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Abstract

In digital filters theory, filtering techniques generally deal with pole-zero structures. In this context, filtering schemes,
such as infinite impulse response (IIR) filters, are described by linear differential equations or linear transformations,
in which the impulse response of each filter provides its complete characterization, under filter design specifications.
On the other hand, finite impulse response (FIR) digital filters are more flexible than the analog ones, yielding higher
quality factors. Since many approaches to the circuit synthesis using the wavelet transform have been recently
proposed, here we present a digital filter design algorithm, based on signal wavelet decomposition, which explores the
energy partitioning among frequency sub-bands. Exploring such motivation, the method involves the design of a
perfect reconstruction wavelet filter bank, of a suitable choice of roots in the Z-plane, through a spectral factorization,
exploring the orthogonality and localization property of the wavelet functions. This approach resulted in an energy
partitioning across scales of the wavelet transform that enabled a superior filtering performance, in terms of its
behavior on the pass and stop bands. This algorithm presented superior results when compared to windowed FIR
digital filter design, in terms of the intended behavior in its transition band. Simulations of the filter impulse response
for the proposed method are presented, displaying the good behavior of the method with respect to the transition
bandwidth of the involved filters.
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1 Introduction
Filter design has been extensively explored in circuit
synthesis and signal processing, as a part of circuit the-
ory [1–7]. Within this context, one of the major chal-
lenges of the IIR filters is determining its respective
coefficients: in a digital form, the IIR filters can be de-
signed from their analog versions, a procedure that is
not easily performed [2, 4]. On the other hand, the FIR
filters are more powerful than the IIR ones [4], but they
also require more processing power. In this scenario of
drawbacks, the frequency partitioning into sub-bands,
obtained by the wavelet transform, could be useful: in
the wavelet decomposition of a given signal, frequency
sub-bands are obtained with peculiar amplitude values,
which could be explored in selective filtering techniques.
The wavelet filter banks provide the advantage of sep-

arating the signal under consideration into two or more
signals, in the frequency domain. Since signals can show

different amplitude levels in both time and wavelet
transform domains, it is interesting to partition the en-
ergy into several frequency sub-bands for several appli-
cations. This could be achieved using low-pass or high-
pass filters, associated with wavelets respectively with
few or many vanishing moments [8–10]. This apparent
duality could be better described using spectral
factorization [9–12], which allows separating polynomial
roots into two corresponding sequences of low-pass fil-
ters in a wavelet filter bank, according to a criterion of
perfect reconstruction [12]. The selective filtering
method proposed here designs a wavelet family that de-
composes the signal to be filtered into sub-bands fitted
in amplitude, obtaining good quantitative results in
terms of accuracy of filtering and simultaneously with a
low computational cost. Although this technique has
been studied in several digital signal processing applica-
tions, so far it has not been widely explored in digital
circuit theory [13–15], which is the main focus of this
investigation, primarily the digital filter synthesis,
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showing the good choice for wavelets in digital filtering
applications.
This manuscript is organized as follows. Section 2 pre-

sents the theory of wavelet filter banks, designed to ob-
tain perfect reconstruction. Section 3 highlights the role
of the multiplicity of a root at z = − 1 in digital filter de-
sign. Section 4 presents the methodology for designing a
specific wavelet family based on the spectral
factorization algorithm [8, 12]. Section 5 presents the
frequency responses for the designed filter, when com-
pared to first-order filtering stages, generally imple-
mented with circuit elements. Finally, section VI
discusses the results and possible outcomes of this
modeling.

