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Abstract

In massive MIMO-OFDM systems, channel estimation is a significant module which can be utilized to eliminate
multipath interference. However, in realistic communication systems, carrier frequency offset (CFO), which often
exists in receive end, will deteriorate the performance of channel estimation. One of the effective solutions is to
compensate CFO via the help of pseudo-noise (PN) sequence. At the beginning of this paper, to reduce system
complexity and correctly compensate CFO, we propose an improved OFDM frame structure. Subsequently, we
theoretically analyze the catastrophic influence of CFO on conventional PN-sequence-based compressed sensing
(CS) channel estimation scheme. As our solution, based on the improved OFDM frame structure, a novel massive
MIMO-OFDM channel estimation method under CFO environment is proposed. It first estimates CFO by utilizing
differential correlation algorithm. Thereby, the interference caused by CFO can be eliminated. Then, relying on the
PN sequence, the partial common support (PCS) information of each channel is obtained. Finally, using the PCS
information as a priori information, we improve the CS reconstruction scheme to estimate the accurate channel.
The simulation result shows that the proposed scheme demonstrates better MSE and BER performance than other
mentioned schemes. The major advantage of our scheme is its anti-CFO ability and independence to channel
sparsity level. Therefore, the proposed scheme is meaningful for practical use.

Keywords: Channel estimation, Massive MIMO-OFDM, Carrier frequency offset, Partial common support, PN
sequence, Compressed sensing

1 Introduction
1.1 Background knowledge
As an efficient technique for 5G (the 5th generation) wire-
less communication systems, massive multiple input mul-
tiple output orthogonal frequency division multiplexing
(MIMO-OFDM) is widely applied by virtue of its excellent
properties in data transmission rate and accuracy [1–3]. It
is well known that precise channel estimation is a signifi-
cant module to maintain the performance of MIMO-
OFDM [4, 5]. However, compared with orthogonal
frequency division multiplexing (OFDM), accurate channel
estimation is more challenging in massive MIMO-OFDM
systems. Because for each receive antenna, there are many
channels need to be estimated which is corresponding to
all of the transmit antennas. In addition, the carrier

frequency of the receiver is difficult to be exactly same as
that of the transmitter, leading to carrier frequency offset
(CFO) at the receive end, which seriously reduces the ac-
curacy of channel estimation [6]. Therefore, it is necessary
to compensate CFO at the receive end before channel
estimation.
In actual MIMO-OFDM communication systems, accur-

ate channel estimation is obtained by the aid of training
data. The frequency-domain pilot is the most common
training data [7]. In the past, lots of research focusing on
pilot-based channel estimation has been done. Some con-
ventional channel estimation methods are proposed such
as least square (LS) algorithm and minimum mean square
error (MMSE) algorithm [8, 9]. However, the performance
of the LS is inadequate and greatly affected by noise.
MMSE can achieve much better detection performance by
utilizing the second order statistics of channels. However, it
suffers from high computational complexity [10]. Moreover,
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the insertion of the pilot pattern has to satisfy Nyquist Sam-
pling Theorem in both time domain and frequency domain,
which leads to a reduction in spectrum utilization [11].
Studies have shown that wireless channels are usually

sparse, especially for cellular massive MIMO-OFDM
systems [12]. In other words, the tap coefficients of most
paths in channel impulse response (CIR) can be
regarded as zero. Moreover, for a given receive antenna,
the channel delays of all transmit antenna can be consid-
ered to be consistent due to the small transmission base
station array. In order to take advantage of the channel
sparsity, we introduced the compressed sensing (CS)
theory to estimate channel in MIMO-OFDM systems
[13]. One of the advantages is that the pilots needed in
CS-based channel estimation are much less than that of
LS and MMSE [14]. Literature [15] uses orthogonal
matching pursuit (OMP) and compressed sampling
matching pursuit (CoSaMP) to achieve channel estima-
tion of MIMO-OFDM systems. The main drawback of
those schemes is that the channel sparsity level is
regarded as a priori information in receive end [16]. Un-
fortunately, the channel sparsity level is unknown in the
actual communication process, which limits their appli-
cation in practice. Sparsity adaptive matching pursuit
(SAMP) is a promising candidate scheme for many prac-
tical applications when the channel sparsity is unavail-
able [17]. It reconstructs channel information through
stage by stage estimation of the sparsity level and the
true support set of the target signals [18]. However, one
of the shortcomings of SAMP is the fixed step size,
which easily results in the contradiction between the
convergence speed and the recovery accuracy of the al-
gorithm [19, 20].
Recently, the CS channel estimation based on partial

