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Abstract

In this paper, the problem of detection of small signal-to-noise ratio (SNR) variations in noisy signals is addressed in
order to provide an efficient and fast method for detection of faulty electroencephalogram (EEG) electrodes which
can improve the interpretation of medical data. The method for slight SNR variation assessment, based on the
estimation of the longest useful information cluster, is proposed as an alternative to commonly used estimators such
as signal energy spectral density, spectral peaks, and spectrogram entropy, which exhibited limited reliability for the
considered task. The method proposed in this paper is validated on real signals, which are resistance fluctuations of
the EEG Corkscrew electrode solder connection, in which failure is typically manifested as a lower signal-to-noise ratio
in the output signal, when compared to the valid electrode. In order to obtain a reliable criterion for the distinction of
signals with slight SNR variations, a time-frequency method that relies on observation of the longest useful
information cluster of data preserved after the K-means-based denoising application has been introduced. Based on
the measurement of the longest existing stationary component, an expert system has been developed, which
provides reliable failure detection method with detection accuracy of up to 97.6%. Results on real and simulated data
show that the proposed method can be adopted as a computer-aided decision system in a wide range of
applications requiring high sensitivity to slight variations of SNRs.
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1 Introduction
Awidely accepted method to determine the reliability and
lifetime of a wide range of electronic devices is through
testing of the chemical and mechanical properties of the
used materials. The goal of such tests is to reliably deter-
mine the set on of the failure. In many cases, failure of
electronic devices can be caused by degradation (elec-
tromigration or oxidization) of metallic interconnects
and solder joints which lose their conduction properties.
Some known failure detection methods are based on the
research of DC resistance fluctuations, material fatigue,
corrosion, andmechanical stress [1–3]. Researching solely
resistance fluctuations of the material has proven to be
unreliable for determining failure appearance as shown
in literature that researched resistance fluctuations using
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disordered networks such as large scale random resis-
tor network (RRN) which exploits the fact that faulty
electrode presents non-Gaussian behavior and valid does
not, which has not been successfully applied as a reli-
able discrimination criteria [3]. Therefore, in this paper,
time-frequency (TF) analysis has been applied to mea-
sured and simulated, reference and faulty, EEG electrode
tip resistance fluctuation signals. Resistance fluctuations
often appear due to the electromigration process and
differences in the material properties and its microstruc-
ture [4, 5]. Material defects or chemical impurities that
can be inadvertently introduced during manufacturing
process, also significantly contribute to materials’ resis-
tance fluctuations. The diffusion of solder metal atoms
may decrease the cross-section area of the solder contact
which increases the local current density and local resis-
tance. The oxide layer that envelops the stainless steel tip
acts as a dielectric that has a significant influence on the
solder joint overall conductivity. Cold solder between the
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stainless steel tip and the lead wire can appear during the
manufacturing procedure of Corkscrew electrodes and
cannot be detected immediately but becomes apparent
after some time of use. The cold solder often significantly
affects the impedance of the electrode and the collected
signals’ quality. Electrode impedance change results in
increased electrode voltage drop, which leads to a larger
voltage difference at the amplifier input. Motivated by the
previous arguments, this paper investigates the possibil-
ity of detection of failure of EEG Corkscrew electrodes,
after manufacturing. The aim of this study is to perform
detailed computer simulations and develop an expert
system for timely failure detection. Simulations are per-
formed for a range of different noise realizations in order
to study the influence of noise type and level on spectro-
grams’ entropy. By the spectral analysis of the measured
signals, a superposition of additive white Gaussian noise
(AWGN) and flicker noise (FN) has been observed [6].
By focusing on steady-state behavior of total resistance,
properties of measured resistance fluctuations are ana-
lyzed employing the analysis of the information content of
the signal in the TF domain.
The simulation results conform to experimental obser-

vations, but also provide an important insight into the fail-
ure of solder joints. The results obtained by the proposed
computational algorithm based on resistance fluctuations
TF analysis are discussed as a potential diagnostic tool for
medical electrodes quality testing. Section 2, “Methods”,
describes the measurement setup that has been built for
the purpose of measuring resistance fluctuations, includ-
ing all the methods used to collect the data for the anal-
ysis. The following section “Comparison of criteria for
detection of faulty electrodes” compares different crite-
ria used when approaching the problem of small SNR and
determining the appropriate procedure for the successful

failure detection. Section 4 describes the developedmodel
for failure detection based on investigating resistance fluc-
tuations. Section 5 reports results and discussion of the
proposed method, with explanation of the rate of suc-
cess of the detection. Section 6 concludes the paper with
explanation of the obtained error rate and future work.