2 Methods: wavelet theory and filter banks
In signal processing, a filter bank is an array of band-
pass filters that separates the input signal into multiple
components, each one carrying a single frequency sub-
band of the original signal. For example, an application
of a filter bank lies in designing a graphic equalizer,
which can attenuate the components differently and re-
combine them into a modified version of the original
signal [16, 17]. The decomposition process, performed
by the filter bank, is labeled analysis (meaning analysis
of the signal in terms of its components in each sub-
band); the output of the analysis is referred to as a sub-
band signal, where each frequency sub-band is related to
a specific filter in a bank. The reconstruction process is
labeled synthesis, meaning the reconstitution of a
complete signal resulting from the filtering process [18].
Particularly in digital signal processing, the term filter
bank is also commonly applied to a bank of receivers
[19, 20]. The difference is that receivers also down-con-
vert the sub-bands to a low-center frequency that can be
resampled at a reduced rate. The same procedure could
be sometimes performed by undersampling the band-
pass sub-bands.
The analysis of signals by filter banks requires minim-

ally filtering techniques using Fourier analysis [18],
which use complex sinusoids as basis functions. How-
ever, a difficulty that has often been raised with this ap-
proach is that, because of the infinite extent of the basis
functions, any time-local information is spread out over
the whole frequency axis [18]. Under such constraints,
the wavelet basis is a set of functions that can represent
signals with good resolution in both time and frequency
domains. The wavelet transform is well defined within
the multiresolution framework, which allows signal ana-
lysis in several scales. Wavelets are characterized by time
locality, allowing an efficient capture of transient behav-
ior in a signal. Furthermore, the time-frequency reso-
lution trade-off, provided by the multiresolution
analysis, enables a better signal representation over the

Fourier analysis, since it reveals signal aspects that Fou-
rier signal representation usually neglects, such as
trends, breakdown points, and discontinuities. In this
context, a wavelet filter bank is an array of wavelet filters
used to decompose a signal into sub-bands over different
regions of the frequency spectrum, without losing the
time domain characterization as performed by the Fou-
rier transform, which is useful in circuit applications.
Particularly, wavelets are function sets obtained from a

prototype function (labeled mother wavelet) through di-
lations and translations. The general form of a wavelet
family is given by

ψ j;k xð Þ ¼ ψ 2 jx−k
� �

; j; k∈Z ð1Þ

where ψj, k(x) is the ‘mother wavelet’, while j and k are
respectively the scale and translation factors.
The algebra behind the wavelet filter bank design has

been extensively discussed elsewhere [8, 9]. A two-chan-
nel wavelet filter bank structure involves four filters: the
analysis stage has a low-pass H0(z) and a high-pass H1(z)
filter (with h0[n] and h1[n] impulse responses, respect-
ively), while the synthesis stage is formed by low-pass
G0(z) and high-pass G1(z) filters (with g0[n] and g1[n]
impulse responses, respectively), as shown in Fig. 1. The
output signals of those filters, y0[n] and y1[n], must be
decimated by a factor of two, retaining only the even
samples, since each filter output contains half of the fre-
quency content, but an equal amount of samples as the
input signal. The combination of the two outputs con-
tains the same frequency content as the input signal, but
the amount of data is doubled. Therefore, the downsam-
pling procedure, denoted by the operator ↓ 2, is applied
on filter outputs in the analysis bank:

y0 n½ � ¼ h0 n½ ��x n½ �; v0 n½ � ¼ y0 2n½ � ð2Þ

and

y1 n½ � ¼ h1 n½ ��x n½ �; v1 n½ � ¼ y1 2n½ �; ð3Þ

where the ' ∗ ' symbol is the convolution operator.
The input signal x[n] with a fixed length q (for analysis

purposes) produces two signals, v0[n] and v1[n], with
length q/2. This analysis step is opposite to the synthesis
one: v0[n] and v1[n] are interpolated (by a factor of 2)
with zeros in odd samples (denoted by the operator ↑ 2).
The results are filtered by G0(z) and G1(z), and their
sum gives ~x½n�:

~x n½ � ¼ g0 n½ ��~v0 n½ � þ g1 n½ ��~v1 n½ �; ð4Þ

where
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~vi m½ � ¼ vi m=2½ � ;m even
0 ;m odd:

�
ð5Þ

If ~x½n� ¼ x½n−l� (i.e., if the input signal is delayed by l
integer samples), the filter bank allows perfect recon-
struction [8, 21, 22]. The conditions for this case are
now explained through signal analysis along the filter
bank, in the Z-transform domain. An analysis of Eqs. (4)
and (5) in the Z-domain leads to

~X zð Þ ¼ 1
2
G0 zð Þ H0 zð ÞX zð Þ þ H0 −zð ÞX −zð Þf g

þ 1
2
G1 zð Þ H1 zð ÞX zð Þ þ H1 −zð ÞX −zð Þf g ¼ z−lX zð Þ:

ð6Þ
To avoid output aliasing, the following conditions for

perfect reconstruction must be defined [11, 21]:

G0 zð ÞH0 zð Þ þ G1 zð ÞH1 zð Þ ¼ 2z−l ð7Þ
and

G0 zð ÞH0 −zð Þ þ G1 zð ÞH1 −zð Þ ¼ 0 ð8Þ
The anti-aliasing condition from Eq. (8) leads to “alter-

nating signal” constructions [9], corresponding, in poly-
nomial terms, to H1(z) =G0(−z) and G1(z) = −H0(−z).
Therefore, Eq. (8) is satisfied, and Eq. (7) reduces to an
equation of the product filter P0(z) =G0(z)H0(z), such
that

P0 zð Þ−P0 −zð Þ ¼ 2z−l: ð9Þ
This is the key equation to design filters with perfect

reconstruction [9], in which the left term is an odd func-
tion, so l must be odd. This means that the only odd
term in P0(z) is equal to z−l. The solution of Eq. (9) leads
to the relationships

h0 L0−1−k½ � ¼ −1ð Þkg1 k½ � ð10Þ

h1 L1−1−k½ � ¼ −1ð Þkg0 k½ � ð11Þ
where L0 and L1 are the lengths of the filters h0[n] and
hi[n], respectively. This leads to

~y0 k½ � ¼
X
n

x n½ �g0 −nþ 2k½ � ð12Þ

~y1 k½ � ¼
X
n

x n½ �h1 −nþ 2k½ � ð13Þ

~x n½ � ¼
X
k

y0 k½ �g0 −nþ 2k½ � þ y1 k½ �h1 −nþ 2k½ �� �

ð14Þ
This formulation motivates the study of digital filter

design from a perspective of filter root analysis, which is
explored in the following sections.

3 Root analysis in digital filters
Digital filters have been widely used in signal processing
and communication systems, in applications such as
channel equalization, noise reduction, radar, audio and
video processing, biomedical signal processing, and ana-
lysis of economic data [2, 3, 23–25]. In those examples,
the roots of the digital filters play a major role in their
design. Their location in the Z-plane allows the designer
to establish specific applications, mainly to confine a sig-
nal in a prescribed frequency band as in low-pass, high-
pass, and band-pass filters; to decompose a signal into
two or more sub-bands as in filter-banks, graphic equal-
izers, sub-band coders, and frequency multiplexers; to
modify the frequency spectrum of a signal as in tele-
phone channel equalization and audio graphic equal-
izers; to model the input-output relationship of a
system, such as telecommunication channels, human
vocal tract, and music synthesizers [26]. Those features
could be directly transferred to circuit theory without
loss of generality.
Here, the task of building filter prototypes to select

specific frequency components in a signal has been pri-
oritized. We explored the number of zeros (roots of a
polynomial filter) of digital filtering structures, placed at
z = − 1. Particularly, we focused on the use of perfect re-
construction filter banks, as those schemes are formed
by linear phase analysis and synthesis filters, therefore
avoiding the occurrence of undesired disturbances due
to phase shifting [26].