channel support (PCS) became a research hotspot. PCS
mainly includes part of channel delay and path number.
In [21], authors have proposed a CS-based channel esti-
mation method for MIMO-OFDM by simultaneously
exploiting the time-domain pseudo-noise (PN) sequence
and frequency-domain pilots. It utilizes the autocorrel-
ation of the PN sequence to acquire the PCS information.
Then, the OFDM blocks are cyclically reconstructed based
on the idea of overlap and add (OLA) algorithm. Finally,
by exploiting the PCS as a priori information, the sub-
space pursuit (SP) algorithm is optimized and accurate
CIR is reconstructed. To precisely remove the inter-block
interference (IBI) between PN sequence and OFDM block
in the OFDM block reconstruction, authors of [22] have
proposed the dual-PN padded OFDM (DPN-OFDM)
scheme, whereby the PN sequence is duplicated twice to
make the second PN sequence immune from the IBI
caused by the preceding OFDM block. Authors of [23]
have obtained the channel estimation of DPN-OFDM sys-
tem by using the method in [21]. However, neither [21]

nor [23] has taken the effect of CFO into account. But the
fact is that the autocorrelation performance of PN se-
quence decreases sharply over CFO environment [24].
Consequently, the PCS could not be obtained and the CS-
based channel estimation is out of effect. In addition, due
to the reconstruction of OFDM blocks, the scheme men-
tioned in [21] is complicated in implementation.
In order to eliminate the influence of CFO on PCS

information acquisition, differential correlation algo-
rithm based on PN sequence is discussed in the litera-
ture [25, 26], where m-sequence is served as PN
sequence. In [25], the differential delay is set to one, and
an ambiguity protection module is used to alleviate the
cross term effect of the multipath. In [26], the differen-
tial delay is set to a specific value D, so the frequency es-
timation range is limited. By applying the differential
correlation algorithm twice with different D, more accur-
ate frequency estimation can be achieved.

1.2 Contributions
In this paper, we discuss the channel estimation of
massive MIMO-OFDM systems over frequency offset
environment. The main contributions of the paper are
summarized as follows:

1. Motivated by the frame structure of cyclic prefix
OFDM (CP-OFDM) [27], we propose a novel
OFDM frame structure. Its major benefit is that
there is no need to cyclically reconstruct the
OFDM block. Moreover, it enhances the CFO
compensation performance.

2. We eliminate the influence of CFO on channel
estimation via exploiting differential correlation
algorithm to obtain the PCS information under
CFO environment.

3. We improve the accuracy of CS reconstruction
algorithm by utilizing the PCS information and
appropriately setting the iteration termination
threshold.

The remainder of this paper is organized as follows. In
Section 2, the system model is presented. Section 3 in-
troduces the proposed OFDM frame structure. Section 4
introduces the PCS information acquisition and the
CFO effect on it. Section 5 illustrates the CFO compen-
sation. Afterwards, the improved CS reconstruction al-
gorithm is presented in Section 6. Section 7 gives the
experimental results and comparison analysis. Finally,
conclusions are given in Section 8.
Notions: For a given matrix A, AT,A‐1, and ‖A‖ denote

its transpose, inverse, and l2 norm. A|λ is the λth column
of A. IN is an N ×N identity matrix. ℂM ×N represents
the set of M ×N matrices in the complex field. CN(α, β)
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is a Gaussian random vector with mean α and covari-
ance β.

2 System model
In this paper, we consider a Nt ×Nr massive MIMO-
OFDM system which consists of Nt transmit antennas
and Nr receive antennas. Due to the multipath property
of wireless channel, the time-domain CIR from the ntth
transmit antenna to the nrth receive antenna is given as

hntnr tð Þ ¼
XL−1
i¼0

αig t−τiT sð Þ ð1Þ

where τL − 1 >⋯ > τ0 represents the paths’ delay, αi is
the tap coefficient of the ith path, g(⋅) is the shaping
pulse, and Ts represents the sampling period [27]. For
convenience of expression, we rewrite hntnr ðtÞ in a
discrete form as

hntnr ¼ hntnr 0ð Þ; hntnr 1ð Þ;…; hntnr L−1ð Þ½ �T∈ℂL�1 ð2Þ
Assuming that the number of subcarriers for each

OFDM symbol is N, we denote Xnt ¼ ðXnt
1 ;X

nt
2 ;…;Xnt

N ÞT
∈ℂN�1 as the transmitted symbol of the ntth (1 ≤ nt ≤Nt)
transmit antenna. Since the pilot-based CS channel esti-
mation is discussed in this work, we suppose that Np pi-
lots are inserted at each OFDM symbol. The transmitted
pilots of thentth (1 ≤ nt ≤Nt) transmit antenna can be

expressed as Xnt
P ¼ ðXnt

k1
;Xnt

k2
;…;Xnt

kNP
ÞT∈ℂNP�1 , where ½

k1; k2;…; kNp � denotes the location of the pilot. The sig-
nal received at the nrth (1 ≤ nr ≤Nr) receive antenna can
be written as