2 Methods
In order to determine electrode behavior and electri-
cal characteristics, it is necessary to understand the
microstructure of the solder joint created during the man-
ufacturing process. The Corkscrew electrode consists of
a needle (0.6 mm in diameter) and a lead wire (1 m
long). In the manufacturing process of Corkscrew elec-
trode, eutectic alloy of 60% tin and 40% led (Sn60Pb40) is
used as a bondingmaterial (solder) according to DIN1707.
The electrodes tip (needle) is made of stainless steel AISI
304 which has the following composition [7]: 14.7%Cr,
8.3%Ni, 0.053%C, 0.04%N, 0.48%Si, 1.42%Mn, 0.39%Mo,
and 0.14%Cu. This type of stainless steel has a thin oxide
film that circumfuses the needles’ surface. In order to
define the structure and impose a model of solder joint in
Corkscrew electrode, it is necessary to address the struc-
ture of the observed oxide film. It is composed of an outer
iron oxide layer and inner mixed iron-chromium oxide
layer [7]. As the manufacturing process of EEG electrodes
includes soft soldering procedure which uses tempera-
tures in the range of 300 to 350◦C, it is reasonable to
assume that thermally grown oxide layer dominates at the
tip surface over the passive oxide layer. The measurement
setup consists of source-measure unit (SMU) Keithley
2612 which is configured as constant voltage source. In
this configuration, as shown in Fig. 1, the “SourceMeter”
instrument functions as a low-impedance voltage source
with current limit capability which can measure current

Fig. 1Measurement setup: Keithley source-measure unit configured as a constant voltage source with a safety shield [3]
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(I-Meter) or voltage (V-Meter). The V-Meter senses the
voltage at the input/output terminals (2-wire local sense)
and compares it to the pre-programmed voltage level.
Additional circuitry is used for continuous monitoring
of the output voltage and adjustment to the V-Source if
needed. To eliminate the external noise, coaxial cable and
a safety shield are used. In this measurement setup, the
device under testing (DUT-EEG electrode) is connected
as a floating load to reduce the shield current and exis-
tent magnetic field. All measurements consist of P =
5000 samples for total recording time of 7 s and sampling
frequency of 714 Hz.

3 Comparison of criteria for detection of faulty
electrodes

3.1 Spectral energy, spectral peak, and TF entropy
The spectra of valid and faulty electrodes are given by the
discrete Fourier transform of the signal xn[ p], being the
resistance fluctuations of one Corkscrew electrode’s tip,
n = 1 : 1 : N , with parameters reported in Section 2.
Figure 2a and b show the energy spectral densities of the
resistance fluctuations of the Corkscrew electrodes pro-
vided by the measurement setup presented previously. It
can be seen that no significant difference between the
energy spectral densities of valid and faulty electrodes can
be observed. Thus, an alternative approach has been con-
sidered, based on the analysis of the electrodes response to
an intentionally added low-energy stationary component.
It has been observed that stationary components in

the resistance fluctuations can occur as results of non-
filtered network harmonics. Figure 2c shows the spectral
response of one valid, while Fig.2d of one faulty electrode.
The addition of a stationary component is manifested as
a prominent peak around 250 Hz in the signal energy
spectral density. The addition of a stationary signal com-
ponent evokes the possibility of considering an approach
aimed to detect the presence of a deterministic signal
in a noisy environment by means of the signal’s energy
[8–11]. In cited work the presence or absence of a deter-
ministic signal in a noisy environment assessment is based
on the energy of the observed signal: relying on a cer-
tain threshold [8–11] on the signal energy, the presence
of a deterministic signal is confirmed or denied. Figure 3a
shows the energies of signals with stationary component
of the valid and faulty electrodes (each set consists of
N = 7 measured electrodes labelled by the manufac-
turer as either faulty or valid, determined by the appear-
ance of cold solder). It can be noticed that for both sets
very similar results are obtained, showing the unsuit-
ability of energy detection for classification purposes for
the presented process. Figure 3b reports the maximal
values, at the stationary component’s frequency, of the
energy spectral density for valid and faulty electrodes,
indicating that valid electrodes tend to better preserve