Fig. 1 A two-channel filter bank with analysis and synthesis stages
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The design of a perfect reconstruction filter bank
could be synthesized in three steps [11, 27]:

i) Selection of a generic polynomial P0(z) that satisfies
Eq. (9);

ii) Factorization of the polynomial P0(z) into two
polynomials G0(z) and H0(z), where H0(z) contains
all zeros only at z = − 1; and

iii) Determination of impulse responses of low-pass
filters h0[n] and g0[n], as well as the ones for high-
pass filters h1[n] = (−1)ng0[n] and g1[n] = (−1)n +
1h0[n], through the “alternating signal” construction
[7].

According to digital filter theory [2], the magnitude
response |H(z)| of a low-pass digital filter must vanish
at the digital frequency Ω = π rad/sample. In Z-plane,
such case corresponds to the condition z = e−iπ = − 1,
ensuring that the high-frequency components of the
input signal are essentially canceled. This condition,
H(−1) = 0, is relevant in wavelet theory [7, 8, 16, 17].
In a filter bank, a root located at z = − 1, with multiplicity

p, imposes a major role: the associated wavelet function ψj,

k(x) has p vanishing moments, which represents a criterion
on how those functions decay toward infinity [8]:Z∞

−∞

xmψ j;k xð Þdx ¼
Z∞

−∞

xm2 j=2ψ j;k 2 jx−k
� �

dx

¼ 0 ;m < p; ð15Þ

where j and k denote the dilation and translation wavelet

factors, respectively. Figure 2 shows the Daubechies
wavelets [15], generally used in wavelet filter design, re-
lated to vanishing moments.
Although the formulation to design perfect recon-

struction wavelet filters is given above, there is no expli-
cit criterion on which design is the best choice. One
feature that gives some information on the performance
of the designed filters, with respect to their behavior on
pass and transition bands, is based on the multiplicity of
zeros at z = − 1, which ensures the orthogonality of the
designed wavelets and could be explored [4], being use-
ful to determine the number of vanishing moments of
that wavelet family.
Therefore, the p value assumes an important role in

wavelet filter design, defining the form of the transition
band in filtering: a large p value characterizes low-pass
filters with a wider passband and a narrower transition
band. In contrast, a wavelet function with a few vanish-
ing moments (a low multiplicity p for roots at z = − 1)
produces low-pass filters with a wider transition band
and a narrower passband. Exploring those features is
convenient to select properly the filter to be used ac-
cording to the nature of the input signal.

4 Multiresolution selective filter design
Over the last few years, the expansion of circuits equa-
tions on wavelet basis has been explored [28, 29]. This
resulted from the fact that expanding these equations on
a wavelet basis gives algebraic systems that can be con-
veniently solved (by numerical techniques), producing
accurate results with a low-computational cost. This

Fig. 2 Daubechies wavelets with different vanishing moments
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feature is particularly evident when irregular signals
(such as fast transients) are considered, since the wavelet
basis gives a concise representation (i.e., characterized
by a reduced number of coefficients). In fact, the Daube-
chies wavelets, on the interval in which the representa-
tion of circuits equations has been found [30], are the
most suitable wavelet basis for this type of problems.
They are orthonormal wavelet basis, characterized by a
certain number of vanishing moments [31], since they
offer the best efficiency in terms of accuracy versus cal-
culation time.
Nevertheless, the uneven distribution of signal energy

in the frequency domain has made signal decomposition
into wavelets an important practical problem. Rate-dis-
tortion theory shows that the uneven spectral nature of
real-world signals can provide the basis for source com-
pression techniques [32]. The basic concept explored
here refers to dividing the signal spectrum into sub-
bands, in a manner that the sub-spectrum with more en-
ergy content deserves higher priority for filtering. For
example, a slowly varying signal will have predominantly
low-frequency components. Therefore, the low-pass sub-
bands contain most of its total energy. If one filters the
high-pass analysis sub-bands and reconstructs the signal,
it is expected that very little or negligible reconstruction
error occurs after this analysis/synthesis operation. The
decomposition of the signal spectrum into sub-bands
provides the mathematical basis for an important and
desirable feature in the signal analysis: the monitoring of
signal energy components within the sub-bands is pos-
sible, as the sub-band signal can be ranked and proc-
essed independently.
Under such considerations and after emphasizing the

relevance of roots at z = − 1 in the previous section, the
filter bank design can be analytically developed, specific-
ally through spectral factorization of a polynomial filter
[9, 22]. The construction of a filter bank, according to
that method, requires the computation of the roots of a
particular product filter