Ynr ¼
XNt

nt¼1

diag Xntð ÞFhntnr þ nnr

¼
XNt

nt¼1

diag Xntð ÞHntnr þ nnr

ð3Þ
where

Ynr ¼ Ynr
1 ;Y

nr
2 ;…;Ynr

N

� �T∈ℂN�1 ð4Þ

and

Hntnr ¼ Hntnr 1ð Þ;Hntnr 2ð Þ;…;Hntnr Nð Þ½ �T∈ℂN�1 ð5Þ
is the frequency domain CIR from the ntth transmit

antenna to the nrth receive antenna, F ∈ ℂN ×N denotes

an N-point normalized discrete Fourier transform (DFT)
matrix with

F½ �n;m ¼ 1=
ffiffiffiffi
N

p
exp − j2πnm=Nð Þ 0≤n≤N−1; 0≤m≤L−1

ð6Þ

and nnr∼CNð0; σ2nÞ is the additive noise vector [28].

3 The proposed OFDM frame structure
Figure 1a plots the existing OFDM frame structure [21],
as shown, the PN sequence at a certain transmission an-
tenna overlaps the others, which interferes the estimation
of CFO between different transmit-receive antenna pairs.
Moreover, as shown in Fig. 1b, the signal reconstruction
in this OFDM frame structure is very complicated due to
the overlap and add (OLA) algorithm. In addition, the
inter-block interference (IBI) cannot be correctly obtained
before channel estimation, so the reconstruction perform-
ance cannot be guaranteed.
To avoid the complex OFDM block reconstruction, a

novel OFDM frame structure is proposed here which is
shown in Fig. 2. The application background of this
frame structure is the time-varying multipath wireless
channel environment. More specifically, during one
OFDM frame period, only the CIR tap coefficient is
time-varying but the paths’ delay stays unchanged.
Unlike the OFDM frame structure mentioned in [21,

28], as shown in Fig. 2a, the proposed frame structure,
the PN sequence only exists in the front of the whole
frame, and CP is inserted in front of each OFDM block.
The major advantage is twofold. On the one hand, since
the paths’ delay stays unchanged in an OFDM frame
duration, the PN sequence can be employed to precisely
obtain the PCS information for each OFDM symbol;
hence, the superior performance of CS-based channel
estimation can be guaranteed. On the other hand, the
inserted CP can be used to eliminate the interference be-
tween PN sequence and OFDM block, which is caused
by channel multipath; thus, there is no need to recon-
struct the OFDM blocks, which is shown in Fig. 2b.
For the purpose to estimate the channel between differ-

ent transmit-receive antenna pairs, PN sequence inserted
in different antennas should not be the same. The conven-
tional approach is to insert a different PN sequence in the
same position at different antennas [29]. However, under
the multipath channel, the cross-correlation of different
PN sequences in the receive end will affect the detection
of the correlation peak. In the proposed OFDM frame
structure, the PN sequence location at different antennas
is orthogonal. More specifically, as shown in Fig. 2a, the
front part of each OFDM frame is composed of one PN
sequence and some zero sequences, and there is no over-
lap between the locations of different PN sequences.
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(a) (b)
Fig. 1 The existing OFDM frame structure

(a) (b)
Fig. 2 The proposed OFDM frame structure

Li et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:31 Page 4 of 13



4 PCS information acquisition and the CFO effect
on it
The PCS information acquisition is based on the auto-
correlation property of the PN sequence. For analysis
purpose, the noise is neglected in this section. When
there is the known PN sequence in the received signal
r(n), the cross-correlation between r(n) and c(n) can be
expressed as

Rrc sð Þ ¼ 1
M

XM−1

n¼0

c nð Þ � r� nþ sð Þ

¼
1 ; s ¼ 0

−
1
M

; otherwise

(

ð7Þ
where s is the shift in the sampling period [30].