the component peak. However, cases when opposite
responses are obtained are not rare, which motivated
the search for a more reliable discrimination criterion.
Figure 3c shows global entropy values for measured elec-
trodes.
This research suggests that classic spectral analysis is

not adequate for the distinction of valid from faulty
electrode’s signals. An alternative representation of the
measured signals is provided by the time-frequency (TF)
signal representation. Time-frequency signal representa-
tions represent a versatile tool for signal analysis and, in
the past few decades, has been applied to a wide range of
engineering applications [12–18]. The discrete Quadratic
time-frequency distribution (TFD) of an analytic signal
z[ p] can be written as [19]:

ρ[ p,m]= DFT
l→m

{G[ p, l] ∗
n
(z[ p + l] z∗[ p − l] )}; l ∈ 〈L〉 (1)

where G[ p, l] represents the time-lag kernel. One of the
most routinely used time-frequency distributions is
the spectrogram, obtained as the squared magnitude of
the Fourier transform over a short analyzing window w(p)
[19–21]. The spectrogram is thus characterized by the
time-lag kernel [19]

G[ p, l]= w[ p + l]w[ p − l] . (2)

Due to its realness, strict positivity, and absence of inter-
ferences in the case of non-overlapping components, the
spectrogram provides a simple and reliable interpretation
of the signal structure in the joint TF domain. Spectro-
grams of the measured signals, obtained using Hamming
window of duration T/10, where T is the number of sig-
nal samples, are shown in Figs. 4a and 5a. In an attempt to
find a suitable criterion for the development of an expert
system for assessment of electrodes’ validity, the spectro-
gram complexity has been estimated by the spectrogram’s
Rényi entropy. The generalized Rényi entropy reads [22]

Hα(ρ[ p,m] ):= 1
1 − α

log2
∑

P

∑

M

(
ρ[ p,m]∑

P
∑

M ρ[ p,m]

)α

(3)

where α is the order of the Rényi entropy (in this paper
the value of α = 3 has been adopted [23, 24]). Since
the TF Rényi entropy is an estimator of the TFD com-
plexity, disorder, and information content, intuitively it
can be expected that signals with lower SNRs will gener-
ally present larger entropy values [25, 26], which can be
exploited as a discrimination criterion for validity elec-
trodes’ assessment [27]. However, the obtained results
show tendency of valid electrode to preserve a more con-
centrated TF structure, and thus smaller entropy values,
even if this appears to be quite an unstable indicator,
Fig. 3c.
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(a)

(b)

(c)

(d)
Fig. 2Measured signal energy spectral density of a valid and b faulty electrode and signal energy spectral density with added stationary
component for c valid and d faulty electrode

3.2 The criterion based on deterministic signal’s
continuity

Since it is known that signal components, as opposed
to the noise, are continuous energy regions in the TF
plane [28, 29], we have proceeded in the search for
a robust and reliable method for automatic electrodes’
validity assessment by focusing on observation of the
components continuity in TF domain, by assuming that
lower SNR will cause oscillations in the component
amplitude, degrading its continuity. Thus, the proposed
method for distinction of faulty from valid electrodes,
which can be generally applied to problems of assess-
ing small differences in SNR in as set of measurements,

estimates the continuity of the signal component in the
TF plane.
The first step of the proposed method consists of

denoising the spectrogram ρn(p,m) of each signal zn(p)
using a K-means-based algorithm as described in sequel
[27, 30, 31]. The denoising procedure relies on the fact that
an amplitude discrimination of data in a TFD can be per-
formed by the K-means algorithm [30]. Considering the
set of observations Cn = {ρn(p,m)| p = 1, ...,P, m =
1, ...,M}, the K-means algorithm partitions these P×M
observations into K subsets