P<D>
0 zð Þ ¼ 1þ z−1

� �2 Dþ1ð Þ
QD zð Þ; ð16Þ

where QD(z) is a Laurent polynomial with degree D and
2D roots [7].
In order to separate real from complex roots of the

polynomial QD(z), a possible form of P<D>
0 ðzÞ is here

proposed using [30], such that

P<D>
0 zð Þ ¼ 1þ z−1

� �2 Dþ1ð Þ
U z−1; zi
� �

V z−1; r j
� � ð17Þ

where

U z−1; zi
� � ¼ Yncq

i¼1

1−ziz−1
� �

1−zi−1z−1
� �

1−ziz−1
� �

� 1−zi−1z−1
� � ð18Þ

and

V z−1; r j
� � ¼ Ynrd

i¼1

1−r jz−1
� �

1−r j−1z−1
� � ð19Þ

are auxiliary functions obtained from the separation of
P<D>
0 ðzÞ into roots at z = − 1, complex and real roots,

and where ncq and nrd are respectively the numbers of
quadruple complex factors and of double real factors in
QD(z). In fact, the precise separation of roots into two
sets, the ones located at z = − 1 and the ones located in
other regions in Z-plane, is the key element of the pro-
posed algorithm for filter circuits design. It can be
shown that ncq =D/2 and nrd =Dmod 2 [33, 34], where
‘mod’ represents the modulus operator. The Eqs. (16),
(17), (18), (19) could be interpreted as

i) For an arbitrary polynomial F(z) with N coefficients,
there are N − 1 roots, from which a subset of K
integer roots, 0 ≤ K ≤N − 1, may be placed at z = −
1;

ii) In spectral factorization, the polynomial of the
product filter P<D>

0 ðzÞ with NP = 4D + 3 coefficients
and Kp = 2D + 2 roots at z = − 1 is factorized into
polynomials; and

iii) Each polynomial corresponds to analysis low-pass
filter, H0(z), and synthesis low-pass filter, G0(z),
respectively, with Nh and Ng coefficients and Kh and
Kg roots at z = − 1.

This factorization leads to the following constraint for
the roots at z = − 1:

Np ¼ Nh þ Ng−1 ð20Þ
and

Kp ¼ Kh þ Kg : ð21Þ
The wavelet family, chosen in the design due to its lin-

ear phase, suitable for circuit design [30], is the symmet-
rical orthogonal one, which requires [8, 11]:

Nh ¼ Kh þ 4ncqh þ 2nrdh þ 1; ð22Þ
Ng ¼ Kg þ 4ncqg þ 2nrdg þ 1; ð23Þ

and

Np ¼ 2Kp−1; ð24Þ
where the subscripts h and g correspond to the analysis
and synthesis polynomials, respectively. Non-integer
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values of ncq and nrd correspond to a pair of complex
roots and a single real root, respectively. Additionally,
Kh and Kg must be simultaneously even or odd, which
imposes

ncqp ¼ ncqh þ ncqg ð25Þ

and

nrdp ¼ nrdh þ nrdg ¼ 1; ð26Þ

where ncqp and nrdp denote the number of pairs of com-
plex and single real roots for both analysis and synthesis
stages, respectively. Once defined, the multiplicity of the
root at z = − 1 for low-pass stages of analysis and syn-
thesis steps, Eqs. (22) and (23) could be used to obtain
the number of coefficients for each QD(z) factor. Eqs.
(25) and (26) determine the splitting of roots into H0(z)
and G0(z) polynomials, whence the low-pass impulse re-
sponses h0[n] and g0[n] could be obtained and, simultan-
eously, h1[n] and g1[n] [35–37], using the alternating
signal scheme for perfect reconstruction.
As a result, the designed filtering method for circuits

applications consists in partitioning the signal to be fil-
tered into two wavelet sub-bands, with subsequent filter-
ing and wavelet reconstruction stages, described in
Fig. 3. The application of wavelet transform splits the
signal into two parts: a set of low-frequency components
with higher amplitude values, and a set of high-fre-
quency components with lower amplitude values. The
portion of the signal energy allocated for each sub-band
determines the filtering performance.