Due to the excellent anti-noise performance of the
PN sequence, the peak of Rrc(s) will appear at the
starting position of the PN sequence (s = 0). Now, we
consider the effect of the multipath channel, and the
received PN sequence which is the transmitted form
ntth transmit antenna to nrth receive antenna can be
rewritten as

r nð Þ ¼
XL−1
l¼0

hntnr lð Þc n−lð Þ ð8Þ

and Rrc(s) is given by

Rrc sð Þ ¼ 1
M

XM−1

n¼0

c nð Þ �
XL−1
l¼0

h�ntnr lð Þc� nþ s−lð Þ

¼ 1
M

XL−1
l¼0

h�ntnr lð Þ
XM−1

n¼0

c nð Þc� nþ s−lð Þ

¼ h�ntnr sð Þ þ ε1 ; s∈ 0; L−1½ �
ε2 ; otherwise

�
ð9Þ

where

ε1 ¼ −
1
M

XL−1
l¼0;l≠s

h�ntnr lð Þ

ε2 ¼ −
1
M

XL−1
l¼0

h�ntnr lð Þ
ð10Þ

From Eq. (9), in the case of the multipath channel,
the Rrc(s) is the superposition of the cross-correlation
between multiple delay extended PN sequences and
local PN sequence. Consequently, there are L peaks

in Rrc(s). In [21, 28], the location of those peaks that
exceed the threshold ξ is extracted as PCS
information.
CFO is common in the actual communication process

and usually caused by the error between the local carrier
frequency of the receiver and the real carrier frequency
of the transmitter [31]. In general, OFDM systems are
very sensitive to CFO as it destroys the orthogonality of
subcarriers. Moreover, for the application of this paper,
the CFO will introduce a time-dependent linear phase
and distort the autocorrelation of the PN sequence.
Assuming that the CFO is fc subcarrier spacing, the
received PN sequence including CFO effect can be
expressed as

r nð Þ ¼
XL−1
l¼0

hntnr lð Þc n−lð Þe j2π n−lð Þ f c ð11Þ

And the CFO-effected Rrc(s) is given by

Rrc sð Þ ¼ 1
M

XL−1
l¼0

h�ntnr lð Þ
XM−1

n¼0

c nð Þc� nþ s−lð Þe j2π nþs−lð Þ f c

¼ h�ntnr sð Þ 1
M

XM−1

n¼0

c nð Þj j2e j2πnf c þ Δε1; s∈ 0; L−1½ �
Δε2 ; otherwise

8><
>:

¼ h�ntnr sð Þejπ M−1ð Þ f c sinc πMf cð Þ þ Δε1; s∈ 0; L−1½ �
Δε2 ; otherwise

�
ð12Þ

where Δε1 and Δε2 are the interference terms re-
lated to ε1 and ε2, respectively, and sinc(⋅) is the ab-
breviation of Singer function. It can be observed from
Eq. (12) that the amplitude of the correlation peaks is
reduced in Singer function way. More seriously, our
simulation result shows that the correlation peaks will
disappear when CFO is large enough. In other words,
the PCS information cannot be obtained precisely in
this case.

5 CFO compensation
In this section, we will focus on the CFO compensa-
tion. Since PN sequence is exploited to obtain PCS
information, to reduce computation and save fre-
quency resource, here, we still use PN sequence to
compensate CFO. The traditional PN-based CFO
compensation scheme is coherent autocorrelation
algorithm.

5.1 Coherent autocorrelation algorithm
After the frame synchronization is completed, the
conjugated PN sequence generated by the receive
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c∗(n) is multiplied by the received PN sequence r(n)
to get z(n)

z nð Þ ¼ r nð Þc� nð Þ ¼
XL
l¼0

hntnr lð Þ c nð Þj j2e j 2π f cnþθð Þ ð13Þ

Then, compute the autocorrelation function of z(n)

R Dð Þ ¼
XM
n¼1

z� nð Þz nþ Dð Þ

¼ e j 2π f cDð ÞXL
l¼0

hntnr lð Þj j2
XN
n¼1

c nð Þj j2 c nþ Dð Þj j2

ð14Þ

and the estimated CFO is given by [25]

f̂ c ¼
arg R Dð Þð Þ

2πD
ð15Þ

Literatures [32] shows that the CFO variance of co-
herent autocorrelation algorithm under AWGN chan-
nel is

var f̂ c
� �

¼ 1

2πDð Þ2
1

M2

2
2SNRð Þ þ

1
M

2

2SNRð Þ2
" #

ð16Þ

With the multipath channel interference, its variance
could deteriorate even further.
The performance of coherent autocorrelation

algorithm under low SNR situation is bad. To solve
this problem, we propose a differential correlation
algorithm.