Cn = {Cn,k|k ∈ N, 1 ≤ k ≤ K}, (4)
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(a)

(b)

(c)
Fig. 3 a Signal energy, b spectrum maximum value inside components’ bandwidth, and c global entropy spectrogram’s entropy value for
measured electrodes

in order to minimize the within-cluster sum of squares,
with the minimal sum:

argmin
Cn

K∑

k=1

∑

ρn(p,m)∈Cn,k

‖ρn(p,m) − μn,k‖2, (5)

where μn,k is the mean of each set Cn,k .
Thus, K classes ρn,k(p,m), k ∈ N, 1 ≤ k ≤ K , derived

from the TFD ρn(p,m), are obtained as

ρn,k(p,m) =
{

ρn(p,m), if ρn(p,m) ∈ Cn,k
0, elsewhere. (6)

Results presented in this paper are obtained by the
pre-processing K-means algorithm computed using the
parameter K = 5.

Classes containingmainly noise will present significantly
larger time-frequency supports and smaller coefficients,
when compared to classes containing useful information
(since noise is flat in the TF plane while components are
prominent ridges) [32]. Thus, it is reasonable to expect
that data originated from the signal component will be
predominant in the classes marked by higher values of the
parameter k, while smaller values of k will mark classes
containing mainly noise-originated data. In the light of
the above, the denoising procedure is performed by dis-
carding all classes but the one marked by the largest
value of the parameter k (k = K). Data contained in
ρn,K [p,m] are assumed to be output of a strict denoising
procedure, simplifying the assessment of the component’s
continuity.
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Fig. 4 aMeasured valid electrode spectrogram and b spectrogram after applied K-means denoising

Fig. 5 aMeasured faulty electrode spectrogram and b spectrogram after applied K-means denoising
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Fig. 6 Synthetic component added around 250 Hz

Next, a narrow frequency bandwidth of the TF plane of
ρn,K [ p,m], around the stationary components’ frequency,
is analyzed to determine the component’s continuity by
connected components labeling in a binary image (2D).
Connected-component labeling or region extraction is an
algorithmic application of graph theory, where subsets
of a given data set are uniquely labeled based on pre-
defined conditions [33]. The algorithm returns a matrix
of the same size as the input matrix ρn,K [ p,m], con-
taining labels for the connected components which are
then used to extract relevant information from the input
ρn,K [ p,m]. Each individual separated set of data in the
TFD is given a unique label, in a form of a matrix mask,

which enables the component extraction procedure. The
continuity is quantified through the size (length) of the
clusters the stationary component is composed of, where
the longest cluster is considered as a measure of the elec-
trodes’ validity. After a narrow frequency band around
the stationary component has been designated, the cluster
length Lmax(n) is determined as the maximal number of
consequent (neighboring) non-zero coefficients scanning
in the time axis direction.
In Figs. 4b and 5b it can be seen that the component

is preserved better in the case of higher SNR (valid elec-
trode), presenting a continuous energy ridge in the TF
plane, unlike in the case of lower SNR (faulty electrode),

(a)

(b)
Fig. 7 Simulated signal energy spectral densities for a valid electrode and b faulty electrode
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(a)

(b)

(c)

Fig. 8 Simulated results for a signal energy, b spectrum maximum value inside components’ bandwidth, and c global entropy value for simulated
electrodes

where the component energy appears broken and uneven
inside its bandwidth.

4 Criteria application on simulated data
We have developed a model that fits distributions of
signal energies, valid electrode energy spectral densi-
ties’ local maxima, and Renyi entropy of the spectro-
gram of measured data. The developed computer model
has been applied in [27]. It is known from the litera-
ture that the resistance fluctuations can be characterized
as a superposition of the flicker and white noise [3, 6].
Noise-to-noise and signal-to-noise ratios are determined
using the average signal energy and average global entropy
of the measured signal spectrograms. Flicker and white
Gaussian noises are superimposed in noise-to-noise ratio
of 7 dB. The mixture of flicker and white noise is added
to the stationary components with SNR ≈ − 16 dB for
the valid electrode, and SNR ≈ − 18 dB for the faulty
electrode. The stationary component, embedded in the
previously described noise mixture, is centered around

the fifth network harmonic at f0 = 250 Hz, Fig. 6. It is
defined as:

y = cos (2π f0(p − P/2)). (7)