5 Results and discussion
The formal development of the wavelet filter bank de-
sign was presented in Eqs. (16), (17), (18), (19). The next
step involves a particular partitioning of the signal en-
ergy, described as follows:

i) The multiplicity of roots at z = − 1 is set for low-
pass filters of analysis and synthesis steps. In the
simulations, better results, in terms of observing a

sharper response in transition band, were obtained
for Kh = 1 and Kg = 7, leading to

Kp ¼ Kh þ Kg ¼ 8 ð27Þ

and

D ¼ Kp−2
2

¼ 3: ð28Þ

ii) Under the assignment of the value of D, Eqs. (16)
and (17) are used to determine the number of
coefficients for each factor of QD(z). Once D = 3,
the number of coefficients for the factors of Q3(z)
must be assigned, since NP = 4D + 3 = 15 and Kp =
2D + 2 = 8. Defining ncqh ¼ 0 and nrdh ¼ 0, it is
obtained:

Nh ¼ Kh þ 1 ¼ 2: ð29Þ

Similarly, defining ncqg ¼ 1 and nrdg ¼ 1 , it can be

shown that

Ng ¼ Kg þ 4þ 2þ 1 ¼ 14: ð30Þ

iii) Choosing a single root at z = − 1 for the low-pass
filter into analysis step, H0(z), the low-pass impulse
responses h0[n] and g0[n] are obtained, and hence
h1[n] and g1[n], through the “alternating signal”
scheme.

The resulting low-pass filters for analysis and synthesis
steps in the Z domain, according to the steps performed
in (i)–(iii) and developed from Eqs. (16), (17), (18), and
(19), are respectively obtained as

Fig. 3 Block diagram for a reconstruction two-channel filter bank
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H0 zð Þ ¼
ffiffiffi
2

p

2
z−6 þ

ffiffiffi
2

p

2
z−7 ¼

ffiffiffi
2

p

2
z−6 1þ z−1

� � ð31Þ

and

G0 zð Þ ¼ −0; 003452ð1−z−1−8; 8z−2 þ 8; 8z−3 þ 40; 2z−4

−40; 2z−5−204; 8z−6−204; 8z−7−40; 2z−8

þ 40; 2z−9 þ 8; 8z−10−8; 8z−11−z−12 þ z−13Þ:
ð32Þ

Once defined, the responses H0(z) and G0(z), a wavelet
family is designed for use in a filter bank, as both filters
form the proposed filter bank in a condensed manner.
Figure 4 shows the scaling function ϕ(x) and wavelet
function ψ(x), corresponding to the designed filter bank,
compared to the simplest wavelet functions, the Haar
functions [17], which also have a single root at z = − 1 in
its analysis low-pass stage, being therefore adequate for
comparison due to its simplicity of representation. Fig-
ure 5 shows the zero map for the designed low-pass fil-
ters. Those simulations were performed using
MATLAB® software.
The designed synthesis low-pass or high-pass filters

could be used in circuit theory, since their roots are
known. This is a noticeable advantage in comparison to
other filtering methods, based uniquely on the frequency
response modeling. Within this method, both filter re-
sponse and location of roots are performed, allowing a
more flexible circuit synthesis. The frequency response

for the synthesis low-pass stage is shown in Fig. 6 (nor-
malized for unitary gain at Ω = 0 rad/sample), in com-
parison to a second-order continuous-time low-pass
filter with cutoff frequency of 1 kHz, converted to its
digital form by bilinear transformation, and, for instance,
to a windowed FIR filter—a typical filter in circuit syn-
thesis [36].
Figure 7 shows the frequency response in decibel for