5.2 Differential correlation algorithm
According to the cyclic shift-and-add property of m-
sequence, the differential operation of the locally gener-
ated PN sequence can be expressed as [33].

cK nð Þ ¼ circshift c nð Þ;Kð Þ

¼ c nð Þ � cD� nð Þ

¼ c nð Þ � circshift c� nð Þ;Dð Þ
ð17Þ

where D is the differential delay, circshift(⋅) denotes
cyclic shift, and K is an integer related to D. That is to
say, the differential operation of the PN sequence is still

a PN sequence which has great autocorrelation property
[29]. Let

rD nð Þ ¼
XL−1
l¼0

hntnr lð ÞcD n−lð Þe j2π n−D−lð Þ f c ð18Þ

Then, the differential operation of the received PN
sequence can be expressed as

rK nð Þ ¼ r nð Þ � rD� nð Þ ¼
XL−1
l¼0

hntnr lð Þc n−lð Þe j2π n−lð Þ f c

�
XL−1
i¼0

hntnr ið ÞcD n−ið Þe j2π n−D−ið Þ f c
 !�

¼
XL−1
l¼0

hntnr lð Þ
XL−1
i¼0

hntnr
� ið Þc n−lð ÞcD n−ið Þe j2πDf c

¼
XL−1
l¼0

hntnr lð Þj j2cK n−lð Þe j2πDf c þ ε3

ð19Þ
where

ε3 ¼
XL−1
l¼0

XL−1
i¼0;i≠l

hntnr lð Þhntnr � ið Þc n−lð ÞcD n−ið Þe j2πDf c

ð20Þ
It can be seen that after the differential operation, the

phase rotation of the received PN sequence caused by
CFO is changed into a fixed phase difference e j2πDf c .
Furthermore, the cross-correlation between rK(n) and
cK(n) can be expressed as

Rrc;D sð Þ ¼ 1
M

XL−1
l¼0

hntnr lð Þj j2
XM−1

n¼0

cK nð ÞcK� nþ s−lð Þe j2πDf c

ð21Þ
When rK(n) aligns with cK(n), L correlation peaks will

appear, that is

Rrc; D sð Þ ¼ hntnr sð Þj j2e j2πDf c þ Δε3 ; s∈ 0; L−1½ � ð22Þ
where Δε3 is the interference term related to ε3. We here

choose the highest correlation peak to estimate the CFO [34].

f̂ c ¼
arg Rrc; D sð Þ� 	

2πD






s¼s0

ð23Þ

where arg(⋅) denotes the phase of a complex number
measured in radians, s0 represents the location of the
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highest correlation peak. It is noteworthy that, since

−π ≤ arg(Rrc, D(s)) ≤ π, −1=ð2DÞ≤ f̂ c≤1=ð2DÞ.
The estimated f̂ c will be used to compensate for the

CFO effect on Rrc(s) in Eq. (11). Then, we have

Rrc sð Þ ¼ 1
M

XM−1

n¼0

c nð Þ � r nþ sð Þe− j2π nþsð Þ f̂ c

¼ 1
M

XL−1
l¼0

h�ntnr lð Þ
XM−1

n¼0

c nð Þc� nþ s−lð Þe j2π nþs−lð Þ f c− f̂ cð Þ

¼ h�ntnr sð Þ 1
M

XM−1

n¼0

c nð Þj j2e j2πnΔ f c þ Δε3; s∈ 0; L−1½ �
Δε4 ; otherwise

8><
>:

ð24Þ
where Δε4 is the interference term related to

ε4 ¼
XL−1
l¼0

XL−1
i¼0

hntnr lð Þhntnr � ið Þc n−lð ÞcD n−ið Þe j2πDf c

ð25Þ
and Δ f c ¼ f c− f̂ c . If f̂ c is estimated precisely, then

Δfc ≈ 0. Equation (24) can be rewritten as

Rrc sð Þ ¼ h�ntnr sð Þ þ Δε3; s∈ 0; L−1½ �
Δε4 ; otherwise

�
ð26Þ

Still, the location of those peaks that exceed the
threshold ξ = 4E[Rrc

2] is extracted as PCS information of
hntnr , which can be expressed as

Intnr ¼ s; Rrc sð Þk k2≥ξ
� �L−1

s¼0 ð27Þ

6 Improved CS reconstruction algorithm
According to the MIMO-OFDM model in Section 2, here,
we only consider the frequency domain signal received in the
location of pilot at nrth antenna, which can be expressed as

Ynr
p ¼

XNt

nt¼1

diag Xnt
p

� �
Fphntnr þ nnr ;p ð28Þ

where Fp∈ℂNP�L and nnr ;p∈ℂ
Np�1 are the DFT

matrix and noise vection corresponding to pilot loca-
tion, respectively. Equation (28) can be further simpli-
fied as