Figure 7 shows the energy spectral densities of the resis-
tance fluctuations of the simulated electrodes provided
by the computer model, with the stationary component.
It can be seen that no significant difference between the
spectra of valid and faulty electrodes can be observed.
Figure 8a reports the signal energies, calculated using
the energy spectral densities, of the simulated valid and
faulty electrodes, respectively, confirming that discerning
of valid and faulty electrodes is not possible.
Figure 8b shows the energy spectral densities’ maxima,

inside the stationary component’s bandwidth, of simu-
lated valid and faulty electrodes, and Fig. 8c shows the
entropy values of the signals spectrograms. Figures 9
and 10 show the spectrograms of one simulated valid and
one faulty electrode, before and after the denoising proce-
dure, respectively. Figure 11 reports lengths of the longest
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Fig. 9 a Simulated valid electrode spectrogram and b spectrogram after applied K-means denoising

Fig. 10 a Simulated faulty electrode spectrogram and b spectrogram after applied K-means denoising
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Fig. 11 The longest component length Lmax(n) in the spectrogram of faulty and valid electrodes for simulated signals

energy clusters Lmax(n), between the two groups of sim-
ulated signals, suggesting that precise classification could
be obtained by the application of the proposed criterion.
To validate the proposed classification criterion we have
applied it to measured data, Fig. 12. In Fig. 12, no over-
lapping of the two data sets (valid and faulty) can be
observed.

5 Results and discussion
Analysis of the spectral parameters of measured and sim-
ulated data shows the inadequacy of the classic spectral
analysis in defining an unambiguous classification crite-
rion of signals w.r.t. a small difference in SNRs. The signal
energies of faulty and valid electrodes result in similarly
distributed data (Fig. 3a, Fig. 8a), disqualifying energy
detection [8–11] as potential classifier between valid and
faulty electrodes.
As intuitively expected, in the case of higher SNR (valid

electrodes), the component peaks are generally better pre-
served; however, opposite cases are not rare (Fig. 3b,
Fig. 8b, Table 1.). The spectrogram shows a tendency of
signals in higher SNR to present a more ordered structure,
generally gaining smaller entropy values (Fig. 3c, Fig. 8c),
result that indicates that smaller SNRs preserve a more
compact structure of the component energy cluster. By
exploiting the spectrogram ability of representing signal
components as continuous energy concentrations, while
noise effects can be described as sparse energy peaks in
the TF plane, the time duration of the largest energy clus-
ter has been found highly indicative of the SNR level. In

Table 1 Classification criteria performance evaluation (TP-true
positives, TN-true negatives, FP-false positives, FN-false negatives)

Measure TP TN FP FN Acc. Prec. Recall F1

Entropy 107 15 92 0 0.570 0.537 1 0.698

Spec. max. 107 18 89 0 0.584 0.545 1 0.705

Comp. len. 107 102 5 0 0.976 0.955 1 0.977

fact, lower SNRs result in prominent energy peaks with
small time supports in the TF plane, as a result of the dis-
ordered spectrogram structure of noisy signals. On the
other hand, in the case of higher SNRs, the component
ridge consistently presents dominant TF peaks, since it is
the TF dominant structure. As shown in Fig. 11 and 12,
no overlapping in the lengths of the longest energy cluster
Lmax(n) between the two groups of signals has occurred,
encouraging further testing of the proposed criterion.
In order to propose an improved criterion for discrimi-

nation of valid from faulty electrodes, the three measures
that have shown potential employment as classification
criteria, namely the energy spectral densities’ maxima
inside the stationary component’s bandwidth, the spectro-
gram’s entropy, and the length of the spectrogram’s longest
energy cluster, will be extensively tested on measured and
simulated data.
In order to discern two groups of electrodes based on

input data obtained for each of the three compared mea-
sures (Figs. 3b, and 8b, Figs. 3c, and 8c, Fig. 11, and 12),
again the one-dimensional clustering K-means method is
applied as follows [30]: considering an 1×N-dimensional
set of observations