each filter tested in Fig. 6, when compared to an ideal
digital low-pass filter. These results indicate that the
proposed algorithm presents better performance than
other filtering methods: at Ω = π/2 rad, the frequency
response of the proposed filter shows a stable behavior
with lower attenuation, while presenting a fast conver-
gence to zero at higher frequencies (Ω = π rad). Several
sets of zeros were tested to factorize the product filter,
being selected the one with the best signal energy bal-
ance, using a few filter coefficients.
Figure 8 shows that the proposed wavelet filter

bank ensures high stop-band attenuation, despite its
simpler implementations when compared to typical
filter design methods [38, 39]. Finally, the filter devel-
oped here is compared to other wavelet filters, in
order to validate the design method. Figure 8 shows
the frequency response of the designed synthesis low-
pass filter, when compared to others obtained from
alternative wavelet functions, such as the Haar and
‘orthogonal db8’ (Daubechies) ones [11, 12]. The

Fig. 4 a Haar scaling function. b Haar mother wavelet. c Designed scaling function. d Designed mother wavelet
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proposed algorithm is well suited to behave as a good
window function in several signal processing applica-
tions, showing a higher to accurately resolve noise
and distortion components in the frequency spectrum,
emphasizing the performance of the proposed model
as that is measured by the behavior of the frequency
response of the whole filter bank.
The present strategy shows that the concept of

wavelets can be explored in the context of circuit

theory applications and becomes an additional
model to be compared to other well-established fil-
ters [40–46], as it can bring out the orthogonal and
the multiresolution properties of the wavelet, im-
proving the efficiency of the calculations. As minor
disadvantages, this technique requires a pre-process-
ing of the signals to be filtered in the wavelet do-
main, such as symmetric extension (a mandatory
procedure in wavelet filter design [47–52]).

Fig. 5 Roots of designed low-pass filters in analysis and synthesis steps. The multiplicity of roots at z = − 1 for each stage (1 for analysis and 7 for
synthesis) is pointed out in the figure

Fig. 6 Frequency response for the proposed low-pass filter, compared to a continuous-time low-pass filter after digitization
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6 Conclusions
In summary, the use of wavelet filter banks in circuit
theory allows the implementation of simple filter stages,
in terms of the practical formulation involved in that
task. The separation of signals into low- and high-fre-
quency values is noticeably efficient, as the energy of the
signals involved could be properly partitioned. Neverthe-
less, the implementation of spectral factorization to
wavelet filter design is adequate to build fast and simple
filter circuits, in the sense that the design approach

based on the multiplicity of roots at z = − 1 is shown to
be elegant and efficient, combining mathematical
consistency and good performance. Additionally, the
good approximation obtained by wavelets for high-fre-
quency components encourages the proposition of filter
schemes in power electronics circuits, where drastic
switching procedures are observed. Nevertheless, this fil-
ter design method is significantly effective in obtaining a
fast transition out of the passband in the frequency do-
main, as well as the numerical efficiency of wavelets

Fig. 7 Frequency response absolute values (in decibels) for the proposed filter design, compared to a digitized continuous-time low-pass filter.
The relative amplitude is varied from zero to unity

Fig. 8 Frequency response of synthesis low-pass filters for different mother wavelet functions
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makes the method effective for fast and reliable numerical
circuit simulations, despite its mathematical simplicity. The
use of wavelets is also preferable in comparison to other fil-
tering schemes, due to the easy time-frequency duality [48].
This shows the relevant contribution of the proposed filter,
as other windowing functions do not offer enough side-lobe
attenuation to be used in filtering applications. As a future
development, optimization approaches could be considered
for comparison, since they are not included in such analysis
due to the fact they produce high computational effort for
implementation, like many other IIR filter schemes.
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