Ynr
p ¼ Anrhnr þ nnr ;p ð29Þ

where

Anr≜½ diag X1
p

� �
Fp; diag X2

p

� �
Fp

;…; diag XNt
p

� �
Fp�∈ℂNp�NtL

ð30Þ
is the measurement matrix and Ynr

p is also called an

observation vector [26]. hnr≜½hT1nr ; hT2nr ;…hTNtnr �
T
∈ℂNtL�1

is the vector to be estimated. In a typical massive
MIMO-OFDM system, Np≪NtL, which means Eq. (29)
is undetermined equations. Fortunately, we can use the
CS recovery algorithm to get the solution of Eq. (29),
i.e., to estimate hnr .
Greedy iteration CS reconstruction schemes are

proved to be feasible in OFDM system channel estima-
tion. However, for most conventional greedy iteration
CS reconstruction schemes, the channel sparsity level
has to be transmitted to receive end as a priori informa-
tion [15], which is unachievable in normal actual
systems. While the sparsity adaptive greedy iteration CS
reconstruction schemes suffer from low accuracy and
high computational complexity [16]. Neither of those
two kinds of CS reconstruction scheme can effectively
catch the time-varying channel information.
In our scheme, the CS recovery algorithm does not

need channel level as a priori information. Its iter-
ation is based on the PCS information and controlled
by an iteration threshold. For convenience of expres-
sion, the PCS information of the nrth receive antenna
is summarized as

Inr ¼
XNt

nt¼1

Intnr þ nt−1ð ÞLð Þ ð31Þ

In the following algorithm steps, t is iteration time
and the tth column index, updated measurement
matrix, updated index, estimated channel vector, and

residual are denoted by Λt, At, λt, rt, and ĥnr ;t , re-
spectively. To improve recovery accuracy, we set ε ≈
10‐6 as the iteration threshold. Our CS-based massive
MIMO-OFDM channel estimation in the nrth receive
antenna can be summarized as follows:

Algorithm 1 The improved CS-based channel estimation

Input:
(1) the measurement matrix Anr , the observation vector Ynrp ð1≤nr≤NtÞ
(2) the PCS information Inr ð1≤nr≤NtÞ
Initialization
Λ0 ¼ Inr ;A0 ¼ Anr jΛ0

;

r0 ¼ Ynrp −A0ðA0
TA0Þ−1A0

TYnrp ;
t ¼ 0; ε ≈ 0
While ‖rt‖2 < ε do
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Improved CS reconstruction algorithm (Continued)

t = t + 1
λt ¼ arg max

j∈ð0;NtL−1Þ
ðjrt−1TAnr jÞ

Λt = Λt − 1 ∪ {λt}
At ¼ At−1∪Anr jλt
ĥnr ;t ¼ arg minkYnrp −At ĥnr ;tk ¼ ðAt

TAtÞ−1At
TYnrp

rt ¼ Ynrp −At ĥnr ;t
End while

Output: the estimation of channel impulse response ĥnr ;t

The channel of other receive antennas is also estimated
according to the above methods. Unlike conventional
greedy iteration CS reconstruction schemes such as OMP
and CoSaMP, where the number of iterations is the value
of channel sparsity level [20], the proposed scheme stops
iteration only when the residual is close to 0 (‖rt‖2 < ε).
Therefore, the reconstruction accuracy can be guaranteed.
Under the condition that the precise PCS information is
obtained, the number of iterations in the proposed
scheme is limited. That is to say, the computational
complexity is controllable.

7 Results and discussion
In this section, we simulate the proposed CS-based channel
estimation scheme under CFO environment. To evaluate
the performance, conventional CS reconstruction schemes
including OMP, CoSaMP, and SAMP are also simulated.
For compare purpose, we consider the typical 8 × 8 and
16 × 16 massive MIMO-OFDM systems. It is noteworthy
that random pilot insertion is exploited in the simulation as
it can enhance restrain isometric property (RIP) of the
measurement matrix [35]. The specific parameters of our
system in the simulations are listed in Table 1.
In the following chapters, we will consider the typical

six-taps ITU vehicular B (ITU-VB) and State Adminis-
tration of Radio, Film, and Television 8 (SARFT-8) chan-
nel model as our simulation channel whose parameters
are listed in Table 2.

7.1 The CFO influence on PCS information acquisition
Figure 3 plots the CFO influence on Rrc in 16 × 16 MIMO-
OFDM system with fmax = 20 HZ and SNR= 5 dB. For
comparison purpose, the actual CIRs of the used SARFT-8
and ITU-VB channel are marked in red. Normally (without
CFO), as shown in Fig. 3b and d, the peaks of Rrc will
roughly overlap with the actual CIR and be obtained as
PCS information. However, as shown in Fig. 3a and c, the
peaks of Rrc disappeared. That is because the amplitude of
the peak is reduced quickly in Singer function way due to
the effect of CFO. And the larger the CFO, the more ser-
ious the amplitude attenuation of the peaks. Moreover, the
performance of the PCS information acquisition scheme is
sensitive to the value of CFO. Even the 0.05 normalized
CFO can completely destroy its performance.