C = {Lmax(n)| n = 1, ...,N} (8)

the K-means algorithm partitions these 1×N observations
into K = 2 subsets

C = {Ck|k ∈ N, 1 ≤ k ≤ K}, (9)

as

argmin
C

2∑

k=1

∑

Lmax(n)∈Ck

||Lmax(n) − μk||2, (10)

whereμk is the mean of each setCk . In the presented case,
the set C has to be partitioned into two subsets, as:

C = {C1,C2} (11)

withC1 containing cluster lengths Lmax(n) estimated to be
responses of faulty electrodes, while C2 containing cluster



Milanović et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:38 Page 11 of 14

Fig. 12 The longest component length Lmax(n) in the spectrogram of faulty and valid electrodes for measured signals

lengths Lmax(n) estimated as responses on valid ones.
Based on the elements’ indexes n of the subsets C1 and
C2, two sets are obtained, Sf containing indexes n of faulty
electrodes, and Sv containing indexes n of valid electrodes.
In Fig. 12, which reports the lengths of the longest com-
ponent in the spectrogram of faulty and valid electrodes
for measured signals, it can be seen that a substantial dif-
ference in of the proposed estimate can be found between
the two groups of signals. Table 1 reports the performance
evaluation of the three classification criteria in terms of
accuracy, precision, recall and F1 score, where it can be
observed that the classification criterion based on the
maximal component length provides optimal fault detec-
tion procedure. A graphical user interface (GUI) has been

developed in order to simplify and speed up the process
of failure detection, Fig. 13. GUI output consists of data
sufficient to discard a faulty electrode or accept the valid
one, including a graphical representation of detected use-
ful data in analyzed signals spectrogram. The proposed
failure algorithm is described in a flowchart shown in
Fig. 14. The spectrogram has been used for the signals’
representations as one of the most commonly used TFDs
in practical applications, since it is cross-terms free, char-
acterized by realness, and strict positivity. However, other
TFDs with enhanced representation performance, as the
S-method [34] or Modified B Distribution [35], should be
considered for future work. The K-means has been used
as denoising method since it operates as 1D segmentation

Fig. 13 GUI of software tool prototype of a computer-aided decision system
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Fig. 14 Flowchart of the proposed algorithm

procedure directly on the TFD, taking into account the
difference in the structural features of noise, being flat in
the TFD, and signal components, being elongated energy
regions. Future work will include optimization of the
number of classes K utilized in the K-means algorithm,
in order to emphasize the component’s continuity in the
denoised TFD .

6 Conclusion
In this paper, the possibility of distinguishing signals
presenting slightly different power ratios of useful infor-
mation content (i.e., signal component) and noise, using
methods of spectral and time-frequency analysis is inves-
tigated. It has been observed that the analyzed signals,
obtained from the responses of valid and faulty electronic
devices (EEG electrodes), due to slightly different levels
of noise (lower SNR in faulty and higher SNR in valid

electrodes), present some minor differences in their spec-
tral characteristics. The energy spectral density is not
indicative of the SNR, and the spectral peak of the com-
ponent tends to be preserved better in signals with higher
SNR. However, this information appears quite unstable,
leading to a significant overlapping of results obtained
from faulty and valid electrodes, resulting in a significant
of classification error. A new insight in the signal structure
is provided by the time-frequency signal representation,
by computing the signal spectrogram. The spectrogram
entropy indicates a general better preservation of the com-
ponent structure in higher SNRs, however, representing
alone a weak classification criterion. The better preser-
vation of the component in higher SNR is assessed by
the length of the longest continuous energy cluster in
the time-frequency domain. Using this criterion, a reli-
able classification method has been established providing
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an effective faulty electrode detection procedure, with an
error rate of less than 3%, which can potentially help
in reducing the possibility of misreading EEG signals by
medical personnel. The importance of developing the fail-
ure detection method can be deduced from the fact the
research has been commissioned by the manufacturer due
to the feed back from medical personnel, noticing the
appearance of artifacts produced by cold solder.
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