updating the μn using the gradient descent method,

we can obtain

μn← max γnhn wn; rnð Þ þ μn; 0
� � ð36Þ
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