7.2 The performance of CFO compensation
To overcome the bad effect of CFO on PCS information
acquisition, in this section, the coherent autocorrelation
algorithm and the proposed differential correlation
algorithm are implemented to estimate the actual CFO.
For the purpose to evaluate the performance of CFO
compensation, we adopt mean square error (MSE) as
measurements, which can be expressed as

MSE f̂ c
� �

¼ 1
NtNr

XNt

i¼1

XNr

j¼1

f̂ c;ij− f c;ij
f c;ij

 !2

ð32Þ

where fc, ij is the CFO between the ith transmit antenna
and the jth receive antenna.

Table 1 Parameters in the simulations

Length of the PN sequence M 255

Differential delay in differential
correlation algorithm D

2

System transmission speed 20 Mbit/s

System bandwidth 7.56 MHZ

Center frequency 634 MHZ

Length of the OFDM block N 4096

Number of pilots 96

Pilot insertion mode Random

Baseband modulation method 16QAM with 1/2 bitrate
source coding

Channel model 6-tap ITU and 6-tap
SARFT-8 vehicular-B
channel model

Sampling frequency 25.6 MHZ

Tolerable maximum
delay extension

40 μs

Normalized carrier
frequency offset fc

0.05,0.1,0.2 (80 HZ, 160
HZ, 320 HZ)

Doppler shift fmax 20 HZ, 60 HZ, 80 HZ

Time of simulations 10,000

Table 2 Multipath channel parameters for simulations

Path index ITU-VB SARFT-8

Delay Gain Delay Gain

(μs) (dB) (μs) (dB)

1 0.00 − 2.5 0.00 − 18.0

2 0.30 0.00 1.80 0.00

3 8.90 − 12.8 1.95 − 20.0

4 12.9 − 10.0 3.60 − 20.0

5 17.1 − 25.2 7.50 − 10.0

6 20.0 − 16.0 31.8, 0.00
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In Fig. 4, we show the MSE performance comparison of
the above two CFO compensation schemes in 16 × 16
MIMO-OFDM system with fmax = 20 HZ under ITU-VB
channel. As can be observed from Fig. 4a, when SNR =
5 dB, the MSE of the coherent autocorrelation algorithm
is higher than 10‐1, which means the estimated CFO is
unreliable. While the MSE of the proposed differential
correlation algorithm is lower than 10‐3, which shows that
our scheme has better robustness to low SNR conditions.
In Fig. 4b, we plot the MSE performance comparison of
different CFO compensation schemes with fc = 0.1 and fc =

0.05. As shown, when SNR ≤ 20 dB, the proposed algo-
rithm outperforms the coherent autocorrelation algorithm
in MSE performance. When SNR > 20 dB, the perform-
ance of the two algorithms is similar.
Figure 5 presents the MSE of the estimated CFO in

16 × 16 MIMO-OFDM system with fmax = 20 HZ. As
shown, when SNR ≥ 15dB, for SARFT-8 channel, the
MSE of 0.05, 0.1, and 0.2 normalized CFO are about 2 ×
10−4, 8 × 10−5, and 2 × 10−5, respectively. For ITU-VB
channel, the MSE of 0.05, 0.1, and 0.2 normalized CFO
are about 4 × 10−4, 3 × 10−4, and 8 × 10−5, respectively.

(a) (b)

(c) (d)
Fig. 3 The CFO influence on Rrc (the cross-correlation between local PN sequence and received signal) in 16 × 16 MIMO-OFDM system with fmax = 20 HZ
and SNR = 5 dB

(a) (b)

Fig. 4 The performance comparison of two CFO compensation schemes in 16 × 16 MIMO-OFDM system

Li et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:31 Page 9 of 13



Even when SNR = 0 dB, for both SARFT-8 and ITU-VB
channel, the MSE of 0.05, 0.1, and 0.2 normalized CFO
are still lower than 2 × 10−3, 3 × 10−4, and 10−4, respectively.
In other words, the performance of the robust differential
correlation algorithm is limitly affected by noise. Further-
more, the MSE performance is affected by the channel. It
can be seen that the MSE performance under SARFT-8
channel is better than that of ITU-VB channel.
Since the estimated CFO is accurate, the excellent CFO

compensation of signals can be achieved. Figure 6 presents
the cross-correlation (Rrc) between local PN sequence and
the CFO-removed receive signal in 16 × 16 MIMO-OFDM
system with fc = 0.05, fmax = 20 HZ, and SNR = 5dB. Still,
the actual CIRs of the used SARFT-8 and ITU-VB channel
are marked in red for comparison. Unlike Fig. 3a and c,
after the CFO removal, the correlation peaks in Fig. 6 are
evident and roughly overlap with the actual CIRs. By set-
ting an appropriate threshold, the location of those peaks
which are higher than the threshold is extracted as PCS in-
formation. Though the obtained PCS information is not ac-
curate as the actual delay of CIRs (there are three missed
peaks in PCS information acquisition in Fig. 6a, it can pro-
vide valuable prior information for the following CS-based
channel estimation).

7.3 The performance of the proposed channel estimation
Figure 7 presents the MSE of the proposed PCS-
information-based CS channel estimation scheme in 16 ×

16 MIMO-OFDM system with fc = 0.05. As can be seen,
both the MSE and BER performances are limitly influenced
by Doppler shift. This is to say, the proposed PCS-
information-based CS channel estimation scheme has good
robustness under time-varying channels. The major factor
that impacts the accuracy of channel estimation is the SNR
of channel.
Figure 8 shows the MSE and BER performance of the

proposed PCS-information-based CS channel estimation
scheme in 8 × 8, 16 × 16, and 32 × 32 MIMO-OFDM sys-
tems with fc = 0.05 and fmax = 20 HZ. As can be observed,
for both SARFT-8 and ITU-VB channel, with the increase
of Nt and Nr, both MSE and BER performances get worse.
Figure 9 compares the MSE and BER performances of

different CS channel estimation schemes in 16 × 16
MIMO-OFDM system with fc = 0.05 and fmax = 20 HZ.
In our simulation, we assume that channel sparsity level
is known to OMP and CoSaMP, and the step size of
SAMP is set to 2. Among the four compared schemes,
SAMP has the worst performance. More specifically, in
Fig. 9a and c, at the target MSE of 10‐3, other schemes
have 5 dB SNR gain compared to SAMP. The reason is
that SAMP does not use any prior information of chan-
nel, and its accuracy is greatly affected by the setting of
parameters such as step size. As shown in Fig. 6, though
the obtained PCS information is not accurate enough,
the MSE and BER performance of the proposed scheme
are superior to that of OMP and CoSaMP. Hence, the

(a) (b)
Fig. 5 The MSE performance of the proposed CFO compensation scheme in 16 × 16 MIMO-OFDM system with fmax = 20 HZ

(a) (b)

Fig. 6 PCS information acquisition with CFO removal in 16 × 16 MIMO-OFDM system with fmax = 20 HZ, fc = 0.05, and SNR = 5 dB
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(a) (b)
Fig. 8 The MSE and BER performance of the proposed PCS-information-based CS channel estimation scheme in 8 × 8,16 × 16, and 32 × 32 MIMO-
OFDM systems with fc = 0.05 and fmax = 20 HZ

(a) (b)
Fig. 7 The MSE and BER performance of the proposed PCS-information-based CS channel estimation scheme in 16 × 16 MIMO-OFDM system
against fmax

(a) (b)

(c) (d)
Fig. 9 The performance comparison of different CS channel estimation schemes in 16 × 16 MIMO-OFDM system withfc = 0.05 and fmax = 20 HZ
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proposed scheme has great robustness under inaccurate
PCS information situation.
Additionally, as can be seen, the performance result

under ITU-VB channel is similar to that under SARFT-8
channel. The major difference is the performance gap
between the proposed scheme and OMP/CoSaMP. As
shown in Fig. 9c, the SNR gap between the proposed
scheme and OMP/CoSaMP at MSE of 10‐3 is about 5
dB, which is higher than that under SARFT-8 channel.
This is because the obtained PSC information is more
accurate under ITU-VB channel (shown in Fig. 6).
As can be seen from the above results, the MSE and

BER performances of the proposed scheme are better than
other schemes. Moreover, compared with OMP and
CoSaMP, there is no need to know the channel sparsity
level as a priori information in the proposed scheme.

8 Conclusions
This paper discusses sparse massive MIMO-OFDM
channel estimation based on compressed sensing over
frequency offset environment. First, we propose a new
OFDM frame structure, which the major benefit is low
implementation complexity. Then, based on the pro-
posed OFDM frame structure, the CFO is estimated by
utilizing the proposed differential correlation algorithm,
so its influence on channel estimation can be eliminated.
Afterward, the PCS information of each channel is
obtained. Based on the obtained PCS information, the
CS reconstruction scheme is exploited to estimate the
channel. The simulation result shows that the perform-
ance of the proposed scheme is superior to that of other
mentioned schemes. Moreover, it does not need to know
the channel sparsity level as a priori information; there-
fore, it is more practicable than other CS-based channel
estimation schemes.
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